JP3755910B2 - Water injection control device for reheat steam desuperheater - Google Patents

Water injection control device for reheat steam desuperheater Download PDF

Info

Publication number
JP3755910B2
JP3755910B2 JP26038494A JP26038494A JP3755910B2 JP 3755910 B2 JP3755910 B2 JP 3755910B2 JP 26038494 A JP26038494 A JP 26038494A JP 26038494 A JP26038494 A JP 26038494A JP 3755910 B2 JP3755910 B2 JP 3755910B2
Authority
JP
Japan
Prior art keywords
signal
reheat steam
temperature
water injection
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26038494A
Other languages
Japanese (ja)
Other versions
JPH08121708A (en
Inventor
学 折本
祐司 国広
和彦 山崎
泰弘 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP26038494A priority Critical patent/JP3755910B2/en
Publication of JPH08121708A publication Critical patent/JPH08121708A/en
Application granted granted Critical
Publication of JP3755910B2 publication Critical patent/JP3755910B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、ボイラの再熱器において、水をスプレーすることにより再熱蒸気温度を制御する再熱蒸気系減温器の注水制御装置に関する。
【0002】
【従来の技術】
近年、原子力発電設備による電力の安定供給により、ボイラの運用形態は中間負荷火力的運用が増加し、これに伴い、負荷変化についても、負荷変化率および負荷変化幅の両者とも大きく、かつ、高頻度負荷変化の形態が一般化してきている。このようなボイラの運用形態において、再熱蒸気温度は、プラントの高効率運転を考慮して広範な負荷範囲について所定の管理値になるように制御されている。
【0003】
このための制御として、節炭器出口の排ガスを炉底から再循環させる量を制御することにより伝熱管の対流伝熱係数を増減させる手段、および応答遅れをカバーするために水をスプレーして再熱蒸気温度を管理値に近付ける手段が採用されている。これらの手段を図6〜図11を参照して説明する。
【0004】
図6はボイラ構成の概要を示す図である。この図で、1はボイラ、2はボイラ1の火炉を構成する火炉水壁管、3は風箱、4はバーナ、5は火炎を示す。6は高温過熱器、7は高温再熱器、8は低温再熱器、9は低温過熱器、10は節炭器であり、これらは火炉内の上流から下流に順次配置されている。11は空気予熱器、12は節炭器10からの排ガスを導出する煙道、13は空気を風箱3に導入する風道である。14は節炭器10からの排ガスを火炉のホッパに導入するガス再循環ファン、15は当該排ガスの導入量を制御する再循環ガス制御ダンパ、16は当該排ガスに混合する空気の量を制御する混合ガス量制御ダンパ、17はホッパに導入される再循環ガス量を制御する火炉ホッパダンパである。再循環ガス制御ダンパ15、混合ガス量制御ダンパ16、および火炉ホッパダンパ17によって再循環ガス量を制御することにより、高温再熱器7の出口の蒸気温度を所定値に制御するようになっている。
【0005】
図7はボイラの水−蒸気系の系統図である。この図で、図6に示す部分と同一又は等価な部分には同一符号を付して説明を省略する。又、実線は水系統、破線は蒸気系統を示す。20は高圧タービンであり、高温過熱器6からの蒸気が高温過熱蒸気管21、主蒸気塞止弁22を経て供給され、排出された蒸気は逆止弁23を介して低温再熱器8に導入される。24は中圧タービンであり、高温再熱器7からの蒸気が高温再熱蒸気管25、高温再熱蒸気塞止弁26を経て供給され、ここから排出された蒸気はさらに各低圧タービン27に導入される。
【0006】
28は低圧タービン27から排出される蒸気を復水する復水器、29は低圧復水ポンプ、30は脱塩装置、31は低圧給水加熱器、32は脱気器、33は脱気器ストレージ、34は給水ポンプ、35は高圧給水加熱器、36は給水流量計、37は高圧給水加熱器35から分岐するスプレー配管である。40は低温過熱器9の出口蒸気管に設けられた減温器であり、スプレー配管37から過熱器スプレー遮断弁41、過熱器スプレー流量調整弁42を介してスプレー水が供給される。43は低温再熱器8の出口蒸気管に設けられた減温器であり、スプレー配管37から再熱器スプレー遮断弁44、再熱器スプレー流量調整弁45を介してスプレー水が供給される。
【0007】
図8は図7に示す再熱器スプレー流量調整弁45を制御する注水制御装置のブロック図である。この図で、51は発電機出力指令値、52は再熱蒸気温度測定信号を示す。53は関数発生器であり、発電機出力指令値をこれに対応する再熱蒸気温度に変換する。54、55は信号発生器、56は信号発生器54と信号発生器55のいずれかを切り換え選択する信号切換器である。
【0008】
信号発生器54にはスプレーを阻止するために関数発生器53から出力される再熱蒸気温度を高い値に設定する温度が設定されており、信号発生器55にはスプレーを可能とするために関数発生器53から出力される再熱蒸気温度を低い値に設定する温度が設定されている。57は関数発生器53の出力と信号切換器56で切り換えられた信号発生器の出力とを加算する加算器、58は加算器57の出力と再熱蒸気温度測定信号52との偏差を演算する減算器、59は比例積分器である。
【0009】
60は信号切換器、61は関数発生器、63は自動・手動切換器を示す。関数発生器61は、さきに示した発電機出力指令値51に応じた再熱蒸気温度を作成して出力する。信号切換器60は比例積分器59と関数発生器61の切り換えを行う。
【0010】
上記の構成において、信号切換器56は、常時信号発生器54を加算器57に接続し、信号A1 が入力されたとき信号発生器55を加算器57に接続する。又、信号切換器60は、常時比例積分器59を自動・手動切換器63に接続し、信号B1 が入力されたとき関数発生器61を自動・手動切換器63に接続する。上記各信号A1 、B1 の発生条件、即ち、各信号切換器56、60の切換条件を図9および図10に示す。
【0011】
図9は信号切換器56の切換条件を示す図である。この図で、ANDは論理積を示す記号である。信号A1 は、「負荷がある所定値a以上」であり、かつ、「火炉ホッパダンパが下限動作にある(これ以上再循環ガス制御による蒸気温度下降が望めない状態)」とき出力される。
【0012】
図10は信号切換器60の切換条件を示す図である。この図で、ANDは図9に示すものと同じ論理積を示す記号である。信号B1 は、「起動期間経過(ボイラ起動時でない)」、「負荷上昇中」、「再熱蒸気温度上昇率がある所定値d以上」、「再熱蒸気温度偏差がある所定値e以上」の各条件が全て満たされた状態にあるとき出力される。図9および図10に示す各条件はボイラ制御の過程ににおいて得られる条件である。
【0013】
図8に示す注水制御装置において、通常の状態(再循環ガス制御により再熱器蒸気温度が制御されている状態)では、信号切換器56は信号発生器54側を選択しているので、加算器57において高い設定温度が関数発生器53の出力に加算され、減算器58で得られる偏差は小さくなり、再熱器スプレー流量調整弁45を作動させるには到らず、減温器43によるスプレーは行われない。しかし、図9に示す条件が発生すると、信号A1 が出力されて信号切換器56が信号発生器55側へ切り換えられ、加算器57には低い設定温度が入力されるので、減算器58の出力は大きくなり、これに応じて再熱器スプレー流量調整弁45が作動して減温器43によるスプレーが行われ、再熱蒸気温度が調整される。
【0014】
又、図10に示す条件(特に再熱蒸気温度の上昇率と偏差が極めて大きい場合)が発生すると、信号B1 が出力されて信号切換器60が比例積分器59から関数発生器61に切り換えられ、関数発生器61の特性に従って先行的に再熱器スプレー流量調整弁45が作動して減温器43によるスプレーが行われる。
【0015】
【発明が解決しようとする課題】
上記従来装置においては、スプレーは専ら再熱蒸気温度を極力一定に保持するために用いられ、これに沿ってその制御が行なわれていた。ところで、前述のように、近年、ボイラの運用形態が、高負荷変化率、広い負荷変化幅、高頻度の負荷変化となってきているため、間欠的なスプレーが繰り返し行われるようになった。このようなスプレーは好ましくない問題を生じる。これを図11を参照して説明する。
【0016】
図11は図7に示す減温器43の一部断面図である。この図で、図7に示す部分と同一部分には同一符号が付してある。46は注水逆止弁(図7には示されていない)である。減温器43は、低温再熱蒸気管80に介在せしめられ、ノズル431、インレットノズル432、スプレーノズル433、サーマルスリーブ434で構成されている。低温再熱蒸気管80を通過する蒸気温度が所定の温度を超え、前述の条件が揃うと上記注水制御装置が作動し、これに応じて再熱器スプレー流量調整弁45が調整され、当該蒸気にスプレー水配管37を通って供給される水をスプレーノズル433からスプレーして再熱蒸気温度を低下させる。
【0017】
このようなスプレー動作において、スプレー実施前においては、低温再熱蒸気管80や減温器43のサーマルスリーブ434の表面、内面はともに高温状態にあるが、一旦スプレーが開始されるとそれらの内面の温度が低下し表面のみ高温状態が保持される。ここで、低温再熱蒸気管80は大きな肉厚を有し、又、減温器43のサーマルスリーブ434も相応の肉厚を有するので、表面と内面との間に相当な温度差が生じ、スプレーの繰り返しによりそれらに大きな熱応力が生じ、これが累積すると遂にはそれらに熱疲労による割れ(損傷)が発生する。
【0018】
本発明の目的は、上記従来技術における課題を解決し、スプレーを抑制することができ、ひいては低温再熱蒸気管や減温器の熱疲労による損傷を防止することができる再熱蒸気系減温器の注水制御装置を提供することにある。
【0019】
【課題を解決するための手段】
前記課題を解決するために、本発明は主として次のような構成を採用する。
ボイラの炉底から炉内に再循環させる排ガス量をダンパの開度で制御する排ガス再循環制御手段と、再熱蒸気配管に介在して注水を行う減温器を非作動とする温度が設定され前記非作動温度に応じた信号を出力する第1の信号発生手段と、前記減温器を作動させる温度が設定され前記作動温度に応じた信号を出力する第2の信号発生手段と、所定の条件に基づいて前記第1の信号発生手段の出力信号を前記第2の信号発生手段の出力信号に切り換える切換手段と、負荷要求信号に応じた再熱蒸気温度に前記切換手段で切り換えられた信号を加算する加算手段と、前記加算手段の信号と再熱蒸気温度の測定信号との偏差を演算する演算手段と、前記偏差に応じて開度が調整される前記減温器の調整弁と、を備えた再熱蒸気系減温器の注水制御装置であって、
前記所定の条件は、前記ボイラの負荷信号が所定値以上であるときと前記負荷要求信号と前記負荷信号との差が所定値以上であるときとの論理積を求め、前記排ガス再循環制御手段が下限動作状態を所定時間継続するときと前記論理積の出力との論理和であり、
さらに、前記演算手段と前記調整弁との間に、前記調整弁が閉じ方向に動作しているとき前記偏差の変化率を制限する変化率制限手段を設ける構成とする。
【0020】
【作用】
本発明では、切換手段の条件に、負荷要求信号と現在の負荷信号との差が所定値以上であることを付加し、これにより注水を抑える。また、切換手段の条件に、下限動作状態(再循環ガス制御による蒸気温度下降が望めない状態)が所定時間継続することを付加し、これにより、所定時間内に下限動作状態がなくなったときには、再循環ガスにより蒸気温度を制御し、注水を抑える。また、変化率制限手段により、調整弁が閉じ方向に動作しているとき偏差の変化率を制限し、連続して繰り返される注水の繰り返しを抑える。
さらに、本発明では、先行注水手段により、偏差および再熱蒸気温度がそれぞれ所定値以上であるばかりでなく、さらに、負荷要求信号と前記負荷信号との差が所定値以上になって初めて蒸気調整弁を開動作させて先行注水を行なう。また、上記変化率制限手段と先行注水手段を組み合わせることにより、より一層効果的に注水を抑える。
【0021】
【実施例】
以下、本発明を図示の実施例に基づいて説明する。
図1は本発明の実施例に係る再熱蒸気系減温器の注水制御装置のブロック図である。図で、図8に示す部分と同一又は等価な部分には同一符号を付して説明を省略する。64は発電端出力値、65は減算器、66は関数発生器、70は変化率制限器、71は微分器、72、73はモニタリレーである。A2 は信号切換器56の切り換え信号、B2 は信号切換器60の切り換え信号、Cは変化率制限器70の作動信号である。
【0022】
ここで、信号切換器56、60の切換信号A2 、B2 、および変化率制限器70の作動信号Cの出力条件を図2、図3および図4に示す。
図2は信号切換器56の切換条件を示す図である。この図で、ANDは論理積、ORは論理和、DERは時間的遅延を示す。切換信号A2 は次の条件が発生したとき出力される。(i)負荷が所定値a以上であり、かつ、「発電要求出力指令値」と「現在の発電端に要求されている出力値」との差が所定値b以上であるとき、又は、(ii)火炉ホッパダンパ下限動作がDERに設定された時間以上継続されているとき。
【0023】
上記(「発電要求出力指令値」−「現発電端要求出力値」≧b)の条件は、発電機出力指令値の発電端要求指令値に対する変化が小さいときには再熱蒸気温度の変化幅も小さいことから、このような場合にはスプレーを行わないようにする条件であり、本実施例では、従来装置における条件にこの条件を加えることにより、従来装置よりさらにスプレーを抑制することができる。又、火炉ホッパダンパが下限動作状態になっても、即ち、これ以上再循環ガス制御による蒸気温度下降が望めない状態になっても、直ちに切換信号A2 を出力せず、所定時間(例えば数10秒)待っても当該下限動作が継続しているときに限り切換信号A2 を出力する。これにより、当該所定時間内に再循環ガス制御が可能となったときには、スプレーを実施しなくても済み、スプレーを抑制することができる。
【0024】
図3は変化率制限器70の作動信号Cの出力条件を示す図である。この図で、ANDは論理積を示す。作動信号Cは次の条件が発生したとき出力される。(i)再熱器スプレー流量調整弁45が自動的に制御される状態にあり、かつ、(ii)負荷が変化中であり、かつ、(iii)再熱器スプレー流量調整弁45が閉じ方向の開度指令を受けて動作しており、かつ、(iv)再熱器スプレー流量調整弁45の開度指令が所定の値c%未満であるとき。これら条件のうち、(i)、(ii)はボイラ制御装置から得ることができ、又、(iii)は図1に示す微分器71とモニタリレー73で検出され、さらに、(iv)は図1に示すモニタリレー72で検出される。これら条件の効果については後述する。
【0025】
図4は信号切換器60の切換条件を示す図である。この図で、ANDは論理積、を示す。切換信号A2 は図10に示す各条件に加えて、図2に示すものと同じく「発電要求出力指令値」と「現在の発電端に要求されている出力値」との差が所定値b以上であるという条件も満足したときに出力される。この条件が加えられたことにより、信号切換器56の切換条件と同じ理由で、従来装置よりさらに先行的スプレーの実施を抑制することができる。
【0026】
次に、本実施例の動作を説明する。切換信号A2 の切換条件として、従来の切換信号A1 の切換条件に、「発電要求出力指令値」と「現在の発電端に要求されている出力値」との差が所定値b以上であることを加えることにより、信号切換器56が信号発生器55側へ切り換えられる動作が抑えられ、その分スプレーが抑えられることは図2に示す条件の説明で述べたとおりである。信号切換器56の切換状態の如何にかかわらず、減算器58からの偏差信号は比例積分器59を経て変化率制限器70に入力される。
【0027】
変化率制限器70は、作動信号Cが入力されない状態では比例積分器59からの信号をそのまま信号切換器60へ送信する。作動信号Cの出力条件のうち、再熱器スプレー流量調整弁45が閉じ方向の開度指令を受けていることは上述のように微分器71で検出され、この検出信号はモニタリレー73を介して変化率制限器70に入力される。なお、再熱器スプレー流量調整弁45が動作していることはボイラ制御装置により把握される。又、再熱器スプレー流量調整弁45の開度指令が所定の値c%未満であることは、モニタリレー72で検出され、その信号が変化率制限器70に入力される。
【0028】
作動信号Cの出力条件が揃うと、変化率制限器70は比例積分器59からの信号の閉じ方向の変化を抑えるように機能する。これを図5に示す。図5は変化率制限器70の動作を説明する図である。この図で、横軸には時間が、縦軸には再熱器スプレー流量調整弁45の開度がとってあり、スプレーが時間t1 、t2 (例えばそれぞれ数分)間隔で3回連続して実施された場合が示されている。図の実線は変化率制限器70が設けられていない従来装置における再熱器スプレー流量調整弁45の動作を示す。
【0029】
再熱器スプレー流量調整弁45の開度がc%未満であり、かつ、再熱器スプレー流量調整弁45が閉じ方向に動作しているとき、作動信号Cが出力して変化率制限器70を作動させ、その結果、比例積分器59からの信号の変化は緩和され、再熱器スプレー流量調整弁45の開度は、図5に破線で示すように変化し、図示の場合、スプレーは1回だけ行われることになる。この場合、再熱器スプレー流量調整弁45の開度は、従来装置では2回全閉状態(再熱蒸気管や減温器が高温になる状態)になり、再熱蒸気管や減温器で生じる温度差が大きくなる状態が繰り返されるのに対して、本実施例では上記2回の全閉状態は存在しないので、温度差が大きくなる状態の繰り返しは緩和され、その分、低温再熱蒸気管や減温器の熱疲労による損傷の防止に大きく寄与することができる。
【0030】
次に、信号切換器60と関数発生器66による先行的スプレーについて説明する。切換信号B2 の切換条件として、従来の切換信号B1 の切換条件に、「発電要求出力指令値」と「現在の発電端に要求されている出力値」との差が所定値b以上であることを加えることにより、信号切換器60が関数発生器55側へ切り換えられる動作が抑えられ、その分スプレーが抑えられることは、上述の信号切換器56の場合と同じである。又、本実施例では、関数発生器66の特性が、発電機出力指令値51と発電端出力値64の偏差に応じて定められており、これにより、負荷変化の大きさに対応するスプレー特性を容易に得ることができる。
【0031】
このように、本実施例では、信号切換器56、60の切換条件に、「発電要求出力指令値」と「現在の発電端に要求されている出力値」との差が所定値b以上であることを加えたので、従来装置に比較してスプレーの実施をより一層抑えることができ、又、変化率制限器70を設けたので、スプレーによって再熱蒸気管や減温器で生じる温度差が大きくなる状態を抑えることができ、これらにより、低温再熱蒸気管や減温器の熱疲労による損傷を防止することができる。
【0032】
なお、上記実施例の説明では、(I)信号切換器56の切換条件に、「発電要求出力指令値」と「現在の発電端に要求されている出力値」との差が所定値b以上であることを加える手段、(II)信号切換器56の切換条件に、火炉ホッパダンパ下限動作となった信号を遅延させる手段、(III)変化率制限器70を設ける手段、および、(IV)信号切換器60の切換条件に、「発電要求出力指令値」と「現在の発電端に要求されている出力値」との差が所定値b以上であることを加える手段の全てを備える例について説明したが、これらを全て設ける必要はなく、それらを単独に、即ち、(I)、(II)、(III)、(IV)のいずれか1つのみを設けてもよいし、それらの全ての組み合わせ、即ち、(I)と(II)、(I)と(III)、(I)と(IV)、(II)と(III)、(II)と(IV)、(III)と(IV)、(I)と(II)と(III)、(I)と(II)と(IV)、(II)と(III)と(IV)の組合せのうちのいずれの組合せでも所期の効果を得ることができる。
【0033】
【発明の効果】
以上述べたように、本発明では、信号切換器の切換条件に、「発電要求出力指令値」と「現在の発電端に要求されている出力値」との差が所定値b以上であることを加える手段と、信号切換器の切換条件に、火炉ホッパダンパ下限動作となった信号を遅延させる手段と、変化率制限器70を設ける手段と、先行的注水を選択する信号切換器の切換条件に、「発電要求出力指令値」と「現在の発電端に要求されている出力値」との差が所定値b以上であることを加える手段のうちのいずれか1つ又はそれら手段を任意に組み合わせて用いるようにしたので、再熱蒸気の減温器による注水を抑えることができ、又は、スプレーによる温度差が大きくなる状態を抑えることができ、ひいては、低温再熱蒸気管や減温器の熱疲労による損傷を防止することができる。
【図面の簡単な説明】
【図1】本発明の実施例に係る再熱蒸気系減温器の注水制御装置のブロック図である。
【図2】図1に示す信号切換器56の切換条件を示す図である。
【図3】図1に示す変化率制限器の作動信号出力の切換条件を示す図である。
【図4】図1に示す信号切換器60の切換条件を示す図である。
【図5】変化率制限器の動作を説明する図である。
【図6】ボイラ構成の概要を示す図である。
【図7】ボイラの水−蒸気系の系統図である。
【図8】図7に示す再熱器スプレー流量調整弁を制御する注水制御装置のブロック図である。
【図9】図8に示す信号切換器56の切換条件を示す図である。
【図10】図8に示す信号切換器60の切換条件を示す図である。
【図11】図7に示す減温器43の一部断面図である。
【符号の説明】
51 発電機出力指令値
52 再熱蒸気温度測定信号
53、66 関数発生器
54、55 信号発生器
56、60 信号切換器
64 発電端出力値
70 変化率制限器
71 微分器
72、73 モニタリレー
[0001]
[Industrial application fields]
The present invention relates to a water injection control device for a reheat steam system desuperheater that controls the reheat steam temperature by spraying water in a boiler reheater.
[0002]
[Prior art]
In recent years, due to the stable supply of power by nuclear power generation facilities, the operation mode of boilers has increased the intermediate load thermal operation, and with this, both the load change rate and the load change range are large and high. The form of frequency load change has become common. In such a boiler operation mode, the reheat steam temperature is controlled so as to have a predetermined management value for a wide load range in consideration of high-efficiency operation of the plant.
[0003]
As a control for this, means for increasing or decreasing the convective heat transfer coefficient of the heat transfer tube by controlling the amount of exhaust gas discharged from the economizer outlet from the bottom of the furnace, and spraying water to cover the response delay Means are used to bring the reheat steam temperature closer to the control value. These means will be described with reference to FIGS.
[0004]
FIG. 6 is a diagram showing an outline of the boiler configuration. In this figure, 1 is a boiler, 2 is a furnace water wall pipe constituting the furnace of the boiler 1, 3 is a wind box, 4 is a burner, and 5 is a flame. 6 is a high-temperature superheater, 7 is a high-temperature reheater, 8 is a low-temperature reheater, 9 is a low-temperature superheater, and 10 is a economizer, and these are sequentially arranged from upstream to downstream in the furnace. 11 is an air preheater, 12 is a flue for deriving exhaust gas from the economizer 10, and 13 is an airway for introducing air into the wind box 3. 14 is a gas recirculation fan for introducing exhaust gas from the economizer 10 into the furnace hopper, 15 is a recirculation gas control damper for controlling the amount of the exhaust gas introduced, and 16 is for controlling the amount of air mixed with the exhaust gas. A mixed gas amount control damper 17 is a furnace hopper damper that controls the amount of recirculated gas introduced into the hopper. The steam temperature at the outlet of the high-temperature reheater 7 is controlled to a predetermined value by controlling the amount of the recirculation gas by the recirculation gas control damper 15, the mixed gas amount control damper 16, and the furnace hopper damper 17. .
[0005]
FIG. 7 is a system diagram of a boiler water-steam system. In this figure, parts that are the same as or equivalent to the parts shown in FIG. A solid line indicates a water system, and a broken line indicates a steam system. Reference numeral 20 denotes a high-pressure turbine in which steam from the high-temperature superheater 6 is supplied via a high-temperature superheated steam pipe 21 and a main steam shut-off valve 22, and the discharged steam is supplied to the low-temperature reheater 8 via a check valve 23. be introduced. Reference numeral 24 denotes an intermediate pressure turbine, in which steam from the high temperature reheater 7 is supplied via a high temperature reheat steam pipe 25 and a high temperature reheat steam shut-off valve 26, and the steam discharged from this is further supplied to each low pressure turbine 27. be introduced.
[0006]
28 is a condenser for condensing steam discharged from the low-pressure turbine 27, 29 is a low-pressure condensate pump, 30 is a demineralizer, 31 is a low-pressure feed water heater, 32 is a deaerator, and 33 is a deaerator storage. , 34 is a feed water pump, 35 is a high pressure feed water heater, 36 is a feed water flow meter, and 37 is a spray pipe branched from the high pressure feed water heater 35. A temperature reducer 40 is provided at the outlet steam pipe of the low temperature superheater 9, and spray water is supplied from the spray pipe 37 through the superheater spray shut-off valve 41 and the superheater spray flow rate adjustment valve 42. 43 is a temperature reducer provided at the outlet steam pipe of the low-temperature reheater 8, and spray water is supplied from the spray pipe 37 through the reheater spray shut-off valve 44 and the reheater spray flow rate adjustment valve 45. .
[0007]
FIG. 8 is a block diagram of a water injection control device that controls the reheater spray flow rate adjustment valve 45 shown in FIG. In this figure, 51 indicates a generator output command value, and 52 indicates a reheat steam temperature measurement signal. A function generator 53 converts the generator output command value into a reheat steam temperature corresponding to the generator output command value. 54 and 55 are signal generators, and 56 is a signal switcher for switching and selecting either the signal generator 54 or the signal generator 55.
[0008]
In order to prevent spraying, the signal generator 54 is set to a temperature at which the reheat steam temperature output from the function generator 53 is set to a high value, and the signal generator 55 is set to enable spraying. The temperature at which the reheat steam temperature output from the function generator 53 is set to a low value is set. 57 is an adder for adding the output of the function generator 53 and the output of the signal generator switched by the signal switch 56, and 58 is for calculating the deviation between the output of the adder 57 and the reheat steam temperature measurement signal 52. A subtractor 59 is a proportional integrator.
[0009]
Reference numeral 60 is a signal switcher, 61 is a function generator, and 63 is an automatic / manual switcher. The function generator 61 creates and outputs a reheat steam temperature corresponding to the generator output command value 51 shown above. The signal switcher 60 switches between the proportional integrator 59 and the function generator 61.
[0010]
In the above configuration, the signal switch 56 always connects the signal generator 54 to the adder 57 and connects the signal generator 55 to the adder 57 when the signal A 1 is input. In addition, the signal switching unit 60 always connects the proportional integrator 59 to the automatic / manual switching unit 63, and connects the function generator 61 to the automatic / manual switching unit 63 when the signal B 1 is input. The generation conditions of the signals A 1 and B 1 , that is, the switching conditions of the signal switchers 56 and 60 are shown in FIGS.
[0011]
FIG. 9 is a diagram showing the switching conditions of the signal switch 56. In this figure, AND is a symbol indicating a logical product. The signal A 1 is output when “the load is equal to or greater than the predetermined value a” and “the furnace hopper damper is in the lower limit operation (a state in which the steam temperature cannot be lowered by recirculation gas control any more)”.
[0012]
FIG. 10 is a diagram showing the switching conditions of the signal switcher 60. In this figure, AND is a symbol indicating the same logical product as shown in FIG. The signal B 1 is “starting period elapsed (not during boiler start-up)”, “load increasing”, “reheat steam temperature rise rate is a predetermined value d or more”, “reheat steam temperature deviation is a predetermined value e or more Is output when all the conditions are satisfied. Each condition shown in FIG. 9 and FIG. 10 is a condition obtained in the process of boiler control.
[0013]
In the water injection control device shown in FIG. 8, in the normal state (the state where the reheater steam temperature is controlled by the recirculation gas control), the signal switch 56 selects the signal generator 54 side. The high set temperature is added to the output of the function generator 53 in the device 57, and the deviation obtained by the subtractor 58 is reduced, so that the reheater spray flow rate adjusting valve 45 cannot be operated, and the temperature reducer 43 No spraying is done. However, when the condition shown in FIG. 9 occurs, the signal A 1 is output, the signal switch 56 is switched to the signal generator 55 side, and a low set temperature is input to the adder 57. In response to this, the reheater spray flow rate adjusting valve 45 is actuated to perform spraying by the temperature reducer 43, and the reheat steam temperature is adjusted.
[0014]
When the conditions shown in FIG. 10 (particularly when the reheat steam temperature rise rate and deviation are extremely large) occur, the signal B 1 is output and the signal switcher 60 switches from the proportional integrator 59 to the function generator 61. Then, according to the characteristics of the function generator 61, the reheater spray flow rate adjusting valve 45 is operated in advance to perform spraying by the temperature reducer 43.
[0015]
[Problems to be solved by the invention]
In the above conventional apparatus, the spray is exclusively used to keep the reheat steam temperature as constant as possible, and the control is performed along this. By the way, as mentioned above, since the operation form of the boiler has become a high load change rate, a wide load change width, and a high frequency load change in recent years, intermittent spraying has been repeatedly performed. Such sprays cause undesirable problems. This will be described with reference to FIG.
[0016]
FIG. 11 is a partial cross-sectional view of the temperature reducer 43 shown in FIG. In this figure, the same parts as those shown in FIG. 46 is a water check valve (not shown in FIG. 7). The temperature reducer 43 is interposed in the low-temperature reheat steam pipe 80, and includes a nozzle 431, an inlet nozzle 432, a spray nozzle 433, and a thermal sleeve 434. When the temperature of the steam passing through the low-temperature reheat steam pipe 80 exceeds a predetermined temperature and the above-mentioned conditions are met, the water injection control device operates, and the reheater spray flow rate adjustment valve 45 is adjusted accordingly, and the steam The water supplied through the spray water pipe 37 is sprayed from the spray nozzle 433 to lower the reheat steam temperature.
[0017]
In such a spraying operation, the surface and the inner surface of the low-temperature reheat steam pipe 80 and the thermal sleeve 434 of the temperature reducer 43 are both in a high temperature state before spraying. Thus, only the surface is kept at a high temperature. Here, the low-temperature reheat steam pipe 80 has a large thickness, and the thermal sleeve 434 of the temperature reducer 43 also has a corresponding thickness, so that a considerable temperature difference occurs between the surface and the inner surface, Repeated sprays create large thermal stresses that accumulate and eventually crack (damage) due to thermal fatigue.
[0018]
The object of the present invention is to solve the above-mentioned problems in the prior art, to suppress spraying, and thus to prevent damage due to thermal fatigue of a low-temperature reheat steam pipe or a desuperheater. It is in providing the water injection control apparatus of a vessel.
[0019]
[Means for Solving the Problems]
In order to solve the above problems, the present invention mainly adopts the following configuration.
The exhaust gas recirculation control means that controls the amount of exhaust gas recirculated from the bottom of the boiler into the furnace with the opening of the damper and the temperature at which the desuperheater that performs water injection through the reheat steam pipe is deactivated are set A first signal generating means for outputting a signal corresponding to the non-operating temperature; a second signal generating means for setting a temperature for operating the temperature reducer and outputting a signal corresponding to the operating temperature; Switching means for switching the output signal of the first signal generating means to the output signal of the second signal generating means on the basis of the above conditions, and the switching means to switch to the reheat steam temperature according to the load request signal. Adding means for adding a signal; computing means for calculating a deviation between the signal from the adding means and the measurement signal of the reheat steam temperature; and an adjustment valve for the temperature reducer whose opening is adjusted in accordance with the deviation; , Water injection control device for reheat steam system desuperheater There is,
The predetermined condition is obtained by calculating a logical product between when the load signal of the boiler is a predetermined value or more and when a difference between the load request signal and the load signal is a predetermined value or more, and the exhaust gas recirculation control means Is a logical sum of when the lower limit operation state is continued for a predetermined time and the output of the logical product,
Further, a change rate limiting means for limiting the change rate of the deviation when the adjusting valve is operating in the closing direction is provided between the calculating means and the adjusting valve.
[0020]
[Action]
In the present invention, the fact that the difference between the load request signal and the current load signal is greater than or equal to a predetermined value is added to the condition of the switching means, thereby suppressing water injection. Further, the condition of the switching means is added that the lower limit operation state (a state in which a decrease in the steam temperature due to recirculation gas control cannot be expected) continues for a predetermined time, so that when the lower limit operation state disappears within the predetermined time, Control steam temperature with recirculation gas to reduce water injection. Further, the rate of change limiting means limits the rate of change of the deviation when the regulating valve is operating in the closing direction, and suppresses repeated repetition of water injection.
Further, according to the present invention, not only the deviation and the reheat steam temperature are not less than a predetermined value by the prior water injection means, but also the steam adjustment is not performed until the difference between the load request signal and the load signal is not less than the predetermined value. Pre-water injection is performed by opening the valve. Further, by combining the change rate limiting means and the preceding water injection means, water injection is more effectively suppressed.
[0021]
【Example】
Hereinafter, the present invention will be described based on illustrated embodiments.
FIG. 1 is a block diagram of a water injection control device for a reheat steam system desuperheater according to an embodiment of the present invention. In the figure, parts that are the same as or equivalent to the parts shown in FIG. 64 is a power generation end output value, 65 is a subtractor, 66 is a function generator, 70 is a change rate limiter, 71 is a differentiator, and 72 and 73 are monitor relays. A 2 is a switching signal of the signal switching device 56, B 2 is a switching signal of the signal switching device 60, and C is an operation signal of the change rate limiter 70.
[0022]
Here, the output conditions of the switching signals A 2 and B 2 of the signal switching units 56 and 60 and the operation signal C of the change rate limiter 70 are shown in FIGS.
FIG. 2 is a diagram showing the switching conditions of the signal switch 56. In this figure, AND represents a logical product, OR represents a logical sum, and DER represents a time delay. The switching signal A 2 is output when the following conditions occur. (I) When the load is equal to or greater than a predetermined value a and the difference between the “power generation request output command value” and the “output value requested at the current power generation end” is equal to or greater than the predetermined value b, or ( ii) When the furnace hopper damper lower limit operation is continued for the time set in the DER.
[0023]
The above condition (“power generation required output command value” − “current power generation end required output value” ≧ b) is such that when the change of the generator output command value with respect to the power generation end required command value is small, the change width of the reheat steam temperature is also small. Therefore, in such a case, the condition is such that the spray is not performed. In this embodiment, by adding this condition to the condition in the conventional apparatus, the spray can be further suppressed than in the conventional apparatus. Moreover, even if the furnace Hoppadanpa lower limit operating conditions, i.e., no more even if by recirculation gas control state can not be expected that the steam temperature falls, without immediately outputs a switching signal A 2, a predetermined time (for example, several 10 I have waited seconds) and outputs the signal a 2 Setsu only when the lower limit operation is continued. Thereby, when recirculation gas control becomes possible within the predetermined time, it is not necessary to perform spraying, and spraying can be suppressed.
[0024]
FIG. 3 is a diagram showing an output condition of the operation signal C of the change rate limiter 70. In this figure, AND indicates a logical product. The operation signal C is output when the following conditions occur. (I) the reheater spray flow rate adjustment valve 45 is in a state of being automatically controlled, (ii) the load is changing, and (iii) the reheater spray flow rate adjustment valve 45 is in the closing direction. And (iv) when the opening degree command of the reheater spray flow rate adjusting valve 45 is less than a predetermined value c%. Of these conditions, (i) and (ii) can be obtained from the boiler controller, (iii) is detected by the differentiator 71 and the monitor relay 73 shown in FIG. 1, and (iv) 1 is detected by the monitor relay 72 shown in FIG. The effect of these conditions will be described later.
[0025]
FIG. 4 is a diagram showing the switching conditions of the signal switcher 60. In this figure, AND indicates a logical product. In addition to the conditions shown in FIG. 10, the switching signal A 2 is equal to the predetermined value b in the difference between the “generation request output command value” and the “output value required at the current power generation end” as in FIG. Output when the above condition is satisfied. By adding this condition, it is possible to further suppress the advance spraying from the conventional apparatus for the same reason as the switching condition of the signal switch 56.
[0026]
Next, the operation of this embodiment will be described. As a switching condition of the switching signal A 2 , the difference between the “generation request output command value” and the “output value requested at the current power generation end” is a predetermined value b or more in the conventional switching signal A 1 switching condition. By adding something, the operation of switching the signal switch 56 to the signal generator 55 side is suppressed, and the spray is correspondingly suppressed as described in the explanation of the conditions shown in FIG. Regardless of the switching state of the signal switch 56, the deviation signal from the subtractor 58 is input to the change rate limiter 70 via the proportional integrator 59.
[0027]
The change rate limiter 70 transmits the signal from the proportional integrator 59 to the signal switch 60 as it is when the operation signal C is not input. Among the output conditions of the operation signal C, the fact that the reheater spray flow rate adjustment valve 45 receives the opening direction command in the closing direction is detected by the differentiator 71 as described above, and this detection signal is sent via the monitor relay 73. Are input to the change rate limiter 70. In addition, it is grasped | ascertained by the boiler control apparatus that the reheater spray flow control valve 45 is operating. The monitor relay 72 detects that the opening command of the reheater spray flow rate adjustment valve 45 is less than a predetermined value c%, and the signal is input to the change rate limiter 70.
[0028]
When the output conditions of the operation signal C are met, the change rate limiter 70 functions to suppress a change in the closing direction of the signal from the proportional integrator 59. This is shown in FIG. FIG. 5 is a diagram for explaining the operation of the change rate limiter 70. In this figure, the horizontal axis represents time, the vertical axis represents the opening of the reheater spray flow rate adjustment valve 45, and spraying is continued three times at intervals of time t 1 and t 2 (for example, several minutes each). The case where it was implemented is shown. The solid line in the figure shows the operation of the reheater spray flow rate adjustment valve 45 in the conventional apparatus in which the change rate limiter 70 is not provided.
[0029]
When the opening degree of the reheater spray flow rate adjustment valve 45 is less than c% and the reheater spray flow rate adjustment valve 45 is operating in the closing direction, the operation signal C is output and the change rate limiter 70 is output. As a result, the change in the signal from the proportional integrator 59 is alleviated, and the opening degree of the reheater spray flow rate adjustment valve 45 changes as shown by the broken line in FIG. It will be done only once. In this case, the opening degree of the reheater spray flow rate adjustment valve 45 is fully closed twice (in a state where the reheat steam pipe and the desuperheater become high temperature) in the conventional apparatus, and the reheat steam pipe and the desuperheater. In this embodiment, the two fully closed states do not exist. Therefore, the repetition of the state in which the temperature difference increases is alleviated, and accordingly, the low temperature reheating is repeated. This can greatly contribute to the prevention of damage due to thermal fatigue of steam pipes and desuperheaters.
[0030]
Next, the prior spraying by the signal switcher 60 and the function generator 66 will be described. As the switching condition of the switching signal B 2 , the difference between the “generation request output command value” and the “output value requested at the current power generation end” is a predetermined value b or more in the conventional switching signal B 1 switching condition. By adding something, the operation of switching the signal switcher 60 to the function generator 55 side is suppressed, and spraying is suppressed accordingly, as in the case of the signal switcher 56 described above. Further, in this embodiment, the characteristic of the function generator 66 is determined according to the deviation between the generator output command value 51 and the power generation end output value 64, whereby the spray characteristic corresponding to the magnitude of the load change. Can be easily obtained.
[0031]
Thus, in the present embodiment, the difference between the “power generation request output command value” and the “output value required at the current power generation end” is greater than or equal to the predetermined value b as the switching condition of the signal switchers 56 and 60. As a result, spraying can be further suppressed compared to the conventional apparatus, and since the change rate limiter 70 is provided, the temperature difference caused by the reheat steam pipe or the temperature reducer due to the spraying. In this way, it is possible to prevent the damage due to thermal fatigue of the low-temperature reheat steam pipe and the temperature reducer.
[0032]
In the description of the above embodiment, (I) the switching condition of the signal switch 56 is such that the difference between the “power generation request output command value” and the “output value required at the current power generation end” is a predetermined value b or more. (II) means for delaying the signal that has become the furnace hopper damper lower limit operation in the switching condition of the signal switcher 56, (III) means for providing the change rate limiter 70, and (IV) signal An example will be described in which all the means for adding that the difference between the “power generation request output command value” and the “output value required at the current power generation end” is equal to or greater than the predetermined value b is included in the switching condition of the switch 60. However, it is not necessary to provide all of them, and they may be provided alone, that is, any one of (I), (II), (III), (IV) may be provided, or all of them may be provided. Combinations, ie (I) and (II), (I) and (III), (I) and (IV), (II) and (III), (II) and (IV), (III) and (IV), (I) and (II) and (III), (I) and (II) and (IV), (II ), (III), and (IV), the desired effect can be obtained by any combination.
[0033]
【The invention's effect】
As described above, in the present invention, the difference between the “power generation request output command value” and the “output value required at the current power generation end” is greater than or equal to the predetermined value b in the switching condition of the signal switch. To the switching condition of the signal switcher, the means for delaying the signal that became the furnace hopper damper lower limit operation, the means for providing the change rate limiter 70, and the switching condition of the signal switcher for selecting the prior water injection , Any one of the means for adding that the difference between the “power generation request output command value” and the “output value required at the current power generation end” is equal to or greater than the predetermined value b, or any combination thereof. Therefore, the water injection by the reheat steam desuperheater can be suppressed, or the temperature difference due to the spray can be suppressed, and as a result, the low temperature reheat steam pipe and the desuperheater Prevent damage from thermal fatigue Door can be.
[Brief description of the drawings]
FIG. 1 is a block diagram of a water injection control device for a reheat steam system desuperheater according to an embodiment of the present invention.
FIG. 2 is a diagram showing switching conditions of the signal switcher 56 shown in FIG.
FIG. 3 is a diagram showing a switching condition of an operation signal output of the change rate limiter shown in FIG. 1;
4 is a diagram showing switching conditions of the signal switcher 60 shown in FIG. 1. FIG.
FIG. 5 is a diagram illustrating the operation of a change rate limiter.
FIG. 6 is a diagram showing an outline of a boiler configuration.
FIG. 7 is a system diagram of a boiler water-steam system.
8 is a block diagram of a water injection control device that controls the reheater spray flow rate adjustment valve shown in FIG. 7. FIG.
9 is a diagram showing switching conditions of the signal switcher 56 shown in FIG. 8. FIG.
10 is a diagram showing switching conditions of the signal switcher 60 shown in FIG. 8. FIG.
11 is a partial cross-sectional view of the temperature reducer 43 shown in FIG. 7;
[Explanation of symbols]
51 Generator output command value 52 Reheat steam temperature measurement signal 53, 66 Function generator 54, 55 Signal generator 56, 60 Signal switch 64 Power generation end output value 70 Change rate limiter 71 Differentiator 72, 73 Monitor relay

Claims (3)

ボイラの炉底から炉内に再循環させる排ガス量をダンパの開度で制御する排ガス再循環制御手段と、再熱蒸気配管に介在して注水を行う減温器を非作動とする温度が設定され前記非作動温度に応じた信号を出力する第1の信号発生手段と、前記減温器を作動させる温度が設定され前記作動温度に応じた信号を出力する第2の信号発生手段と、所定の条件に基づいて前記第1の信号発生手段の出力信号を前記第2の信号発生手段の出力信号に切り換える切換手段と、負荷要求信号に応じた再熱蒸気温度に前記切換手段で切り換えられた信号を加算する加算手段と、前記加算手段の信号と再熱蒸気温度の測定信号との偏差を演算する演算手段と、前記偏差に応じて開度が調整される前記減温器の調整弁と、を備えた再熱蒸気系減温器の注水制御装置であって
前記所定の条件は、前記ボイラの負荷信号が所定値以上であるときと前記負荷要求信号と前記負荷信号との差が所定値以上であるときとの論理積を求め、前記排ガス再循環制御手段が下限動作状態を所定時間継続するときと前記論理積の出力との論理和であり、
さらに、前記演算手段と前記調整弁との間に、前記調整弁が閉じ方向に動作しているとき前記偏差の変化率を制限する変化率制限手段を設ける
ことを特徴とする再熱蒸気系減温器の注水制御装置。
The exhaust gas recirculation control means that controls the amount of exhaust gas recirculated from the bottom of the boiler into the furnace with the opening of the damper and the temperature at which the desuperheater that performs water injection through the reheat steam pipe is deactivated are set a first signal generating means for outputting a signal corresponding to the non-operating temperature is, the second signal generating means for temperature for actuating the desuperheater is set to output a signal corresponding to the operating temperature, a predetermined Switching means for switching the output signal of the first signal generating means to the output signal of the second signal generating means on the basis of the above conditions, and the switching means to switch to the reheat steam temperature according to the load request signal. adding means for adding signals, calculating means for calculating a deviation between the signal and the reheat steam temperature measurement signal of the adding means, the desuperheater of the adjustment valve opening degree in response to the deviation is adjusted , Water injection control device for reheat steam system desuperheater There is,
The predetermined condition is obtained by calculating a logical product between when the load signal of the boiler is a predetermined value or more and when a difference between the load request signal and the load signal is a predetermined value or more, and the exhaust gas recirculation control means Is a logical sum of when the lower limit operation state is continued for a predetermined time and the output of the logical product,
Further, a reheat steam system reduction means is provided between the computing means and the regulating valve, wherein a rate of change limiting means for limiting the rate of change of the deviation when the regulating valve is operating in the closing direction. Water heater control device.
請求項1において、
前記変化率制限手段を作動させる作動信号は、前記調整弁が自動的に制御される状態にあり、且つ負荷が変化中であり、且つ前記調整弁が閉じ方向の開度指令を受けて動作しており、且つ前記調整弁の開度指令が所定値未満である条件が発生したときに出力され、
前記出力によって前記変化率制限手段が前記偏差の変化率を制限するように動作する
ことを特徴とする再熱蒸気系減温器の注水制御装置。
In claim 1,
The activation signal for activating the rate-of-change limiting means operates when the regulating valve is in a state of being automatically controlled, the load is changing, and the regulating valve receives an opening degree command in the closing direction. And when the condition that the opening command of the regulating valve is less than a predetermined value occurs,
The water injection control device for a reheat steam system desuperheater , wherein the change rate limiting means operates so as to limit the change rate of the deviation by the output .
請求項1又は2において、
前記偏差が所定値以上であり、且つ再熱蒸気温度上昇率が所定値以上であり、且つ前記負荷要求信号と前記負荷信号との差が所定値以上であることを条件として先行的に前記調整弁を開動作させる先行注水手段を、前記変化率制限手段と前記調整弁との間に設ける
ことを特徴とする再熱蒸気系減温器の注水制御装置。
In claim 1 or 2,
The adjustment is performed in advance on condition that the deviation is equal to or greater than a predetermined value, the reheat steam temperature increase rate is equal to or greater than a predetermined value, and a difference between the load request signal and the load signal is equal to or greater than a predetermined value. A water injection control device for a reheat steam system desuperheater , wherein a prior water injection means for opening the valve is provided between the change rate limiting means and the regulating valve .
JP26038494A 1994-10-25 1994-10-25 Water injection control device for reheat steam desuperheater Expired - Fee Related JP3755910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26038494A JP3755910B2 (en) 1994-10-25 1994-10-25 Water injection control device for reheat steam desuperheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26038494A JP3755910B2 (en) 1994-10-25 1994-10-25 Water injection control device for reheat steam desuperheater

Publications (2)

Publication Number Publication Date
JPH08121708A JPH08121708A (en) 1996-05-17
JP3755910B2 true JP3755910B2 (en) 2006-03-15

Family

ID=17347176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26038494A Expired - Fee Related JP3755910B2 (en) 1994-10-25 1994-10-25 Water injection control device for reheat steam desuperheater

Country Status (1)

Country Link
JP (1) JP3755910B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010041962B3 (en) 2010-10-05 2012-02-16 Siemens Aktiengesellschaft Fossil fired steam generator
CN107908204B (en) * 2017-11-17 2021-07-23 广东核电合营有限公司 Method and system for calibrating polarization opening of spray valve of loop voltage stabilizer of nuclear power station
CN112983578B (en) * 2021-03-03 2022-11-29 京能十堰热电有限公司 Control system and method for deep peak regulation low-pressure cylinder exhaust temperature

Also Published As

Publication number Publication date
JPH08121708A (en) 1996-05-17

Similar Documents

Publication Publication Date Title
CA2633277C (en) Steam temperature control in a boiler system using reheater variables
US9593844B2 (en) Method for operating a waste heat steam generator
CN102679314B (en) Self-adaptive correcting method for dynamic accelerating feedforward of supercritical boiler
JPS58501866A (en) Damper control device for heat recovery steam generator
US9435228B2 (en) Air cooling system and method for a heat recovery steam generator inlet
JP3755910B2 (en) Water injection control device for reheat steam desuperheater
JP4117733B2 (en) Method and apparatus for boiler reheat steam temperature control
JP4637943B2 (en) Control method of pressurized fluidized bed boiler
JPH0783005A (en) Compound refuse power generation plant
JP2000257809A (en) Pressurized fluidized bed boiler and starting method of same
JP3673295B2 (en) Method and apparatus for controlling reheat steam temperature of boiler
JPH09196301A (en) Exhaust heat recovery boiler and method for its operation
WO2020255719A1 (en) Power plant
JPH1054508A (en) Temperature control method and apparatus for main steam
JPH10299424A (en) Steam temperature controlling method for refuse incinerating power plant
JP2894118B2 (en) Boiler steam temperature control method
JP3707087B2 (en) Reheater outlet steam temperature control system in an exhaust-fired combined cycle plant
JPH09145004A (en) Emergency shutdown control of device pressurized fluidized bed boiler
JP4062034B2 (en) Boiler steam temperature control method and apparatus
JPH01212802A (en) Steam temperature control device for boiler
JP2002081607A (en) Steam temperature controller for variable pressure once-through boiler
JPH1151306A (en) Boiler and control method therefor
JPH04251102A (en) Control method of once-through boiler
JP2004353994A (en) Reheated steam temperature control device and control method
JP2002257301A (en) Method and device for controlling outlet temperature of furnace path using change in opening degree of gas damper of reheater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees