JPH0735311A - Combustion type superheater - Google Patents

Combustion type superheater

Info

Publication number
JPH0735311A
JPH0735311A JP17776993A JP17776993A JPH0735311A JP H0735311 A JPH0735311 A JP H0735311A JP 17776993 A JP17776993 A JP 17776993A JP 17776993 A JP17776993 A JP 17776993A JP H0735311 A JPH0735311 A JP H0735311A
Authority
JP
Japan
Prior art keywords
steam
amount
vapor
combustion type
superheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17776993A
Other languages
Japanese (ja)
Inventor
Masahiko Watanabe
正彦 渡辺
Nobuyuki Nishiguchi
信幸 西口
Ryuichi Kako
隆一 加来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP17776993A priority Critical patent/JPH0735311A/en
Publication of JPH0735311A publication Critical patent/JPH0735311A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To provide a cheap and small-sized combustion type superheater of a good controlability in which, even when a vapor generation amount at a waste heat boiler is decreased a great deal, a vapor amount more than a prescribed value can be obtained at a prescribed temperature without fail. CONSTITUTION:In a combustion superheater 17, to a supply passage 16 which supplies to a generation set 3 vapor produced by a waste heat boiler 6 which collects waste heat from exhaust gas of an incinerating furnace 1, the vapor is superheated to turn into a prescribed flow amount of high temperature vapor. Further along a vapor flow passage 17d of the combustion type superheater 17, a multi-staged water atomizing mechanisms 17a and 17b for adjustment of a vapor flow amount are arranged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】近年、ゴミ焼却炉での発生熱エネ
ルギーを有効利用するために、焼却炉で発生した排ガス
に含まれる熱を廃熱ボイラを用いて熱交換し蒸気発電す
る発電機を備えた都市ゴミ焼却装置が注目されている。
本発明は、そのようなゴミ焼却装置において用いられ、
発電効率を向上するべくボイラで発生した蒸気を過熱し
て一定流量の高温蒸気を生成して発電装置に供給する燃
焼式過熱器に関する。
[Industrial field of application] In recent years, in order to effectively utilize the heat energy generated in a refuse incinerator, a generator for exchanging heat contained in exhaust gas generated in the incinerator with a waste heat boiler to generate steam is provided. Attention is being paid to the provided municipal waste incinerator.
The present invention is used in such a refuse incinerator,
The present invention relates to a combustion type superheater that superheats steam generated in a boiler to generate high-temperature steam at a constant flow rate and supplies the steam to a power generator in order to improve power generation efficiency.

【0002】[0002]

【従来の技術】高効率安定発電のためには一定流量以上
の過熱蒸気をタービンに供給することが必要である。と
ころが、廃熱ボイラで生じる蒸気量は不安定なゴミの燃
焼と密接に関連し、ゴミの燃焼状態が変動すると発生蒸
気量が大きく変動することになる。そのために、従来、
ボイラでの発生蒸気を過熱する燃焼式過熱器を設けて、
安定して一定流量以上の過熱蒸気をタービンに供給する
ように構成していた。つまり、前記燃焼式過熱器は、燃
焼式過熱器の入口部に蒸気流量センサを備えて、その検
出流量が低下すると、水を噴霧して蒸気流量を増やすと
ともに一定の蒸気温度を確保する単一の水噴霧機構を設
けて構成していた。
2. Description of the Related Art It is necessary to supply superheated steam at a constant flow rate or more to a turbine for highly efficient and stable power generation. However, the amount of steam generated in the waste heat boiler is closely related to the unstable combustion of dust, and the amount of steam generated greatly changes when the combustion state of dust changes. Therefore, conventionally,
By installing a combustion type superheater that superheats the steam generated in the boiler,
It was configured to stably supply superheated steam at a constant flow rate or more to the turbine. That is, the combustion type superheater is provided with a steam flow rate sensor at the inlet of the combustion type superheater, and when the detected flow rate decreases, water is sprayed to increase the steam flow rate and to maintain a constant steam temperature. It was configured by providing a water spray mechanism of.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述した単一
の水噴霧機構を設けた燃焼式過熱器をゴミ焼却炉に用い
た場合には、ゴミ質の変動によりボイラでの発生蒸気量
が大幅に低下した場合に、設定量以上の蒸気量を確保す
るべく、前記水噴霧機構から多量の水噴霧を行うことが
必要となる。かかる多量に噴霧された蒸気を短時間で過
熱するためには、それだけ燃焼式過熱器の燃焼熱量を多
く、そして伝熱面積を大きくする、つまり大型の燃焼式
過熱器を用いる必要があり、設備費が嵩むことになると
いう問題点があった。また、そのような大型の燃焼式過
熱器では、設定温度で設定流量を維持するための制御性
が低下するという問題点もあった。本発明の目的は、上
述した従来欠点を解消する点にあり、廃熱ボイラでの発
生蒸気量が大幅に減少しても、一定量以上の蒸気量を確
保するために、設備費が低減でき、制御性に優れた燃焼
式過熱器を提供する点にある。
However, when the above-mentioned combustion type superheater provided with a single water spray mechanism is used in a refuse incinerator, the amount of steam generated in the boiler is greatly changed due to fluctuations in the quality of the refuse. If the amount of steam is reduced to a certain level, it is necessary to spray a large amount of water from the water spray mechanism in order to secure a steam amount equal to or larger than the set amount. In order to superheat such a large amount of sprayed steam in a short time, it is necessary to increase the combustion heat quantity of the combustion superheater and increase the heat transfer area, that is, to use a large combustion superheater. There was a problem that the cost would increase. Further, in such a large combustion type superheater, there is a problem that the controllability for maintaining the set flow rate at the set temperature is deteriorated. The object of the present invention is to eliminate the above-mentioned conventional drawbacks, and even if the amount of steam generated in the waste heat boiler is significantly reduced, the facility cost can be reduced in order to secure a certain amount or more of steam. The point is to provide a combustion type superheater with excellent controllability.

【0004】[0004]

【課題を解決するための手段】この目的を達成するため
本発明による燃焼式過熱器の特徴構成は、蒸気流路に沿
って複数段の水噴霧機構を設けてある点にある。
To achieve this object, the combustion type superheater according to the present invention is characterized in that a plurality of stages of water spraying mechanism are provided along the steam flow path.

【0005】[0005]

【作用】図2に示すように、水噴霧機構17a,17b
を、蒸気流路上に前後二段に設けて分割噴霧すれば(図
中実線)、単一の水噴霧機構17aにより噴霧する場合
(図中一点鎖線)に比べて、熱交換温度差(対数平均温
度差)ΔTが大きくなり、従って、伝熱面積が小さくて
も所定の温度に過熱できるのである。つまり、交換熱量
Qは伝熱率Kと伝熱面積Sと温度差ΔTの積で表される
が、ここで、交換熱量Qを一定とするとき、温度差Tが
大であれば伝熱面積Sが小となることに基づく。このと
き、電熱面積が小さければ燃焼式過熱器の負荷変動(蒸
気変動)に対して燃料供給量の迅速な調節により燃焼温
度を調節して、応答遅れなく安定して設定温度に調節で
きるのである。
As shown in FIG. 2, the water spray mechanisms 17a and 17b are provided.
If the two are provided in the front and rear on the steam flow path and sprayed separately (solid line in the figure), the heat exchange temperature difference (logarithmic average) will be greater than in the case of spraying with a single water spray mechanism 17a (dashed line in the figure). Therefore, even if the heat transfer area is small, it is possible to overheat to a predetermined temperature. That is, the heat exchange amount Q is represented by the product of the heat transfer rate K, the heat transfer area S, and the temperature difference ΔT. Here, when the heat exchange amount Q is constant and the temperature difference T is large, the heat transfer area is It is based on the fact that S becomes small. At this time, if the electric heating area is small, the combustion temperature can be adjusted by the rapid adjustment of the fuel supply amount with respect to the load fluctuation (vapor fluctuation) of the combustion type superheater, and the temperature can be stably adjusted to the set temperature without a response delay. .

【0006】例えば、図3及び図4に示すように、燃焼
式過熱器の入口と出口の排ガス温度を800℃及び40
0℃に固定し、注水後の蒸気温度を圧力10MPaにお
ける飽和温度より10℃高い320℃、注水前の蒸気温
度を伝熱管の耐熱温度を考慮して550℃、注水温度を
20℃とし、1段の水噴霧機構を備えた過熱器と、2段
の水噴霧機構を備えた過熱器に対して、同じ交換熱量で
同じ注水量とした場合を考える。
For example, as shown in FIGS. 3 and 4, the exhaust gas temperatures at the inlet and the outlet of the combustion type superheater are 800 ° C. and 40 ° C., respectively.
Fixed at 0 ° C, the steam temperature after water injection was 320 ° C which is 10 ° C higher than the saturation temperature at a pressure of 10 MPa, the steam temperature before water injection was 550 ° C considering the heat resistant temperature of the heat transfer tube, and the water injection temperature was 20 ° C. Consider a case where the superheater having a water spray mechanism of two stages and the superheater having a water spray mechanism of two stages have the same heat exchange amount and the same water injection amount.

【0007】2段の水噴霧機構を備えた過熱器では、図
3(a)に示すように、74%の流量の蒸気が過熱器に
入力された場合に、総流量Qの蒸気量を得るために、第
一段目の水噴霧機構aで13%、第二段目の水噴霧機構
bで13%注水する。図3(b)に示すように、このと
き、第二段目の水噴霧機構bから出口に到る領域での交
換熱量(エンタルピーと流量の積で求まる)を基準1と
すると、入口から第一段目の水噴霧機構aに到る領域で
の交換熱量は0.5、第一段目の水噴霧機構aから第二
段目の水噴霧機構bに到る領域での交換熱量も0.5と
求まり、上述したように、対数平均温度差と電熱面積と
の積が交換熱量に比例する関係から、第二段目の水噴霧
機構bから出口に到る領域、第一段目の水噴霧機構aか
ら第二段目の水噴霧機構bに到る領域、入口から第一段
目の水噴霧機構aに到る領域の電熱面積の比は、1:
0.5:0.5と求まる。
In the superheater having the two-stage water spray mechanism, as shown in FIG. 3A, when the steam having a flow rate of 74% is input to the superheater, the total quantity Q of steam is obtained. Therefore, 13% of water is injected by the first-stage water spray mechanism a and 13% of water by the second-stage water spray mechanism b. As shown in FIG. 3 (b), at this time, when the exchange heat amount (obtained by the product of the enthalpy and the flow rate) in the region from the second-stage water spray mechanism b to the outlet is set to reference 1, The heat exchange amount in the area reaching the first-stage water spray mechanism a is 0.5, and the heat exchange amount in the area reaching from the first-stage water spray mechanism a to the second-stage water spray mechanism b is also 0. .5, and the product of the logarithmic mean temperature difference and the electrothermal area is proportional to the amount of heat exchanged, as described above, the area from the water spray mechanism b in the second stage to the outlet, the first stage The ratio of the electrothermal areas of the region from the water spray mechanism a to the second stage water spray mechanism b and the region from the inlet to the first stage water spray mechanism a is 1:
It is calculated as 0.5: 0.5.

【0008】1段注水では、図4(a)に示すように、
74%の流量の蒸気が過熱器に入力された場合に、総流
量Qの蒸気量を得るために、単一の水噴霧機構cで26
%注水する。図4(b)に示すように、このとき、水噴
霧機構cから出口に到る領域での交換熱量を基準1とす
ると、入口から水噴霧機構cに到る領域での交換熱量は
同じく1と求まり、対数平均温度差と電熱面積との積が
交換熱量に比例する関係から、水噴霧機構cから出口に
到る領域、入口から水噴霧機構cに到る領域の電熱面積
の比は、1:4.1と求まる。従って、単一の水噴霧機
構を設けた場合の電熱面積の和が5.1となるのに対し
て、二段の水噴霧機構を設けた場合の電熱面積の和が
3.4となり、二段の水噴霧機構を設けた場合の方が小
型に構成できることになる。尚、上述した燃焼式過熱器
の入口と出口の排ガス温度、圧力、注水後の蒸気温度、
注水前の蒸気温度、注水温度等は、例示であって、適宜
変更しても同様である。
In the first-stage water injection, as shown in FIG.
When the steam having a flow rate of 74% is input to the superheater, in order to obtain the steam quantity having the total flow rate Q, 26
% Pour water. As shown in FIG. 4B, when the heat exchange amount in the area from the water spray mechanism c to the outlet is set to 1 at this time, the heat exchange amount in the area from the inlet to the water spray mechanism c is 1 as well. From the relationship that the product of the logarithmic average temperature difference and the electric heating area is proportional to the amount of heat exchanged, the ratio of the electric heating areas of the region from the water spray mechanism c to the outlet and the region from the inlet to the water spray mechanism c is It is calculated as 1: 4.1. Therefore, the sum of the electric heating areas when a single water spray mechanism is provided is 5.1, while the sum of the electric heating areas when a two-stage water spray mechanism is provided is 3.4. When the stepped water spray mechanism is provided, the size can be made smaller. The exhaust gas temperature at the inlet and outlet of the combustion superheater described above, pressure, steam temperature after water injection,
The steam temperature before water injection, the water injection temperature, etc. are examples, and the same applies even if appropriately changed.

【0009】[0009]

【発明の効果】本発明によれば、廃熱ボイラでの発生蒸
気量が大幅に減少しても、設定温度で一定量以上の蒸気
量を確保するために、安価で小型、しかも制御性に優れ
た燃焼式過熱器を提供することができるようになった。
According to the present invention, even if the amount of steam generated in the waste heat boiler is significantly reduced, it is inexpensive, compact, and controllable in order to ensure a certain amount of steam or more at the set temperature. It has become possible to provide an excellent combustion type superheater.

【0010】[0010]

【実施例】以下に実施例を説明する。ゴミ焼却装置は、
図1に示すように、都市ゴミを焼却処理するストーカ式
の焼却炉1と、焼却炉1から発生する排ガスを浄化処理
する排ガス処理装置2と、排ガスの熱を利用して発電す
る発電装置3等で構成してある。
EXAMPLES Examples will be described below. Garbage incinerator
As shown in FIG. 1, a stoker-type incinerator 1 that incinerates municipal waste, an exhaust gas treatment device 2 that purifies exhaust gas generated from the incinerator 1, and a power generation device 3 that uses the heat of exhaust gas to generate electricity. Etc.

【0011】前記焼却炉1は、被焼却物を受け入れるホ
ッパ4と、ホッパ4内の被焼却物である都市ゴミを下端
部から炉内に投入するプッシャPuと、プッシャPuに
より投入された被焼却物を攪拌搬送しながら、その底部
から供給される高温の一次燃焼空気により順次乾燥、燃
焼、灰化処理するストーカSとを設けるとともに、未燃
焼ガスの燃焼を完結させるために、ストーカSの上部空
間に二次燃焼空間7を形成して、該空間7に二次燃焼用
空気を供給する二次燃焼空気供給部9を該空間7に臨ま
せて設けるとともに、該空間7の下流側の空間8に、燃
焼排ガスの熱エネルギーを回収する廃熱ボイラ6を設け
て構成してある。
The incinerator 1 includes a hopper 4 for receiving an incineration object, a pusher Pu for injecting city waste, which is an incineration object in the hopper 4, from the lower end into the furnace, and an incineration object pushed by the pusher Pu. While agitating and transporting the substance, a stoker S for sequentially drying, burning, and ashing is provided by high temperature primary combustion air supplied from the bottom thereof, and at the top of the stoker S in order to complete combustion of unburned gas. A secondary combustion space 7 is formed in the space, and a secondary combustion air supply unit 9 for supplying the secondary combustion air to the space 7 is provided so as to face the space 7, and a space downstream of the space 7 is provided. 8 is provided with a waste heat boiler 6 for recovering the thermal energy of the combustion exhaust gas.

【0012】前記排ガス処理装置2は、前記空間8の下
流に設けた排ガス路10から煙突11に至る流路途中に
設けたバグフィルタ12、洗煙装置13等で構成してあ
る。
The exhaust gas treatment device 2 is composed of a bag filter 12, a smoke washing device 13 and the like which are provided in the middle of a flow path from the exhaust gas passage 10 provided downstream of the space 8 to the chimney 11.

【0013】前記発電装置3は、蒸気タービン14とそ
の出力軸に連結された発電機15とから構成してあり、
前記廃熱ボイラ6から発生する約100kgf/c
2 、310℃の高圧の蒸気を主蒸気路である蒸気供給
路16を介して燃焼式過熱器17に導き、その燃焼式過
熱器17で約500℃に過熱した後に前記蒸気タービン
14に供給する。
The power generator 3 comprises a steam turbine 14 and a generator 15 connected to its output shaft,
About 100 kgf / c generated from the waste heat boiler 6
m 2 and high temperature steam of 310 ° C. are led to a combustion type superheater 17 through a steam supply line 16 which is a main steam line, and are superheated to about 500 ° C. by the combustion type superheater 17 and then supplied to the steam turbine 14. To do.

【0014】前記燃焼式過熱器17は、図2に示すよう
に、ガスバーナ17cと、前記廃熱ボイラ6からの蒸気
を導く蒸気流路17dと、その蒸気流路17dに沿って
設けた二段の水噴霧機構17a,17bを設けて構成し
てあり、ガスバーナ17cの燃焼熱により蒸気流路17
dを流れる前記廃熱ボイラ6からの蒸気を過熱するもの
で、熱交換部の側壁を保護するために冷却用ガスとして
自らの排ガスの一部を流量調節ダンパ17eを介して前
記燃焼室に供給する冷却用循環路17fを設け、残りの
排ガスを燃焼用空気供給路30を介して前記焼却炉1の
二次燃焼用空気として供給する。前記燃焼式過熱器17
への蒸気の入口部に蒸気量センサ17hを設けてあり、
蒸気量センサ17hの検出値が設定蒸気量よりも少ない
場合には、前記水噴霧機構17a,17bにより予め定
められた量の水噴霧を行い設定蒸気量を確保する。
As shown in FIG. 2, the combustion type superheater 17 includes a gas burner 17c, a steam passage 17d for introducing steam from the waste heat boiler 6, and a two-stage structure provided along the steam passage 17d. Water spray mechanisms 17a and 17b are provided, and the steam flow path 17 is generated by the combustion heat of the gas burner 17c.
It superheats the steam from the waste heat boiler 6 flowing in d, and supplies a part of its own exhaust gas as a cooling gas to the combustion chamber via a flow rate adjusting damper 17e in order to protect the side wall of the heat exchange part. A cooling circulation passage 17f is provided, and the remaining exhaust gas is supplied as secondary combustion air for the incinerator 1 via the combustion air supply passage 30. The combustion type superheater 17
A steam amount sensor 17h is provided at the steam inlet to
When the detected value of the steam amount sensor 17h is smaller than the set steam amount, a predetermined amount of water is sprayed by the water spray mechanisms 17a and 17b to secure the set steam amount.

【0015】例えば、図3に示すように、燃焼式過熱器
の入口と出口の排ガス温度を800℃及び400℃に固
定し、注水後の蒸気温度を圧力100kgf/cm2
おける飽和温度より10℃高い320℃、注水前の蒸気
温度を伝熱管の耐熱温度を考慮して550℃、注水温度
を20℃として、目標流量Qの74%の流量の蒸気が過
熱器に入力された場合に、目標流量Qの蒸気量を得るた
めに、第一段目の水噴霧機構17aで13%、第二段目
の水噴霧機構17bで13%注水するといったように、
適宜注水量を設定する。
For example, as shown in FIG. 3, the exhaust gas temperature at the inlet and outlet of the combustion type superheater is fixed at 800 ° C. and 400 ° C., and the steam temperature after water injection is 10 ° C. higher than the saturation temperature at a pressure of 100 kgf / cm 2 . A high 320 ° C, the steam temperature before water injection is 550 ° C considering the heat resistant temperature of the heat transfer tube, and the water injection temperature is 20 ° C. When steam with a flow rate of 74% of the target flow rate Q is input to the superheater, the target In order to obtain the amount of steam of the flow rate Q, 13% is injected by the first-stage water spray mechanism 17a, and 13% is injected by the second-stage water spray mechanism 17b.
Set the amount of water injection appropriately.

【0016】前記蒸気タービン14に供給され全エネル
ギーを発電に供した蒸気は排気路14cを通して冷却器
18で冷却された後に回収され、前記廃熱ボイラ6に循
環させる復水路25を通して還流される。また、前記蒸
気タービン14に供給された蒸気の一部はエネルギーの
一部を発電に供した後に抽気路14a,14bから取り
出されて、前記復水路25に設けた給水予熱器19に導
かれる。
The steam supplied to the steam turbine 14 and used to generate all the energy is recovered after being cooled by the cooler 18 through the exhaust passage 14c and returned through the condensate passage 25 circulated to the waste heat boiler 6. Further, a part of the steam supplied to the steam turbine 14 is taken out from the extraction passages 14 a and 14 b after having used a part of the energy for power generation, and is guided to the feed water preheater 19 provided in the condensate passage 25.

【0017】以下に別実施例を説明する。先の実施例で
説明した燃焼式過熱器の入口と出口の排ガス温度、圧
力、注水後の蒸気温度、注水前の蒸気温度、注水温度等
は、例示であって、特に限定するものではなく、適宜設
定できるものである。先の実施例では、燃焼式過熱器に
前後二段の水噴霧機構を設けたものを説明したが、水噴
霧機構を設ける位置はシステムにより適宜決定すればよ
く特に限定するものではない。また、水噴霧機構を二段
のものに限定するものでもなく、それ以上の多段に構成
することもできる。さらに、後段の水噴霧機構は蒸気流
量調節以外に、蒸気温度調節を兼用したものであっても
よい。
Another embodiment will be described below. Exhaust gas temperature of the inlet and outlet of the combustion type superheater described in the previous embodiment, pressure, steam temperature after water injection, steam temperature before water injection, water injection temperature, etc. are examples, and are not particularly limited. It can be set appropriately. In the above-described embodiment, the combustion type superheater is provided with the two-stage water spray mechanism provided in front and rear, but the position where the water spray mechanism is provided may be appropriately determined by the system and is not particularly limited. Further, the water spray mechanism is not limited to the two-stage type, but may be configured in multiple stages. Further, the water spray mechanism at the latter stage may be one that also controls the steam temperature in addition to the steam flow rate.

【0018】尚、特許請求の範囲の項に図面との対照を
便利にする為に符号を記すが、該記入により本発明は添
付図面の構成に限定するものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the structures of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】ゴミ焼却装置の概略構成図FIG. 1 is a schematic configuration diagram of a refuse incinerator.

【図2】燃焼式過熱器の概略構成図FIG. 2 is a schematic configuration diagram of a combustion type superheater.

【図3】燃焼式過熱器の動作説明図FIG. 3 is an operation explanatory view of a combustion type superheater.

【図4】従来の燃焼式過熱器の動作説明図FIG. 4 is an operation explanatory view of a conventional combustion type superheater.

【符号の説明】[Explanation of symbols]

3 発電装置 6 ボイラ 17a 水噴霧機構 17b 水噴霧機構 17d 蒸気流路 3 generator 6 boiler 17a water spray mechanism 17b water spray mechanism 17d steam flow path

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ボイラ(6)で発生した蒸気を蒸気流路
(17d)に導き過熱して一定流量の高温蒸気を生成し
て発電装置(3)に供給する燃焼式過熱器であって、 前記蒸気流路(17d)に沿って複数段の水噴霧機構
(17a),(17b)を設けてある燃焼式過熱器。
1. A combustion type superheater which guides steam generated in a boiler (6) to a steam flow path (17d) to superheat it to generate high-temperature steam at a constant flow rate and to supply the steam to a power generator (3). A combustion type superheater provided with a plurality of stages of water spray mechanisms (17a), (17b) along the steam flow path (17d).
JP17776993A 1993-07-19 1993-07-19 Combustion type superheater Pending JPH0735311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17776993A JPH0735311A (en) 1993-07-19 1993-07-19 Combustion type superheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17776993A JPH0735311A (en) 1993-07-19 1993-07-19 Combustion type superheater

Publications (1)

Publication Number Publication Date
JPH0735311A true JPH0735311A (en) 1995-02-07

Family

ID=16036807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17776993A Pending JPH0735311A (en) 1993-07-19 1993-07-19 Combustion type superheater

Country Status (1)

Country Link
JP (1) JPH0735311A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064588A (en) * 2005-09-02 2007-03-15 Jipangu Energy:Kk Steam power generation method and system
JP2011214732A (en) * 2010-03-31 2011-10-27 Jfe Engineering Corp Solar heat utilizing waste power generation device and method of operating the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212607A (en) * 1983-05-19 1984-12-01 三菱重工業株式会社 Controller for spray of once-through boiler
JPH04126901A (en) * 1990-09-18 1992-04-27 Nippon Steel Corp Method for controlling temperature of main steam from boiler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212607A (en) * 1983-05-19 1984-12-01 三菱重工業株式会社 Controller for spray of once-through boiler
JPH04126901A (en) * 1990-09-18 1992-04-27 Nippon Steel Corp Method for controlling temperature of main steam from boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007064588A (en) * 2005-09-02 2007-03-15 Jipangu Energy:Kk Steam power generation method and system
JP2011214732A (en) * 2010-03-31 2011-10-27 Jfe Engineering Corp Solar heat utilizing waste power generation device and method of operating the same

Similar Documents

Publication Publication Date Title
CN101283161B (en) Module-based oxy-fuel boiler
US5623822A (en) Method of operating a waste-to-energy plant having a waste boiler and gas turbine cycle
US5442908A (en) Combined combustion and steam turbine power plant
JPH0735311A (en) Combustion type superheater
JP2922711B2 (en) Urban waste incineration equipment
JPH0783005A (en) Compound refuse power generation plant
JPH06174202A (en) Refuse incinerator
RU2100619C1 (en) Combined-cycle plant
JP2740096B2 (en) Garbage incineration equipment
JP2695368B2 (en) Garbage incineration equipment
JP2651342B2 (en) Control method of combustion type superheater
JPH11294111A (en) Refuse burning power generation method and independent a superheater
JP2740095B2 (en) Garbage incineration equipment
JPH07145923A (en) Refuse incinerator
JPH05321611A (en) Refuse power plant
JP2003083501A (en) Fluidized bed boiler
JP2659517B2 (en) Combustion superheater
JPH05312310A (en) City dust combustion device
JPH05332501A (en) Complex power generating facility for dust incinerator
JP2769271B2 (en) Garbage incineration equipment
JP2725143B2 (en) Combustion superheater
JPH108919A (en) Device and method for vaporizing azeotropic liquid and waste-utilized generating system provided with the vaporizing device
JPH06109203A (en) Refuse incinerator
JPH0979529A (en) Refuse incinerating furnace
JPH07190324A (en) Refuse incinerating apparatus