JP2000257809A - Pressurized fluidized bed boiler and starting method of same - Google Patents

Pressurized fluidized bed boiler and starting method of same

Info

Publication number
JP2000257809A
JP2000257809A JP11064014A JP6401499A JP2000257809A JP 2000257809 A JP2000257809 A JP 2000257809A JP 11064014 A JP11064014 A JP 11064014A JP 6401499 A JP6401499 A JP 6401499A JP 2000257809 A JP2000257809 A JP 2000257809A
Authority
JP
Japan
Prior art keywords
furnace
boiler
flow rate
fuel
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11064014A
Other languages
Japanese (ja)
Inventor
Tetsuya Iwase
徹哉 岩瀬
Daisuke Okada
大輔 岡田
Yasuisa Yamamoto
恭功 山本
Shuhei Akimoto
修平 秋元
Koji Tomoyasu
幸治 友安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP11064014A priority Critical patent/JP2000257809A/en
Publication of JP2000257809A publication Critical patent/JP2000257809A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a quick response of main steam temperature control when the main stream temperature is controlled by regulating the balance of a rate of water to fuel only through the regulation of flow rate of fuel by a method wherein the combustion air flow rate controllability of respective furnaces, divided into a plurality of sets, and the combustion characteristics as well as the atmospheric characteristic of a boiler furnace are improved while the starting method of the furnaces is provided. SOLUTION: In a pressurized fluidized bed boiler, in which an evaporator 23 is arranged in a furnace 1a, a super-heater 24 and a re-heater 25 are arranged in another furnace 1b, respective furnaces 1a, 1b are received into pressure vessels 27a, 27b receiving respective furnaces 1a, 1b individually, while means 3a, 3b for regulating combustion air sent into respective furnaces 1a, 1b, and a regulating means for the rate of supplying fuel are provided, the flow rate of combustion air is regulated by introducing a control signal, for operating the combustion air flow rate regulating devices 3a, 3b in accordance with the superficial velocity detecting values of superficial velocity measuring instrument 5a, 5b in respective furnaces 1a, 1b, as the correcting factor for the regulation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加圧流動層ボイラ
とその運転方法に係わり、特にその起動方法及び水蒸気
系統が貫流ボイラの形式を持つ加圧型流動層ボイラの蒸
気温度を制御する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressurized fluidized-bed boiler and a method of operating the same, and more particularly, to a method of starting the same and a method of controlling the steam temperature of a pressurized-type fluidized-bed boiler in which a steam system has the form of a once-through boiler. .

【0002】[0002]

【従来の技術】流動層内に蒸発器、過熱器及び再熱器を
有する流動層ボイラにおいて、蒸発器を有する流動層と
過熱器及び再熱器を有する流動層に分割して、蒸発器を
有する流動層を最初に起動して過熱器及び再熱器のクー
リング蒸気を確保した後に過熱器、再熱器の流動層を起
動することは実公平3−11521号公報等で知られて
いる。
2. Description of the Related Art In a fluidized bed boiler having an evaporator, a superheater and a reheater in a fluidized bed, a fluidized bed having an evaporator and a fluidized bed having a superheater and a reheater are divided into two parts. It is known from Japanese Utility Model Publication No. 3-11521 or the like to start up a fluidized bed having the cooling steam of the superheater and the reheater first, and then start the fluidized bed of the superheater and the reheater.

【0003】一方、加圧流動層ボイラにおいて、蒸発
器、過熱器及び再熱器のうち、蒸発器を配置した火炉と
再熱器を配置した火炉とを少なくとも二つの圧力容器に
個別に収納することも、例えば特開平5−248601
号公報記載のように知られている。
On the other hand, in a pressurized fluidized-bed boiler, a furnace having an evaporator and a furnace having a reheater among evaporators, superheaters and reheaters are individually housed in at least two pressure vessels. For example, Japanese Patent Application Laid-Open No. 5-248601
It is known as described in Japanese Patent Publication No.

【0004】上記従来技術の加圧流動層ボイラにおいて
は、図8に示すように負荷に応じた燃料供給量に見合う
必要空気量をコンプレッサー2からボイラに供給するプ
ログラム制御を行い、燃焼性状偏差や燃焼状態の変動の
影響に対してボイラ出口酸素濃度が一定になるようコン
プレッサー2の空気流量調整装置22で流量制御を行
う。
In the pressurized fluidized-bed boiler of the prior art, as shown in FIG. 8, a program control for supplying a required amount of air corresponding to a fuel supply amount from the compressor 2 to the boiler is performed as shown in FIG. The air flow control device 22 of the compressor 2 controls the flow rate so that the boiler outlet oxygen concentration becomes constant with respect to the influence of the combustion state fluctuation.

【0005】この場合、加圧流動層ボイラの起動時には
それぞれ圧力容器27a、27b間に配置された二つの
火炉1a、1bへの燃料供給開始時期と燃料投入量が異
なるため、各火炉1a、1bへの供給空気が燃料投入量
に対し一定の比率で供給できるように、火炉出口の酸素
濃度を検出して、設定した目標濃度値になるよう各火炉
への空気配分を制御する。
In this case, when the pressurized fluidized-bed boiler is started, the fuel supply start timing and the fuel supply amount to the two furnaces 1a and 1b disposed between the pressure vessels 27a and 27b are different from each other. The oxygen concentration at the furnace outlet is detected so that the air supplied to the furnace can be supplied at a constant ratio to the fuel input amount, and the air distribution to each furnace is controlled so as to reach the set target concentration value.

【0006】例えば、コンプレッサー2から供給される
燃焼用空気はコンプレッサー2の空気流量調整装置22
でボイラ出口酸素濃度が所定の値になるような適正値に
制御され、更にボイラ空気流量調整装置3a、3bを通
って流動層8a、8bを充填した火炉1a、1bにそれ
ぞれ分配されるが、当該空気量は各火炉1a、1bに供
給される燃料流量に対して一定比率で供給されるため
に、火炉出口ガス配管9a、9bに排ガス酸素濃度計4
a、4bを設置して、ここでの酸素濃度をそれぞれ計測
し、所定の値になるように空気流量調整装置3a、3b
で配分される。
For example, the combustion air supplied from the compressor 2 is supplied to an air flow controller 22 of the compressor 2.
Is controlled to an appropriate value such that the boiler outlet oxygen concentration becomes a predetermined value, and is further distributed to the furnaces 1a and 1b filled with the fluidized beds 8a and 8b through the boiler air flow controllers 3a and 3b, respectively. Since the air amount is supplied at a constant ratio to the fuel flow rate supplied to each of the furnaces 1a and 1b, the exhaust gas oximeter 4 is provided at the furnace outlet gas pipes 9a and 9b.
a, 4b are installed, the oxygen concentration here is measured, and the air flow rate adjusting devices 3a, 3b are set so as to have predetermined values.
Distributed in.

【0007】また、空気流量調整装置22には燃料流量
計6a、6bを経由する加算器11からの信号に基づく
燃料量の風量換算器20の信号とボイラ出口酸素濃度計
18の信号に基づく酸素濃度偏差の風量換算器19の信
号とを加算器21で加算した値が入力される。
[0007] The air flow rate adjusting device 22 has a signal from the air flow rate converter 20 based on a signal from the adder 11 via the fuel flow meters 6a and 6b and an oxygen based on a signal from the boiler outlet oxygen concentration meter 18. A value obtained by adding the signal of the airflow converter 19 of the density deviation and the signal of the airflow converter 19 by the adder 21 is input.

【0008】そのために、従来技術では火炉出口ガスの
酸素濃度計4a、4bの測定値が設定値との異なる値と
なると、その偏差を火炉出口酸素濃度偏差引算器16で
計算し、得られた酸素濃度偏差とダンパ開度とを換算器
17で換算して、さらに換算器17で空気流量調整信号
に換算する。
For this reason, in the prior art, when the measured values of the oxygen concentration meters 4a and 4b of the furnace outlet gas become different from the set values, the deviation is calculated by the furnace outlet oxygen concentration deviation subtractor 16 and obtained. The oxygen concentration deviation and the damper opening are converted by the converter 17 and further converted by the converter 17 into an air flow rate adjustment signal.

【0009】一方、各火炉1a、1bの空気流量は燃料
流量計6a、6bで計測した信号を加えた加算器11と
火炉燃料比率計算割算器12で得られる燃料量の比率を
ダンパ開度に換算するダンパ開度換算器13で空気流量
調整装置の指令信号を作り、これと換算器17からの信
号とを加算器14で加えて、これをそれぞれの火炉1
a、1bの空気流量調整装置3a、3bに信号として送
る。通常、この空気流量調整装置3a、3bは空気流れ
抵抗を変化させる弁又はダンパであり、このときダンパ
逆動作信号関数器15を介してそれぞれ空気流量調整装
置3a、3bは逆の動作をする。ボイラ起動初期であっ
て、蒸気タービン通気前には、蒸発器23を有する火炉
1aに最初に燃焼を投入し、火炉1aの蒸発器23で過
熱器24と再熱器25のクーリングに必要な蒸気を確保
した後、再熱器25を有する火炉1bに燃料を投入して
起動する。火炉1aを起動してから火炉1bを起動する
までの時間差は概略1〜5時間程度である。
On the other hand, the air flow rate of each furnace 1a, 1b is determined by the ratio of the fuel amount obtained by the adder 11 to which the signals measured by the fuel flow meters 6a, 6b are added and the furnace fuel ratio calculation divider 12 by the damper opening degree. A command signal of the air flow controller is generated by a damper opening degree converter 13 which converts the signal into a signal, and the signal from the converter 17 is added to the signal by an adder 14.
a and 1b are sent as signals to the air flow controllers 3a and 3b. Normally, the air flow controllers 3a and 3b are valves or dampers for changing the air flow resistance. At this time, the air flow controllers 3a and 3b operate in reverse via the damper reverse operation signal function unit 15, respectively. At the initial stage of boiler startup and before venting of the steam turbine, combustion is first introduced into the furnace 1a having the evaporator 23, and the steam necessary for cooling the superheater 24 and the reheater 25 in the evaporator 23 of the furnace 1a. , Fuel is supplied to the furnace 1b having the reheater 25 to start the furnace. The time difference between the start of the furnace 1a and the start of the furnace 1b is approximately 1 to 5 hours.

【0010】ボイラへの供給燃焼空気流量及び各火炉1
a、1bへの前記空気量配分は燃料投入量に応じて前記
の制御より各火炉1a、1bの出口酸素濃度が約3〜5
%となるように調整される。
[0010] The flow rate of combustion air supplied to the boiler and each furnace 1
The air amount distribution to the furnaces 1a and 1b is controlled such that the outlet oxygen concentration of each of the furnaces 1a and 1b is about 3 to 5 in accordance with the above-described control according to the fuel input amount.
It is adjusted to be%.

【0011】また、図9に従来の貫流ボイラの貫流運転
中の主蒸気温度制御系統図を示し、図10に変圧貫流ボ
イラの系統図を示す。図10においてボイラ火炉壁74
は、水管を板状に連続溶接したメンブレン壁からなり、
伝熱面を構成している。ボイラ火炉壁74への給水は、
まず、給水ポンプ71から給水加熱器72に送られて加
熱された後、節炭器73を経てボイラ火炉壁74及び蒸
発器75に送られる。給水はボイラ火炉壁74及び蒸発
器75で加熱されながら上昇し、ついには蒸気を生成す
る。
FIG. 9 shows a system diagram of main steam temperature control during a once-through operation of a conventional once-through boiler, and FIG. 10 shows a system diagram of a variable-pressure once-through boiler. In FIG. 10, the boiler furnace wall 74 is shown.
Consists of a membrane wall with water pipes continuously welded in a plate shape,
It constitutes a heat transfer surface. The water supply to the boiler furnace wall 74 is
First, the water is sent from the feed water pump 71 to the feed water heater 72 and heated, and then sent to the boiler furnace wall 74 and the evaporator 75 via the economizer 73. The feedwater rises while being heated by the boiler furnace wall 74 and the evaporator 75, and finally generates steam.

【0012】生成した蒸気は気水分離器76、一次過熱
器77、過熱器過熱低減器78及び二次過熱器80を経
て高圧タービン82へ送られる。高圧タービン82で仕
事をした蒸気は再熱器過熱低減器83及び再熱器85を
経て中圧タービン87へ送られる。
The generated steam is sent to a high-pressure turbine 82 through a steam separator 76, a primary superheater 77, a superheater superheat reducer 78 and a secondary superheater 80. The steam that has worked in the high-pressure turbine 82 is sent to the medium-pressure turbine 87 via the reheater overheat reducer 83 and the reheater 85.

【0013】また、過熱器過熱低減器78と再熱器過熱
低減器83にはそれぞれ過熱器スプレ流量調節弁79、
84により供給量を調整されたスプレ水により温度調整
がなされる。なお、中圧タービン87から排出される蒸
気は図示しない復水器で熱回収され、給水系へ循環使用
される。高圧タービン82と中圧タービン87の供給さ
れる各蒸気温度は温度計81、86で測定される。
The superheater superheat reducer 78 and the reheater superheat reducer 83 have a superheater spray flow rate control valve 79, respectively.
The temperature is adjusted by the spray water whose supply amount has been adjusted by 84. The steam discharged from the intermediate pressure turbine 87 is recovered by a condenser (not shown), and is recycled to the water supply system. The temperature of each steam supplied to the high-pressure turbine 82 and the intermediate-pressure turbine 87 is measured by thermometers 81 and 86.

【0014】図9の貫流ボイラの貫流運転中の主蒸気温
度制御系統図に示すように、過渡的な主蒸気温度制御は
過熱器スプレ注入により行うが、恒久的な主蒸気温度制
御は水燃比制御(ボイラ給水量と燃料量の比率を制御す
る)で行われる。このとき、従来のボイラではボイラ給
水量と燃料量の比率(水燃比)が所望の値になるよう燃
料量を調節することにより水燃比を調節している。
As shown in the system diagram of the main steam temperature control during the once-through operation of the once-through boiler in FIG. 9, the transient main steam temperature control is performed by superheater spray injection, but the permanent main steam temperature control is performed by the water-fuel ratio. Control (controls the ratio of boiler feed water amount to fuel amount). At this time, in the conventional boiler, the water-fuel ratio is adjusted by adjusting the fuel amount so that the ratio (water-fuel ratio) between the boiler water supply amount and the fuel amount becomes a desired value.

【0015】燃料流量指令101は、ボイラ入力指令9
1をボイラの静特性により決まるボイラ入力指令−燃料
流量設定値特性を持つ関数発生器95に入力され、その
出力のベース燃料流量信号103に加算器96において
スプレ量による補正を加えられ、さらに、加算器97で
主蒸気温度偏差94による補正を加えられることにより
作られる。
The fuel flow command 101 is a boiler input command 9
1 is input to a function generator 95 having a boiler input command-fuel flow rate set value characteristic determined by the boiler static characteristics, and the output of the base fuel flow rate signal 103 is corrected by a spray amount in an adder 96. It is produced by adding a correction by the main steam temperature deviation 94 in the adder 97.

【0016】加算器96において関数発生器95の出力
であるベース燃料流量信号103に加えられる補正は、
過渡変化でスプレ流量が変化し、スプレ比率が計画値か
らずれたままでバランスしてしまった場合に、燃料流量
を調節して元のスプレ比率に引き戻すための補正回路で
ある。
The correction added to the base fuel flow signal 103, which is the output of the function generator 95, in the adder 96 is as follows:
This is a correction circuit for adjusting the fuel flow rate and returning to the original spray ratio when the spray flow rate changes due to a transient change and the spray ratio is deviated from the planned value and balance is achieved.

【0017】この補正信号は、ボイラ静特性により決ま
る負荷指令−スプレ流量設定値特性を持つ関数発生器9
8で、負荷指令92に応じたスプレ流量設定値104を
作り、関数発生器98の出力であるスプレ流量設定値1
04とスプレ流量実測値93から減算器99の出力信号
となるスプレ流量の偏差信号を関数発生器102で燃料
流量補正信号に変換して、関数発生器95の出力である
ベース燃料流量信号103に加算器96で加えられる。
The correction signal is a function generator 9 having a load command-spray flow rate set value characteristic determined by the boiler static characteristic.
In step 8, a spray flow rate set value 104 corresponding to the load command 92 is created, and the spray flow rate set value 1 which is the output of the function generator 98.
A function generator 102 converts a spray flow rate deviation signal, which is an output signal of a subtractor 99, from a spray flow rate measured value 93 to a base fuel flow rate signal 103 output from a function generator 95. It is added by the adder 96.

【0018】また、加算器97において加算器96の出
力信号に加えられる補正は、主蒸気温度を制御するため
に燃料流量を調節するための補正回路である。この補正
回路は、主蒸気温度設定値と実測値との偏差である主蒸
気温度偏差94を比例積分器100にて演算した出力信
号を燃料流量補正信号として、加算器97にて加算器9
6の出力信号に加えられる。
The correction added to the output signal of the adder 96 in the adder 97 is a correction circuit for adjusting the fuel flow rate for controlling the main steam temperature. This correction circuit uses an output signal obtained by calculating a main steam temperature deviation 94, which is a deviation between the main steam temperature set value and the actually measured value, by the proportional integrator 100 as a fuel flow rate correction signal and an adder 97 to the adder 9
6 is added to the output signal.

【0019】上記のスプレ流量偏差および主蒸気温度偏
差により補正を加えられた燃料流量指令信号101で、
その時の負荷に応じたボイラ給水流量と主蒸気温度に対
する適切な水燃比となるように燃料流量が調節されて、
主蒸気温度が所望の値となるように制御される。
The fuel flow rate command signal 101 corrected by the above-mentioned spray flow rate deviation and main steam temperature deviation,
The fuel flow rate is adjusted so that the boiler feedwater flow rate according to the load at that time and the appropriate water-fuel ratio for the main steam temperature,
The main steam temperature is controlled to a desired value.

【0020】[0020]

【発明が解決しようとする課題】上記の図8に示す従来
技術の空気流量制御の考え方は、燃焼に最適な燃料/空
気比率を制御するものであるが、加圧流動層ボイラにお
いては供給空気量は単に燃焼に必要な空気量だけではな
く、安定した流動層燃焼を維持するのに必要な流動空気
を供給する目的もある。安定流動は一般に流動層の空塔
速度と関係があり、加圧流動層ボイラでは空塔速度0.
9〜1.0m/s程度を維持することが必要とされてい
る。
The concept of the air flow control of the prior art shown in FIG. 8 is to control the optimum fuel / air ratio for combustion. The amount is not merely the amount of air required for combustion, but also has the purpose of supplying the fluidized air necessary to maintain stable fluidized bed combustion. The stable flow is generally related to the superficial velocity of the fluidized bed, and in the pressurized fluidized-bed boiler, the superficial velocity of 0.
It is necessary to maintain about 9 to 1.0 m / s.

【0021】加圧流動層ボイラの設計においては、燃料
量(負荷)の増加に伴い、燃焼空気量を増加すれば、燃
焼ガス量が増してボイラ火炉(流動層)ガス圧力が上昇
するので、適切な流動面積(火炉断面積)を選定すれば
高負荷から低負荷において供給空気量を増減しても空塔
速度は、ほぼ一定(0.9〜1.0m/s程度)にバラ
ンスすることになる。
In the design of a pressurized fluidized-bed boiler, if the amount of combustion air is increased with an increase in the amount of fuel (load), the amount of combustion gas increases and the gas pressure in the boiler furnace (fluidized bed) increases. If an appropriate flow area (furnace cross-sectional area) is selected, the superficial velocity should be almost constant (about 0.9 to 1.0 m / s) even when the supply air volume is increased or decreased from high load to low load. become.

【0022】しかしながら、前述のように、従来技術の
加圧流動層ボイラにおいて蒸発器23を配置した火炉1
aと、過熱器24と再熱器25を配置した火炉1bの
内、蒸発器23を配置した火炉1aから起動して、過熱
器24と再熱器25のクーリング蒸気を確保しようとす
ると、起動した後の火炉1aのガス圧力は約0.1MP
aから約1MPaまで次第に昇圧することになる。
However, as described above, the furnace 1 in which the evaporator 23 is disposed in the conventional pressurized fluidized-bed boiler is used.
a, from the furnace 1b in which the superheater 24 and the reheater 25 are arranged, from the furnace 1a in which the evaporator 23 is arranged, and if the cooling steam of the superheater 24 and the reheater 25 is to be secured, The gas pressure of the furnace 1a after the
The pressure is gradually increased from a to about 1 MPa.

【0023】そのため、蒸発器23を配置した火炉1a
を先行して起動させた後、過熱器24と再熱器25を配
置した火炉1bを起動させるまでに火炉1aのガス圧力
が上昇するため、過熱器24と再熱器25を配置した火
炉1bを起動させる際には、火炉1bの出口酸素濃度を
蒸発器24を配置した火炉1aのそれと同一の値となる
ようにコンプレッサー2での空気流量を調整すると、燃
料投入初期は供給空気量も比較的少ないため、後から起
動する過熱器24と再熱器25を配置した火炉1bの空
塔速度は先に起動した蒸発器23を配置した火炉1aの
空塔速度よりも低く、燃料を投入しても安定した流動燃
焼が維持できないおそれがあった。
Accordingly, the furnace 1a in which the evaporator 23 is disposed
Since the gas pressure of the furnace 1a rises before the furnace 1b in which the superheater 24 and the reheater 25 are arranged after starting the furnace 1b, the furnace 1b in which the superheater 24 and the reheater 25 are arranged Is started, the air flow rate in the compressor 2 is adjusted so that the outlet oxygen concentration of the furnace 1b becomes the same value as that of the furnace 1a in which the evaporator 24 is arranged. Since the superficial velocity is low, the superficial velocity of the furnace 1b in which the superheater 24 and the reheater 25 started later are arranged is lower than the superficial velocity of the furnace 1a in which the evaporator 23 started earlier is arranged. However, stable fluid combustion may not be maintained.

【0024】ここで、火炉1bの出口酸素濃度を火炉1
aの出口酸素濃度と同一の値となるようにする理由は、
次の通りである。すなわち、火炉出口酸素濃度が増加す
るとNOxも増加する。一方の火炉の出口酸素濃度が低
くても、他方の火炉の出口酸素濃度が高ければ、合流し
た排ガス中のNOx濃度は平均されるということはな
く、NOx濃度の高い排ガスが排出することになる。し
たがって、できるだけ各火炉の出口酸素濃度を同一にし
ておく必要がある。
Here, the oxygen concentration at the outlet of the furnace 1b is
The reason for making the same value as the outlet oxygen concentration of a is as follows.
It is as follows. That is, when the furnace outlet oxygen concentration increases, the NOx also increases. Even if the outlet oxygen concentration of one furnace is low and the outlet oxygen concentration of the other furnace is high, the NOx concentration in the combined exhaust gas is not averaged, and the exhaust gas having a high NOx concentration is discharged. . Therefore, it is necessary to make the outlet oxygen concentration of each furnace the same as much as possible.

【0025】上記のように、従来技術の燃焼空気流量制
御方法においては、燃焼の結果としての各火炉1a、1
bの出口酸素濃度を空気制御の信号に使用しているが、
複数の火炉を有する加圧流動層ボイラにおいては各火炉
の起動タイミングに偏差を必要とするため、後から起動
する火炉の空塔速度が一定範囲に維持できないおそれが
あった。また、上記偏差を極力低減するためには、過熱
器24と再熱器25を配置した火炉1bの起動タイミン
グを必要最短時間で実施する必要があった。
As described above, in the prior art combustion air flow control method, each furnace 1a, 1
Although the outlet oxygen concentration of b is used for the air control signal,
In a pressurized fluidized-bed boiler having a plurality of furnaces, the start timing of each furnace requires a deviation, so that there is a possibility that the superficial velocity of the furnace started later cannot be maintained within a certain range. Further, in order to reduce the deviation as much as possible, it is necessary to execute the start timing of the furnace 1b in which the superheater 24 and the reheater 25 are arranged in the shortest necessary time.

【0026】本発明の第1の課題は、上記の従来技術の
問題点を解決し、複数に分割した各々の火炉の燃焼空気
流量制御性、ボイラ火炉での燃焼特性、環境特性の良好
な加圧流動層ボイラとその起動方法を提供することにあ
る。また、図9に示す従来型の貫流ボイラの制御方法に
おいては、燃料流量を変化させてから主蒸気温度が変化
するまでの応答が加圧型流動層ボイラに比べて速いこと
から燃料流量で主蒸気温度を制御しているが、この従来
型ボイラの技術を加圧型流動層ボイラに適用した場合に
おいては、下記のような加圧型流動層ボイラ特有の問題
点があった。
A first object of the present invention is to solve the above-mentioned problems of the prior art and to improve the controllability of the combustion air flow rate of each of the plurality of furnaces, the combustion characteristics of the boiler furnace, and the environmental characteristics. It is an object of the present invention to provide a pressurized fluidized bed boiler and a method for starting the same. Further, in the conventional method of controlling the once-through boiler shown in FIG. 9, the response from the change of the fuel flow rate to the change of the main steam temperature is faster than that of the pressurized fluidized-bed boiler. Although the temperature is controlled, when this conventional boiler technology is applied to a pressurized fluidized bed boiler, there are problems specific to the pressurized fluidized bed boiler as described below.

【0027】すなわち、加圧型流動層ボイラにおいても
主蒸気温度制御は基本的に燃料流量を変化させて行う
が、加圧型流動層ボイラの場合、粗粉炭、微粉炭、石炭
石及び水を混合してペースト状にしたもの(以下CWP
と呼ぶ)を燃料としており、燃料中の水分が多く(約2
5〜30wt%)、また石炭粒径の大きいものが含まれ
ている理由から、微粉炭、石油、ガスなどを燃料とする
従来型のボイラに比べて燃焼遅れが大きい(90〜12
0秒程度)ことと、燃料流量が変化して流動層への入熱
量が変わり、その結果として流動層温度が変化し、その
後伝熱管温度が変化して蒸気温度が変化するため、時定
数が大きく蒸気温度変化までの時間がかかる。そのた
め、燃料流量調節だけで主蒸気温度を制御しようとする
と主蒸気温度に大きな応答遅れが生じ、素早い主蒸気温
度制御応答を得ることが難しい。
That is, in the pressurized fluidized bed boiler, the main steam temperature control is basically performed by changing the fuel flow rate. In the case of the pressurized fluidized bed boiler, coarse coal, pulverized coal, coal stone and water are mixed. Into paste (hereinafter CWP)
) As fuel, and the fuel contains a large amount of water (about 2
(5 to 30 wt%), and because of the presence of coal having a large particle size, the combustion delay is larger than that of a conventional boiler using pulverized coal, oil, gas or the like as a fuel (90 to 12 wt%).
0 seconds), the fuel flow rate changes, the heat input to the fluidized bed changes, and as a result, the fluidized bed temperature changes, then the heat transfer tube temperature changes, and the steam temperature changes. It takes a long time to change the steam temperature. Therefore, if the main steam temperature is controlled only by adjusting the fuel flow rate, a large response delay occurs in the main steam temperature, and it is difficult to obtain a quick main steam temperature control response.

【0028】特に、水燃比のバランスが崩れて主蒸気温
度が上昇し始めた時には、燃料流量を減少させても流動
層温度がすぐには下がらないため、主蒸気温度の上昇も
すぐには抑えることができず、主蒸気温度がオーバーシ
ュートしてしまい易く、場合によっては主蒸気温度が異
常高となってボイラ緊急停止に至る可能性がある。
In particular, when the balance of the water-fuel ratio is lost and the main steam temperature starts to rise, the fluidized bed temperature does not immediately decrease even if the fuel flow rate is reduced. Therefore, the main steam temperature tends to overshoot, and in some cases, the main steam temperature becomes abnormally high, which may lead to an emergency stop of the boiler.

【0029】また、主蒸気温度を制御する方法として過
熱器スプレを注入する方法があるが、過熱器スプレ注入
量を増加させると水壁と蒸発器を通過する給水量が減
り、かえって蒸発器の温度が上昇するため、過渡的にし
か効果がなく、蒸発器の温度が上昇し過ぎると伝熱管損
傷に至る可能性がある。
As a method of controlling the main steam temperature, there is a method of injecting a superheater spray. However, if the injection amount of the superheater spray is increased, the amount of water supplied through the water wall and the evaporator is reduced. Since the temperature rises, it is only transiently effective, and if the temperature of the evaporator rises too much, it may lead to heat transfer tube damage.

【0030】また、加圧型流動層ボイラは、炉内脱硫性
能の維持や排ガスNOx発生量の抑制等の理由のため
に、流動層温度は常に規定温度範囲内に入るように制御
されて運転しなければならない。このために、流動層温
度の変動可能な温度範囲が狭く、それに伴い燃料流量の
変化幅も制限されるため、流動層温度の変動幅を制限さ
れた状態での燃料流量調節だけによる素早い主蒸気温度
制御応答を得ることが難しい。
The pressurized fluidized-bed boiler is operated with the fluidized-bed temperature controlled so as to always fall within a specified temperature range for reasons such as maintaining desulfurization performance in the furnace and suppressing the amount of exhaust gas NOx generated. There must be. For this reason, the temperature range in which the fluidized bed temperature can be varied is narrow, and the range of change in the fuel flow rate is also limited.Therefore, quick main steam only by adjusting the fuel flow rate in a state in which the range of the fluidized bed temperature variation is limited. It is difficult to obtain a temperature control response.

【0031】そこで、本発明の第2の課題は、上記の燃
料流量の調節だけで水燃比のバランスを調節して主蒸気
温度制御を行った場合の素早い主蒸気温度制御応答を得
ることが難しい加圧型流動層ボイラの問題点を解消する
ことにある。
Accordingly, a second object of the present invention is to obtain a quick main steam temperature control response when the main steam temperature control is performed by adjusting the balance of the water-fuel ratio only by adjusting the fuel flow rate. An object of the present invention is to solve the problems of a pressurized fluidized-bed boiler.

【0032】[0032]

【課題を解決するための手段】本発明の上記第1の課題
は各火炉の空塔速度の計測信号を燃焼空気流量調整装置
を作動させる制御信号の補正因子として取り入れること
により達成される。すなわち、本発明は火炉内に蒸発
器、過熱器及び再熱器を配置し、蒸発器、過熱器及び再
熱器のうち、少なくとも蒸発器を配置した火炉と少なく
とも再熱器を配置した火炉とをそれぞれ別体とする少な
くとも二つに分割された火炉と、分割された各火炉を個
別に収納する少なくとも二つの圧力容器と、各火炉へ送
られる燃焼用空気および燃料供給割合を調整する手段を
有する加圧流動層ボイラにおいて、各火炉の空塔速度の
検出手段を備え、少なくとも該各空塔速度検出手段の検
出値に応じて加圧流動層ボイラへ供給する燃焼用空気流
量を調整する空気流量調整手段を有する加圧流動層ボイ
ラである。
The first object of the present invention is attained by incorporating a measurement signal of the superficial velocity of each furnace as a correction factor of a control signal for operating a combustion air flow control device. That is, the present invention arranges an evaporator, a superheater and a reheater in a furnace, and among the evaporator, the superheater and the reheater, a furnace in which at least an evaporator is arranged and a furnace in which at least a reheater is arranged. Furnace divided into at least two separate furnaces, at least two pressure vessels for individually storing each divided furnace, and means for adjusting the combustion air and fuel supply ratio sent to each furnace A pressurized fluidized-bed boiler, comprising: means for detecting the superficial velocity of each furnace, wherein the air for adjusting the flow rate of combustion air supplied to the pressurized fluidized-bed boiler according to at least the detection value of the superficial velocity detection means It is a pressurized fluidized bed boiler having a flow rate adjusting means.

【0033】ボイラ起動時には火炉内の空塔速度のみに
より燃焼用空気流量を調整する場合のみならず、火炉出
口ガス酸素濃度の値も勘案して燃焼用空気流量を調整す
ることもできる。
At the time of starting the boiler, the combustion air flow rate can be adjusted not only when the combustion air flow rate is adjusted only by the superficial velocity in the furnace but also in consideration of the value of the gas oxygen concentration at the furnace outlet.

【0034】また、本発明は、火炉内に蒸発器、過熱器
及び再熱器を配置し、蒸発器、過熱器及び再熱器のう
ち、少なくとも蒸発器を配置した火炉と少なくとも再熱
器を配置した火炉とをそれぞれ別体とする少なくとも二
つに分割された火炉と、分割された各火炉を個別に収納
する少なくとも二つの圧力容器と、各火炉へ送られる燃
焼用空気および燃料供給割合を調整する手段を有する加
圧流動層ボイラにおいて、ボイラ起動時には、各火炉の
空塔速度に応じて加圧流動層ボイラへ供給する燃焼用空
気流量を調整し、各火炉の燃料と空気の供給量が同程度
になった後は、ボイラ出口の酸素濃度に応じて燃焼用空
気流量を調整する加圧流動層ボイラの起動方法である。
Further, the present invention provides an evaporator, a superheater and a reheater in a furnace, and comprises, among the evaporator, the superheater and the reheater, at least a furnace in which the evaporator is arranged and at least a reheater. Furnace divided into at least two separate furnaces respectively arranged, at least two pressure vessels individually housed each divided furnace, the combustion air and fuel supply ratio to be sent to each furnace In a pressurized fluidized-bed boiler having a means for adjusting, when starting the boiler, the flow rate of combustion air supplied to the pressurized fluidized-bed boiler is adjusted according to the superficial velocity of each furnace, and the fuel and air supply amounts of each furnace are adjusted. After the pressure becomes approximately the same, this is a method for starting a pressurized fluidized bed boiler in which the combustion air flow rate is adjusted according to the oxygen concentration at the boiler outlet.

【0035】また、本発明には、次の発明も含まれる。
すなちわ、火炉内に蒸発器、過熱器及び再熱器を配置
し、蒸発器、過熱器及び再熱器のうち、少なくとも蒸発
器を配置した火炉と少なくとも再熱器を配置した火炉と
をそれぞれ別体とする少なくとも二つに分割された火炉
と、分割された各火炉を個別に収納する少なくとも二つ
の圧力容器と、各火炉へ送られる燃焼用空気および燃料
供給割合を調整する手段を有する加圧流動層ボイラにお
いて、蒸発器を有する火炉を起動した後、蒸発器で発生
した蒸気を蒸発器を有する火炉以外の火炉に配置された
過熱器及び再熱器に導入し、かつ導入蒸気量を検出し
て、該導入蒸気量が所定の値以上に達したことを検出し
てから、過熱器及び再熱器を備えた火炉を起動する起動
過程で、各火炉の空塔速度と火炉出口酸素濃度が所定の
値になるようボイラへ供給する空気流量を制御する加圧
流動ボイラの起動方法である。
The present invention also includes the following invention.
That is, an evaporator, a superheater and a reheater are arranged in a furnace, and among the evaporator, the superheater and the reheater, a furnace in which at least an evaporator is arranged and a furnace in which at least a reheater is arranged. Furnace divided into at least two separate furnaces, at least two pressure vessels for individually storing each divided furnace, and means for adjusting the combustion air and fuel supply ratio sent to each furnace In a pressurized fluidized-bed boiler having a furnace, after starting a furnace having an evaporator, steam generated by the evaporator is introduced into a superheater and a reheater arranged in a furnace other than the furnace having an evaporator, and After detecting that the amount of introduced steam has reached a predetermined value or more, in the starting process of starting a furnace equipped with a superheater and a reheater, the superficial velocity of each furnace and the furnace To the boiler so that the outlet oxygen concentration becomes the specified value A pressurized flow boiler starting method of controlling the air flow rate to be fed.

【0036】上記本発明においては、複数の火炉への燃
焼空気流量の配分調整は火炉入口の燃焼空気調整装置で
行うが、補正する因子として空塔速度を取り入れること
により、それぞれの火炉の起動タイミングが異なり、層
温度や層高に偏差を生じても一定の空塔速度範囲内に収
まるように燃焼空気流量を制御するので、起動タイミン
グの異なる複数火炉の起動過程での安定燃焼を確保する
ことができる。
In the present invention, the distribution of the combustion air flow to the plurality of furnaces is adjusted by the combustion air adjusting device at the furnace inlet. By taking the superficial velocity as a correction factor, the start timing of each furnace is adjusted. However, since the combustion air flow rate is controlled so that it stays within a certain superficial velocity even if there is a deviation in the bed temperature or bed height, it is necessary to ensure stable combustion during the startup process of multiple furnaces with different startup timings. Can be.

【0037】本発明の上記第2の課題は、下記方法によ
って達成される。貫流運転中の水燃比のバランスを調整
することにより行う主蒸気温度制御において、主蒸気温
度は、燃料流量の調節で制御することを基本として、燃
料流量の調節だけでは加圧型流動層ボイラ特有の蒸気温
度への応答遅れにより主蒸気温度を制御できなくなった
緊急の場合のバックアップとして、主蒸気温度への応答
がはやく、加圧型流動層ボイラ特有の炉内脱硫性能の維
持や排ガスNOx発生量の抑制等の理由による層温度変
化幅の制限にも影響されないボイラ給水流量を調節して
抑制する。
The second object of the present invention is achieved by the following method. In the main steam temperature control performed by adjusting the balance of the water-fuel ratio during the once-through operation, the main steam temperature is basically controlled by adjusting the fuel flow rate. As a backup in an emergency where the main steam temperature could not be controlled due to a delay in the response to the steam temperature, the response to the main steam temperature was fast, and the desulfurization performance in the furnace peculiar to pressurized fluidized-bed boilers was maintained and the amount of NOx generated in the exhaust gas was reduced. The boiler feedwater flow rate, which is not affected by the limitation of the bed temperature change width due to suppression or the like, is adjusted and suppressed.

【0038】加圧型流動層ボイラは、炉内脱硫性能の維
持や排ガスNOx発生の抑制等の理由により、流動層温
度は常に規定温度範囲内に入るように制御されて運転し
なければならない。
The pressurized fluidized-bed boiler must be controlled and operated so that the fluidized-bed temperature always falls within a specified temperature range for reasons such as maintaining desulfurization performance in the furnace and suppressing generation of NOx in exhaust gas.

【0039】主蒸気温度は、燃料流量と流動層高とボイ
ラ給水流量のバランスにより決まることから、燃料流量
と流動層高とボイラ給水流量が一定に制御された状態で
は、主蒸気温度および流動層温度は一定となる。燃料流
量またはボイラ給水流量を変化させると、ボイラ給水に
与えられる熱量に対するボイラ給水流量の比率、つまり
水燃比が変化し、水燃比の変化に応じて主蒸気温度も変
化する。
Since the main steam temperature is determined by the balance between the fuel flow rate, the fluidized bed height, and the boiler feedwater flow rate, the main steam temperature and the fluidized bed height are controlled when the fuel flow rate, the fluidized bed height, and the boiler feedwater flow rate are controlled to be constant. The temperature will be constant. When the fuel flow rate or the boiler feed water flow rate is changed, the ratio of the boiler feed water flow rate to the amount of heat applied to the boiler feed water, that is, the water-fuel ratio changes, and the main steam temperature also changes according to the change in the water-fuel ratio.

【0040】燃料流量で水燃比を変化させた場合、燃料
の燃焼遅れが大きいことと、燃料流量が変化して流動層
への入熱量が変わり、その結果として流動層温度が変化
し、その後伝熱管温度が変化して蒸気温度が変化するた
め、時定数が大きく蒸気温度の変化までの時間がかか
り、主蒸気温度に大きな応答遅れが生じてしまう。これ
に対して、ボイラ給水流量で水燃比を変化させた場合、
ボイラに入力された後に主蒸気となって出ていくボイラ
給水流量を直接変化させて水燃比を変化させるので、主
蒸気温度への応答遅れの大きい燃料流量にて水燃比を変
化させる場合よりも主蒸気温度変化の応答がはやい。
When the water-fuel ratio is changed by the fuel flow rate, the combustion delay of the fuel is large, and the fuel flow rate changes to change the amount of heat input to the fluidized bed. As a result, the fluidized bed temperature changes, Since the heat pipe temperature changes and the steam temperature changes, the time constant is large and it takes time to change the steam temperature, resulting in a large response delay in the main steam temperature. On the other hand, when the water-fuel ratio is changed with the boiler feedwater flow rate,
Since the water-fuel ratio is changed by directly changing the boiler feedwater flow that flows out as main steam after being input to the boiler, the water-fuel ratio is changed as compared to the case where the fuel flow is changed with a large fuel flow delay in response to the main steam temperature. Quick response to main steam temperature change.

【0041】したがって、主蒸気温度制御は、ボイラ給
水流量を調節して水燃比を変化させることによって素早
い応答性で行うことができ、更に、加圧型流動層ボイラ
特有の燃焼遅れによる主蒸気温度変化の応答遅れ、およ
び炉内脱硫性能の維持や排ガスNOx発生抑制等の理由
による流動層温度変化幅の制限に影響されることなく主
蒸気温度を制御することができる。
Therefore, the main steam temperature control can be performed with a quick response by adjusting the boiler feedwater flow rate and changing the water-fuel ratio. Further, the main steam temperature change due to the combustion delay peculiar to the pressurized fluidized bed boiler can be achieved. The main steam temperature can be controlled without being affected by the delay in the response of the fluidized bed, the restriction of the fluidized bed temperature change width due to the maintenance of the in-furnace desulfurization performance, the suppression of the exhaust gas NOx generation, and the like.

【0042】しかし、ボイラ給水流量を変化させると主
蒸気温度は素早く制御できるが、ボイラ給水流量を変化
させると主蒸気流量も変化して蒸気タービン出力へも影
響が出るため、本発明では、主蒸気温度は、燃料流量の
調節により制御することを基本として、燃料流量の調節
だけでは主蒸気温度への応答が遅く主蒸気温度を制御で
きなくなった緊急の場合のバックアップとして、ボイラ
給水流量を調節して制御を行う。
However, the main steam temperature can be quickly controlled by changing the flow rate of the boiler feedwater, but if the flow rate of the boiler feedwater is changed, the flow rate of the main steam also changes and the output of the steam turbine is affected. The steam temperature is basically controlled by adjusting the fuel flow rate, and the boiler feedwater flow rate is adjusted as a backup in an emergency in which the response to the main steam temperature is slow only by adjusting the fuel flow rate and the main steam temperature cannot be controlled. Control.

【0043】すなわち、本発明は水蒸気系統が貫流ボイ
ラの形式を持つ伝熱管群を流動層内に配置した加圧型流
動層ボイラの燃料流量と流動層高と伝熱管群へのボイラ
給水流量のバランスにより決まる主蒸気温度を水燃比を
調節して制御する加圧型流動層ボイラの制御方法におい
て、燃料流量調節で主蒸気温度を制御することを基本と
して、燃料流量調節では主蒸気温度への応答が遅く主蒸
気温度を制御できなくなった緊急の場合のバックアップ
として、主蒸気温度への応答が速いボイラ給水流量を調
節して主蒸気温度を制御することを特徴とする加圧型流
動層ボイラの制御方法である。
That is, the present invention provides a pressurized fluidized-bed boiler in which a heat transfer tube group in which a steam system has the form of a once-through boiler is arranged in a fluidized bed. In the method of controlling a pressurized fluidized-bed boiler that controls the main steam temperature determined by the water-fuel ratio by controlling the main steam temperature by adjusting the fuel flow rate, the response to the main steam temperature is controlled by adjusting the fuel flow rate. A method for controlling a pressurized fluidized-bed boiler, comprising controlling a main steam temperature by adjusting a boiler feedwater flow rate which responds quickly to a main steam temperature as a backup in an emergency when the main steam temperature cannot be controlled late. It is.

【0044】また、本発明は、ボイラ入力指令信号によ
り求められる燃料流量設定値と燃料流量測定値との偏差
に基づきボイラ燃料流量を求め、これに前記ボイラ燃料
流量に対して主蒸気温度の設定値と測定値との偏差によ
る補正を加えて燃料流量を制御し、ボイラ入力指令信号
により求められるボイラ給水流量設定値と給水流量測定
値との偏差に基づきベース給水流量を求め、該ベース給
水流量に対して主蒸気温度の設定値と測定値との偏差に
応じた補正を行い、さらにボイラ入力指令信号により求
められる燃料供給量に対して前記主蒸気温度の設定値と
測定値との偏差による前記補正を加えてボイラ給水流量
を調節することを特徴とする加圧型流動層ボイラの制御
方法である。
Further, according to the present invention, a boiler fuel flow rate is determined based on a deviation between a fuel flow rate set value determined by a boiler input command signal and a fuel flow rate measured value, and the main steam temperature is set with respect to the boiler fuel flow rate. The fuel flow rate is controlled by adding a correction based on the deviation between the measured value and the measured value, and the base water flow rate is determined based on the deviation between the set value of the boiler water flow rate and the measured value of the water flow rate, which is determined by the boiler input command signal. The main steam temperature is corrected according to the deviation between the set value and the measured value, and the fuel supply amount determined by the boiler input command signal is further corrected by the deviation between the main steam temperature set value and the measured value. A method for controlling a pressurized fluidized-bed boiler, wherein the correction is performed to adjust the boiler feedwater flow rate.

【0045】[0045]

【発明の実施の形態】本発明による加圧流動層ボイラの
燃焼空気流量制御方式の具体例を図1に示す。図1に示
す構成の各装置で図4に示す装置と同一機能をそうする
ものは同一番号を付し、その説明は省略する。図1に示
す加圧流動層ボイラは次のように運転する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a specific example of a combustion air flow control method for a pressurized fluidized bed boiler according to the present invention. 1 having the same function as the device shown in FIG. 4 among the devices having the configuration shown in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted. The pressurized fluidized bed boiler shown in FIG. 1 operates as follows.

【0046】蒸発器23を有する火炉1aを起動した
後、蒸発器23で発生した蒸気を火炉1bに配置された
過熱器24及び再熱器25に導入し、かつ導入蒸気量を
検出して、該導入蒸気量が所定の値以上に達したことを
検出してから、過熱器24及び再熱器25を備えた火炉
1bを起動し、その起動過程で、各火炉1a、1bの空
塔速度と火炉出口酸素濃度が所定の値になるようボイラ
へ供給する燃焼用空気流量を制御するボイラの起動方法
である。
After starting the furnace 1a having the evaporator 23, the steam generated in the evaporator 23 is introduced into the superheater 24 and the reheater 25 arranged in the furnace 1b, and the amount of introduced steam is detected. After detecting that the amount of introduced steam has reached a predetermined value or more, the furnace 1b including the superheater 24 and the reheater 25 is started, and in the starting process, the superficial velocity of each of the furnaces 1a and 1b is increased. And a method for starting the boiler for controlling the flow rate of combustion air supplied to the boiler so that the oxygen concentration at the furnace outlet becomes a predetermined value.

【0047】蒸発器23を備えた火炉1aと過熱器24
と再熱器25を備えた火炉1bを持つ加圧流動層ボイラ
において、各々の火炉1a、1bに供給される燃焼用空
気量はコンプレッサー2から供給される空気を調整装置
3a、3bにより調整されて、それぞれの火炉1a、1
bに配分される。
A furnace 1a having an evaporator 23 and a superheater 24
In the pressurized fluidized-bed boiler having the furnace 1b provided with the reheater 25, the amount of combustion air supplied to each furnace 1a, 1b is adjusted by adjusting the air supplied from the compressor 2 by the adjusting devices 3a, 3b. And the respective furnaces 1a, 1
b.

【0048】図1に示す例は、各火炉1a、1bの燃焼
空気流量配分は、供給される燃焼の比率により変化さ
せ、各火炉1a、1bの排ガス酸素濃度計4a、4bの
各測定値の偏差、及び空塔速度計測器5a、5bの各測
定値の偏差により燃焼空気流量配分に補正を加える制御
方法である。
In the example shown in FIG. 1, the distribution of the combustion air flow rate of each of the furnaces 1a and 1b is changed depending on the ratio of the supplied combustion, and the measured values of the exhaust gas oximeters 4a and 4b of each of the furnaces 1a and 1b are measured. This is a control method for correcting the distribution of the combustion air flow rate based on the deviation and the deviation between the measured values of the superficial velocity measuring devices 5a and 5b.

【0049】こうすることにより、それぞれの火炉1
a、1bの起動時の層温度や流動層高差による空塔速度
5a、5bの偏差を燃焼空気流量を制御する制御装置3
a、3bの作用によって一定範囲内に確保することが可
能となる。
By doing so, each furnace 1
A control device 3 for controlling the combustion air flow rate by controlling the deviation of the superficial tower speeds 5a and 5b due to the bed temperature and the fluidized bed height difference at the time of start-up of a and 1b
The effects of a and 3b make it possible to secure a certain range.

【0050】例えば、火炉1bの起動時に空塔速度5b
が必要値を下回った場合には空塔速度5bの酸素濃度偏
差の風量換算器19によってコンプレッサー2からの供
給空気量が増加されるが、火炉1aの供給空気量は火炉
1a出口酸素濃度を一定に制御するよう空気流量調節装
置3aで調節され、火炉1bの供給空気量はボイラ出口
酸素濃度計18によって調節されるので、火炉1bは安
定流動に必要な空塔速度5bを下回ることが無いように
制御される。
For example, when the furnace 1b is started, the superficial velocity 5b
Is less than the required value, the amount of air supplied from the compressor 2 is increased by the air volume converter 19 for the oxygen concentration deviation at the superficial velocity 5b, but the amount of air supplied to the furnace 1a is constant at the outlet oxygen concentration of the furnace 1a. The flow rate of air supplied to the furnace 1b is adjusted by the boiler outlet oximeter 18 so that the furnace 1b does not fall below the superficial velocity 5b required for stable flow. Is controlled.

【0051】図1に示す構成では、空塔速度の酸素濃度
偏差の風量換算器19の信号でコンプレッサー2の空気
流量調整装置22の制御を補正しているが、ボイラ火炉
1a、1bの出口酸素濃度の検出手段4a、4bを合わ
せて備えているので、ボイラ起動時には排ガス酸素濃度
計4a、4bの各測定値の偏差、及び空塔速度計測器5
a、5bの各測定値の偏差により燃焼空気流量配分に補
正を加える制御方法を行い、複数の火炉1a、1bの燃
焼/空気供給量が同程度となった以降は、ボイラ出口酸
素濃度計4a、4bの各測定値でコンプレッサー2の空
気流量調整装置22の制御補正が可能な様に制御方法を
切り替えることも可能である。
In the configuration shown in FIG. 1, the control of the air flow rate adjusting device 22 of the compressor 2 is corrected by the signal of the air flow rate converter 19 of the oxygen concentration deviation of the superficial velocity, but the output oxygen of the boiler furnaces 1a and 1b is corrected. Since the concentration detection means 4a and 4b are provided together, the deviation of the measured values of the exhaust gas oximeters 4a and 4b and the superficial velocity meter 5 when the boiler is started up
A control method for correcting the distribution of the combustion air flow rate based on the deviations of the measured values a and 5b is performed. After the combustion / air supply amounts of the plurality of furnaces 1a and 1b become substantially the same, the boiler outlet oxygen concentration meter 4a It is also possible to switch the control method so that the control correction of the air flow control device 22 of the compressor 2 can be performed with each of the measured values 4b and 4b.

【0052】また、図1に示す加圧流動層ボイラは火炉
1aに蒸発器23のみを配置しているが、火炉1aには
蒸発器23の他に過熱器24の一部を配置し、残りの過
熱器24の部分を火炉1bに配置し、同時に火炉1bに
は再熱器も配置する構成でも良い。
In the pressurized fluidized-bed boiler shown in FIG. 1, only the evaporator 23 is arranged in the furnace 1a, but a part of the superheater 24 is arranged in the furnace 1a in addition to the evaporator 23, and May be arranged in the furnace 1b, and at the same time, a reheater is also arranged in the furnace 1b.

【0053】また、図2〜図7に本発明の実施の形態の
加圧型流動層ボイラの主蒸気温度制御系の制御系統図と
制御特性図を示す。
FIGS. 2 to 7 show a control system diagram and a control characteristic diagram of a main steam temperature control system of the pressurized fluidized-bed boiler according to the embodiment of the present invention.

【0054】図2に示す主蒸気温度制御系の制御系統図
において、ボイラ入力指令信号32は、ボイラ静特性に
より決まる図5に示すようなボイラ入力指令−給水流量
設定値特性を持つ関数発生器38に入力され、その出力
である給水流量設定値44と給水流量測定値31との偏
差信号を減算器34で作成し、減算器34の出力である
給水流量偏差信号を比例積分器35に入力して演算し、
その出力がベース給水ポンプ出力指令45となる。ベー
ス給水ポンプ出力指令45は、加算器42にて主蒸気温
度偏差による補正を加えられ、加算器42で出力が得ら
れ、当該出力である給水ポンプ出力指令46は自動/手
動切替器43を通って給水ポンプへ出力される。
In the control system diagram of the main steam temperature control system shown in FIG. 2, a boiler input command signal 32 is a function generator having a boiler input command-feed water flow rate set value characteristic as shown in FIG. The difference signal between the feed water flow rate set value 44 and the measured feed water flow value 31 that is input to the feed water flow rate 38 is generated by the subtractor 34, and the feed water flow deviation signal output from the subtracter 34 is input to the proportional integrator 35. And calculate
The output is the base feed pump output command 45. The base feed water pump output command 45 is corrected by the main steam temperature deviation in the adder 42, and an output is obtained in the adder 42. The output, the feed water pump output command 46, passes through the automatic / manual switch 43. Is output to the feedwater pump.

【0055】比例積分器35の出力であるベース給水ポ
ンプ出力指令45に加算器42で加えられる補正は、主
蒸気温度の設定値と測定値との間に偏差が生じた場合に
給水ポンプ出力を変化させてボイラ給水流量を調節して
主蒸気温度を制御するために補正回路である。
The correction added by the adder 42 to the base feed water pump output command 45, which is the output of the proportional integrator 35, is to adjust the feed water pump output when a deviation occurs between the set value of the main steam temperature and the measured value. It is a correction circuit for controlling the main steam temperature by changing the boiler feedwater flow rate.

【0056】この補正回路はボイラ静特性より決まる図
3に示すようなボイラ入力指令−主蒸気温度設定値特性
を持つ関数発生器36の出力信号である主蒸気温度設定
値47と主蒸気温度測定値33の偏差信号を減算器39
で作成し、減算器39の出力である主蒸気温度偏差信号
は関数発生器49に入力される。関数発生器49は、図
7に示すような主蒸気温度偏差に不感帯を設定する関数
であり、ボイラ給水流量調節による主蒸気温度制御を燃
料流量調節による主蒸気温度制御のバックアップとして
使用する目的で主蒸気温度偏差が規定値以上にならない
とボイラ給水流量による主蒸気温度を働かせないように
するためのものである。
The correction circuit includes a main steam temperature set value 47, which is an output signal of a function generator 36 having a boiler input command-main steam temperature set value characteristic as shown in FIG. The difference signal of the value 33 is subtracted by a subtractor 39.
The main steam temperature deviation signal output from the subtractor 39 is input to the function generator 49. The function generator 49 is a function for setting a dead zone in the main steam temperature deviation as shown in FIG. 7, and is for the purpose of using the main steam temperature control by adjusting the flow rate of the boiler feed water as a backup of the main steam temperature control by adjusting the fuel flow rate. If the main steam temperature deviation does not exceed a specified value, the main steam temperature based on the boiler feed water flow rate is not operated.

【0057】関数発生器49の出力は、関数発生器37
の出力であるゲイン補正信号48を乗算器40にて掛け
合わせる。図4に示すようなボイラ入力指令−主蒸気温
度偏差ゲイン補正信号特性を持つ関数発生器37の出力
であるゲイン補正信号48を乗算器40にて主蒸気温度
偏差に掛け合わせて補正を行う理由は、ボイラ給水流量
によって主蒸気温度偏差に対するボイラ給水流量への補
正量を変化させないと負荷によってボイラ給水流量の補
正量に対する主蒸気温度の変化量が変わってしまうため
である。
The output of the function generator 49 is
Is multiplied by the multiplier 40 with the gain correction signal 48 which is the output of. The reason why the multiplier 40 multiplies the main steam temperature deviation by the gain correction signal 48 output from the function generator 37 having the boiler input command-main steam temperature deviation gain correction signal characteristic as shown in FIG. This is because the amount of change in the main steam temperature with respect to the amount of correction of the boiler feedwater flow changes depending on the load unless the amount of correction to the boiler feedwater flow for the main steam temperature deviation is changed according to the boiler feedwater flow rate.

【0058】乗算器40の出力は、比例器41に入力さ
れて演算し、その出力が加算器42にて比例積分器35
の出力であるベース給水ポンプ出力指令45に加えられ
て、加算器42の出力がボイラ給水ポンプ出力指令46
となり、自動/手動切替器43を通ってボイラ給水ポン
プへ出力される。比例器41の比例係数は、ボイラ給水
流量変化量に対する主蒸気温度変化幅の特性より求めら
れた係数を使用する。
The output of the multiplier 40 is input to a proportional unit 41 for calculation, and the output is added to a proportional integrator 35 by an adder 42.
The output of the adder 42 is added to the base feed water pump output command 45 which is the output of the boiler feed water pump output command 46.
And is output to the boiler feed pump through the automatic / manual switch 43. As the proportional coefficient of the proportional unit 41, a coefficient obtained from the characteristic of the main steam temperature change width with respect to the boiler feedwater flow rate change amount is used.

【0059】また、燃料流量の調節による主蒸気温度の
ために、ボイラ静特性により決まる図3に示すようなボ
イラ入力指令−主蒸気温度設定値特性を持つ関数発生器
36の出力信号である主蒸気温度設定値47と主蒸気温
度測定値33の偏差信号を比例積分器50で演算し、そ
の出力が加算器51においてボイラ静特性にて決まる図
5に示すようなボイラ入力指令−ベース燃料供給ポンプ
出力指令特性を持つ関数発生器52の出力であるベース
燃料供給ポンプ出力指令に主蒸気温度偏差による補正を
加える。加算器51で補正を加えられた燃料供給ポンプ
出力指令は、自動/手動切替器54を通って燃料供給ポ
ンプへ出力される。
Also, because of the main steam temperature due to the adjustment of the fuel flow rate, the main steamer output signal of the function generator 36 having a boiler input command-main steam temperature set value characteristic as shown in FIG. A deviation signal between the steam temperature set value 47 and the measured main steam temperature value 33 is calculated by the proportional integrator 50, and the output thereof is determined by the boiler static characteristic in the adder 51. As shown in FIG. The base fuel supply pump output command, which is the output of the function generator 52 having the pump output command characteristic, is corrected by the main steam temperature deviation. The fuel supply pump output command corrected by the adder 51 is output to the fuel supply pump through the automatic / manual switch 54.

【0060】上記制御例は、加圧型流動層ボイラの主蒸
気温度制御において、加圧型流動層ボイラ特有の燃料の
燃焼遅れによる蒸気温度変化の応答遅れおよび炉内脱硫
性能の維持や排ガスNOx発生抑制等による流動層温度
の変動範囲の制限により燃料流量の調節だけでは主蒸気
温度への応答が遅く、主蒸気温度を制御できなくなった
緊急の場合のみのバックアップとしてボイラ給水流量を
調節して主蒸気温度を制御するもので、ボイラ給水流量
を調節することで加圧型流動層ボイラ特有の燃料の燃焼
遅れによる蒸気温度変化の応答遅れ、および炉内脱硫性
能の維持や排ガスNOx発生抑制等による流動層温度の
変動可能温度範囲の制限に影響されることなく素早く主
蒸気温度を制御することができる。
In the above control example, in the main steam temperature control of the pressurized fluidized-bed boiler, response delay of steam temperature change due to fuel combustion delay peculiar to the pressurized-type fluidized-bed boiler, maintenance of in-furnace desulfurization performance and suppression of exhaust gas NOx generation are described. The response to the main steam temperature is slow only by adjusting the fuel flow rate due to the limitation of the fluctuation range of the fluidized bed temperature due to the boiler temperature, etc., and the boiler feed water flow rate is adjusted as a backup only in an emergency when the main steam temperature cannot be controlled. Controls the temperature, and adjusts the boiler feedwater flow rate to delay the response of steam temperature changes due to fuel combustion delay peculiar to pressurized fluidized-bed boilers, and to maintain the in-furnace desulfurization performance and suppress the generation of exhaust gas NOx in the fluidized bed. The main steam temperature can be quickly controlled without being affected by the limitation of the temperature range in which the temperature can be varied.

【0061】[0061]

【発明の効果】本発明によれば、2以上に分割した火炉
を有する加圧流動層ボイラの起動において起動タイミン
グの異なる2以上の火炉の空塔速度を一定範囲内に確保
することが可能となり、各火炉の起動過程で安定燃焼が
達成される。
According to the present invention, when starting a pressurized fluidized bed boiler having a furnace divided into two or more, it is possible to secure the superficial tower speeds of two or more furnaces having different starting timings within a certain range. Thus, stable combustion is achieved during the start-up process of each furnace.

【0062】また、主蒸気温度制御において、燃料流量
の調節だけ水燃比のバランスを変化させた場合の主蒸気
温度への応答が遅く、燃料流量の調節だけでは主蒸気温
度を制御できなくなった場合のバックアップとして、主
蒸気温度への応答がはやく、加圧型流動層ボイラ特有の
炉内脱硫性能の維持や排ガスNOx発生の抑制等の理由
による流動層温度変化幅の制限に影響されないボイラ給
水流量を調節することで素早く主蒸気温度を制御するこ
とで、主蒸気温度の制御性も向上する。
In the main steam temperature control, when the balance of the water-fuel ratio is changed only by adjusting the fuel flow rate, the response to the main steam temperature is slow, and the main steam temperature cannot be controlled only by adjusting the fuel flow rate. As a backup, the boiler feedwater flow rate is not affected by the rapid response to the main steam temperature and is not affected by the limitation of the range of fluidized bed temperature change due to the maintenance of in-furnace desulfurization performance unique to pressurized fluidized bed boilers and the suppression of exhaust gas NOx generation. By controlling the main steam temperature quickly by adjusting, the controllability of the main steam temperature is also improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態の加圧流動層ボイラの各
火炉の燃焼空気流量制御の構成図である。
FIG. 1 is a configuration diagram of combustion air flow control of each furnace of a pressurized fluidized-bed boiler according to an embodiment of the present invention.

【図2】 本発明の実施の形態の加圧流動層ボイラの主
蒸気温度制御の構成図である。
FIG. 2 is a configuration diagram of main steam temperature control of the pressurized fluidized-bed boiler according to the embodiment of the present invention.

【図3】 図1中の関数発生器36のボイラ入力指令−
主蒸気温度設定値特性の例を示す図である。
FIG. 3 is a boiler input command of a function generator 36 in FIG. 1;
It is a figure showing an example of a main steam temperature set value characteristic.

【図4】 図1中の関数発生器37のボイラ入力指令−
主蒸気温度偏差ゲイン補正信号特性の例を示す図であ
る。
4 is a boiler input command of a function generator 37 in FIG. 1;
It is a figure showing an example of a main steam temperature deviation gain correction signal characteristic.

【図5】 図1中の関数発生器38のボイラ入力指令−
ボイラ給水流量設定値特性の例を示す図である。
5 is a boiler input command of a function generator 38 in FIG. 1;
It is a figure showing an example of a boiler feed water flow rate set value characteristic.

【図6】 図1中の関数発生器52のボイラ入力指令−
燃料供給ポンプ出力指令特性の例を示す図である。
6 is a boiler input command of function generator 52 in FIG. 1;
It is a figure showing an example of a fuel supply pump output command characteristic.

【図7】 図1中の関数発生器49の主蒸気温度偏差の
不感帯の特性の例を示す図である。
7 is a diagram showing an example of a characteristic of a dead zone of a main steam temperature deviation of the function generator 49 in FIG.

【図8】 従来技術の加圧流動層ボイラシステムの各火
炉の燃焼空気流量制御構成図である。
FIG. 8 is a configuration diagram of a combustion air flow rate control of each furnace in the pressurized fluidized bed boiler system of the related art.

【図9】 従来の貫流ボイラの主蒸気温度制御方式を示
す図である。
FIG. 9 is a diagram showing a main steam temperature control method of a conventional once-through boiler.

【図10】 従来の貫流ボイラの水蒸気系統の例を示す
図である。
FIG. 10 is a diagram showing an example of a steam system of a conventional once-through boiler.

【符号の説明】[Explanation of symbols]

1a、1b 火炉 2 コンプレッ
サー 3a、3b 空気流量調整装置 4a、4b 排
ガス酸素濃度計 5a、5b 空塔速度計測器 6a、6b 燃
料流量計 7a、7b 火炉空気供給管 8a、8b 流
動層 9a、9b 火炉出口ガス配管 10a、10b
燃料供給管 11、14、21、42、51、96、97 加算器 12 火炉燃料比率計算割り算器 13 燃料量の
ダンパ開度換算器 15 ダンパ逆動作信号関数器 16 火炉出口酸素濃度偏差計算引算器 17 酸素濃度偏差−ダンパ開度換算器 18 ボイラ出口酸素濃度計 19 酸素濃度
偏差の風量換算器 20 燃料量の風量換算器 22 空気流量
調整装置 23、75 蒸発器 24 過熱器 25、85 再熱器 27a、27b
圧力容器 31 ボイラ給水流量 32、91 ボ
イラ入力指令 33 主蒸気温度測定値 34、39、9
9 減算器 35、50、100 比例積分器 36、37、38、49、52、95、98、102
関数発生器 40 乗算器 41 比例器 43、54 自動/手動切替器 44 給水流量
設定値 45 ベース給水ポンプ出力指令 46 給水ポン
プ出力指令 47 主蒸気温度設定値 48 ゲイン補
正信号 53 ベース燃料ポンプ出力指令 71 給水ポン
プ 72 給水加熱器 73 節炭器 74 ボイラ火炉壁 76 気水分離
器 77 一次過熱器 78 過熱器過
熱低減器 79、84 過熱器スプレ流量調節弁 80 二次過熱
器 81、86 温度計 82 高圧ター
ビン 83 再熱器過熱低減器 87 中圧ター
ビン 92 負荷指令 93 スプレ流
量実測値 94 主蒸気温度偏差 101 燃料流
量指令 103 ベース燃料流量信号 104 スプレ
流量設定値
1a, 1b Furnace 2 Compressor 3a, 3b Air flow control device 4a, 4b Exhaust gas oxygen concentration meter 5a, 5b Superficial velocity meter 6a, 6b Fuel flow meter 7a, 7b Furnace air supply pipe 8a, 8b Fluidized bed 9a, 9b Furnace Outlet gas piping 10a, 10b
Fuel supply pipe 11, 14, 21, 42, 51, 96, 97 Adder 12 Furnace fuel ratio calculation divider 13 Fuel damper opening degree converter 15 Damper reverse operation signal function unit 16 Furnace outlet oxygen concentration deviation calculation subtraction Device 17 Oxygen concentration deviation-damper opening degree converter 18 Boiler outlet oxygen concentration meter 19 Oxygen concentration deviation air flow converter 20 Fuel flow air flow converter 22 Air flow regulator 23,75 Evaporator 24 Superheater 25,85 Reheating Vessels 27a, 27b
Pressure vessel 31 Boiler feedwater flow 32, 91 Boiler input command 33 Main steam temperature measured value 34, 39, 9
9 Subtractor 35, 50, 100 Proportional integrator 36, 37, 38, 49, 52, 95, 98, 102
Function generator 40 Multiplier 41 Proportional unit 43, 54 Automatic / manual switch 44 Feed water flow set value 45 Base feed water pump output command 46 Feed water pump output command 47 Main steam temperature set value 48 Gain correction signal 53 Base fuel pump output command 71 Feedwater pump 72 Feedwater heater 73 Energy saving device 74 Boiler furnace wall 76 Steam separator 77 Primary superheater 78 Superheater overheat reducer 79, 84 Superheater spray flow control valve 80 Secondary superheater 81, 86 Thermometer 82 High pressure Turbine 83 Reheater overheat reducer 87 Medium pressure turbine 92 Load command 93 Spray flow actual measurement 94 Main steam temperature deviation 101 Fuel flow command 103 Base fuel flow signal 104 Spray flow set value

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 恭功 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 秋元 修平 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 友安 幸治 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 Fターム(参考) 3K064 AA08 AA11 AB01 AC06 AC07 AC13 AD01 AE02 BA13 3L021 AA04 BA08 CA01 DA07 DA25 DA26 EA04 FA12 FA13  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasuyuki Yamamoto 6-9 Takaracho, Kure-shi, Hiroshima Babcock Hitachi Inside the Kure Factory (72) Inventor Shuhei Akimoto 6-9 Takaracho, Kure-shi, Hiroshima Babcock Hitachi Kure Factory Co., Ltd. (72) Koji Tomoyasu 6-9 Takara-cho, Kure City, Hiroshima Prefecture Babcock Hitachi Kure Factory F-term (reference) 3K064 AA08 AA11 AB01 AC06 AC07 AC13 AD01 AE02 BA13 3L021 AA04 BA08 CA01 DA07 DA25 DA26 EA04 FA12 FA13

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 火炉内に蒸発器、過熱器及び再熱器を配
置し、蒸発器、過熱器及び再熱器のうち、少なくとも蒸
発器を配置した火炉と少なくとも再熱器を配置した火炉
とをそれぞれ別体とする少なくとも二つに分割された火
炉と、分割された各火炉を個別に収納する少なくとも二
つの圧力容器と、各火炉へ送られる燃焼用空気および燃
料供給割合を調整する手段を有する加圧流動層ボイラに
おいて、 各火炉の空塔速度の検出手段を備え、少なくとも該各空
塔速度検出手段の検出値に応じて加圧流動層ボイラへ供
給する燃焼用空気流量を調整する空気流量調整手段を有
することを特徴とする加圧流動層ボイラ。
An evaporator, a superheater and a reheater are arranged in a furnace, and a furnace in which at least an evaporator is arranged and a furnace in which at least a reheater is arranged among the evaporator, the superheater and the reheater. Furnace divided into at least two separate furnaces, at least two pressure vessels for individually storing each divided furnace, and means for adjusting the combustion air and fuel supply ratio sent to each furnace A pressurized fluidized-bed boiler, comprising: means for detecting the superficial velocity of each furnace, wherein the air for adjusting the flow rate of combustion air supplied to the pressurized fluidized-bed boiler according to at least the detection value of the superficial velocity detection means A pressurized fluidized-bed boiler comprising a flow control means.
【請求項2】 各火炉の出口に酸素濃度計測手段を備
え、該各酸素濃度計測手段による各火炉出口酸素濃度計
測値から各火炉への空気供給配分を調整する空気供給配
分調整手段を各火炉に備えたことを特徴とする請求項1
記載の加圧流動層ボイラ。
2. An air supply distribution adjusting means which comprises an oxygen concentration measuring means at the outlet of each furnace and adjusts an air supply distribution to each furnace from the measured oxygen concentration at the furnace outlet by each oxygen concentration measuring means. 2. The method according to claim 1, wherein
A pressurized fluidized bed boiler as described.
【請求項3】 火炉内に蒸発器、過熱器及び再熱器を配
置し、蒸発器、過熱器及び再熱器のうち、少なくとも蒸
発器を配置した火炉と少なくとも再熱器を配置した火炉
とをそれぞれ別体とする少なくとも二つに分割された火
炉と、分割された各火炉を個別に収納する少なくとも二
つの圧力容器と、各火炉へ送られる燃焼用空気および燃
料供給割合を調整する手段を有する加圧流動層ボイラの
起動方法であって、 ボイラ起動時には、各火炉の空塔速度に応じて加圧流動
層ボイラへ供給する燃焼用空気流量を調整し、各火炉の
燃料と空気の供給量が同程度になった後は、ボイラ出口
の酸素濃度に応じて燃焼用空気流量を調整することを特
徴とする加圧流動層ボイラの起動方法。
3. A furnace in which an evaporator, a superheater and a reheater are arranged in a furnace, and among the evaporator, the superheater and the reheater, a furnace in which at least an evaporator is arranged and a furnace in which at least a reheater is arranged Furnace divided into at least two separate furnaces, at least two pressure vessels for individually storing each divided furnace, and means for adjusting the combustion air and fuel supply ratio sent to each furnace A method for starting a pressurized fluidized-bed boiler, comprising: when starting the boiler, adjusting a combustion air flow rate supplied to the pressurized fluidized-bed boiler according to the superficial velocity of each furnace to supply fuel and air to each furnace. A method for starting a pressurized fluidized-bed boiler, comprising adjusting the flow rate of combustion air in accordance with the oxygen concentration at the outlet of the boiler after the amounts become substantially equal.
【請求項4】 火炉内に蒸発器、過熱器及び再熱器を配
置し、蒸発器、過熱器及び再熱器のうち、少なくとも蒸
発器を配置した火炉と少なくとも再熱器を配置した火炉
とをそれぞれ別体とする少なくとも二つに分割された火
炉と、分割された各火炉を個別に収納する少なくとも二
つの圧力容器と、各火炉へ送られる燃焼用空気および燃
料供給割合を調整する手段を有する加圧流動層ボイラに
おいて、 蒸発器を有する火炉を起動した後、蒸発器で発生した蒸
気を蒸発器を有する火炉以外の火炉に配置された過熱器
及び再熱器に導入し、かつ前記導入蒸気量を検出して、
該導入蒸気量が所定の値以上に達したことを検出してか
ら、過熱器及び再熱器を備えた火炉を起動する起動過程
で、各火炉の空塔速度と火炉出口酸素濃度が所定の値に
なるようボイラへ供給する空気流量を制御することを特
徴とする加圧流動ボイラの起動方法。
4. A furnace in which an evaporator, a superheater and a reheater are arranged in a furnace, and among the evaporator, the superheater and the reheater, a furnace in which at least an evaporator is arranged and a furnace in which at least a reheater is arranged Furnace divided into at least two separate furnaces, at least two pressure vessels for individually storing each divided furnace, and means for adjusting the combustion air and fuel supply ratio sent to each furnace In the pressurized fluidized-bed boiler having the above, after starting the furnace having the evaporator, the steam generated in the evaporator is introduced into a superheater and a reheater arranged in a furnace other than the furnace having the evaporator, and Detects the amount of steam,
After detecting that the amount of introduced steam has reached a predetermined value or more, in the start-up process of starting a furnace equipped with a superheater and a reheater, the superficial velocity of each furnace and the oxygen concentration at the furnace outlet are predetermined. A method for starting a pressurized fluidized boiler, characterized in that the flow rate of air supplied to the boiler is controlled to a value.
【請求項5】 水蒸気系統が貫流ボイラの形式を持つ伝
熱管群を燃料により流動化される流動層内に配置した火
炉と、該火炉を収納した圧力容器からなる加圧型流動層
ボイラの燃料流量と流動層高と伝熱管群へのボイラ給水
流量のバランスにより決まる主蒸気温度を水燃比(ボイ
ラ給水に与えられる熱量に対するボイラ給水流量の比
率)を調節して制御する加圧型流動層ボイラの制御方法
において、 燃料流量調節で主蒸気温度を制御することを基本とし
て、燃料流量調節では主蒸気温度への応答が遅く主蒸気
温度を制御できなくなった緊急の場合のバックアップと
して、主蒸気温度への応答が速いボイラ給水流量を調節
して主蒸気温度を制御することを特徴とする加圧型流動
層ボイラの制御方法。
5. The fuel flow rate of a pressurized fluidized-bed boiler comprising a furnace in which a heat transfer tube group in which a steam system has the form of a once-through boiler is disposed in a fluidized bed fluidized by fuel, and a pressure vessel containing the furnace. Control of a pressurized fluidized-bed boiler that controls the main steam temperature, which is determined by the balance between the height of the fluidized bed and the flow rate of the boiler feedwater to the heat transfer tube group, by adjusting the water-fuel ratio (the ratio of the flow rate of the boiler feedwater to the amount of heat supplied to the boiler feedwater) The method is based on controlling the main steam temperature by adjusting the fuel flow rate, and the fuel flow rate control is used as a backup in the case of an emergency in which the response to the main steam temperature is slow and the main steam temperature cannot be controlled. A method for controlling a pressurized fluidized-bed boiler, wherein a main steam temperature is controlled by adjusting a flow rate of a boiler feedwater having a fast response.
【請求項6】 ボイラ給水が流れる伝熱管群とボイラ燃
料を流動化させる流動層内に配置した火炉と、該火炉を
収納した圧力容器からなる加圧型流動層ボイラのボイラ
入力指令信号により求められる燃料流量設定値と燃料流
量測定値との偏差に基づきボイラ燃料流量を求め、これ
に前記ボイラ燃料流量に対して主蒸気温度の設定値と測
定値との偏差による補正を加えて燃料流量を制御し、 ボイラ入力指令信号により求められるボイラ給水流量設
定値と給水流量測定値との偏差に基づきベース給水流量
を求め、該ベース給水流量に対して主蒸気温度の設定値
と測定値との偏差に応じた補正を行い、さらにボイラ入
力指令信号により求められる燃料供給量に対して前記主
蒸気温度の設定値と測定値との偏差による前記補正を加
えてボイラ給水流量を調節することを特徴とする加圧型
流動層ボイラの制御方法。
6. A boiler input command signal for a pressurized fluidized-bed boiler comprising a heat transfer tube group through which boiler feedwater flows, a furnace arranged in a fluidized bed for fluidizing the boiler fuel, and a pressure vessel containing the furnace. The boiler fuel flow rate is obtained based on the deviation between the fuel flow rate set value and the fuel flow rate measured value, and the boiler fuel flow rate is corrected by the deviation between the set value of the main steam temperature and the measured value to control the fuel flow rate. The base water supply flow rate is determined based on the deviation between the boiler water supply flow rate set value and the measured water supply flow rate value determined by the boiler input command signal. The fuel supply amount determined by the boiler input command signal is further corrected according to the deviation between the set value of the main steam temperature and the measured value, and the boiler feed water flow rate is corrected. Control method for pressure-type fluidized bed boiler and adjusting.
JP11064014A 1999-03-10 1999-03-10 Pressurized fluidized bed boiler and starting method of same Pending JP2000257809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11064014A JP2000257809A (en) 1999-03-10 1999-03-10 Pressurized fluidized bed boiler and starting method of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11064014A JP2000257809A (en) 1999-03-10 1999-03-10 Pressurized fluidized bed boiler and starting method of same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008269883A Division JP4637943B2 (en) 2008-10-20 2008-10-20 Control method of pressurized fluidized bed boiler

Publications (1)

Publication Number Publication Date
JP2000257809A true JP2000257809A (en) 2000-09-22

Family

ID=13245905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11064014A Pending JP2000257809A (en) 1999-03-10 1999-03-10 Pressurized fluidized bed boiler and starting method of same

Country Status (1)

Country Link
JP (1) JP2000257809A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110035959A1 (en) * 2009-08-13 2011-02-17 Maguire Products, Inc. Gas flow rate determination method and apparatus and granular material dryer and method for control thereof
CN102128447A (en) * 2011-04-21 2011-07-20 张全胜 Steam heating method of bed materials of fluidized bed boiler
US10539366B2 (en) 2014-04-30 2020-01-21 Stephen B. Maguire Method and apparatus for vacuum drying granular resin material
CN113310057A (en) * 2020-02-26 2021-08-27 三菱重工业株式会社 Control device, control method, and recording medium having program recorded thereon
US11203133B2 (en) 2018-04-04 2021-12-21 Novatec, Inc. Method and apparatus for polymer drying using inert gas
US11364657B2 (en) 2018-04-04 2022-06-21 Novatec, Inc. Reducing moisture in granular resin material using inert gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110035959A1 (en) * 2009-08-13 2011-02-17 Maguire Products, Inc. Gas flow rate determination method and apparatus and granular material dryer and method for control thereof
US8141270B2 (en) * 2009-08-13 2012-03-27 Maguire Products, Inc. Gas flow rate determination method and apparatus and granular material dryer and method for control thereof
CN102128447A (en) * 2011-04-21 2011-07-20 张全胜 Steam heating method of bed materials of fluidized bed boiler
US10539366B2 (en) 2014-04-30 2020-01-21 Stephen B. Maguire Method and apparatus for vacuum drying granular resin material
US11203133B2 (en) 2018-04-04 2021-12-21 Novatec, Inc. Method and apparatus for polymer drying using inert gas
US11364657B2 (en) 2018-04-04 2022-06-21 Novatec, Inc. Reducing moisture in granular resin material using inert gas
CN113310057A (en) * 2020-02-26 2021-08-27 三菱重工业株式会社 Control device, control method, and recording medium having program recorded thereon
CN113310057B (en) * 2020-02-26 2024-04-30 三菱重工业株式会社 Control device, control method, and recording medium having program recorded thereon

Similar Documents

Publication Publication Date Title
CA2747950C (en) Dynamic tuning of dynamic matrix control of steam temperature
US9217565B2 (en) Dynamic matrix control of steam temperature with prevention of saturated steam entry into superheater
CN102679314A (en) Self-adaptive correcting method for dynamic accelerating feedforward of supercritical boiler
JP2007071416A (en) Reheat steam system of boiler, and control method of reheat steam temperature
JP2008032367A (en) Control method for once-through waste heat recovery boiler
CN106016229B (en) The main-stream control method and apparatus of supercritical circulating fluidized bed boiler unit
CN104864385A (en) Method and device for calculating feed water flow instruction of supercritical unit
JP5840032B2 (en) Power generation system and steam temperature control method thereof
JP2000257809A (en) Pressurized fluidized bed boiler and starting method of same
JP4117733B2 (en) Method and apparatus for boiler reheat steam temperature control
JPH0942606A (en) Once-through boiler steam temperature control device
JP4637943B2 (en) Control method of pressurized fluidized bed boiler
JPH01318802A (en) Steam temperature control system for re-heating type combined plant
JP2006125760A (en) Exhaust heat recovery boiler and its control system
JP2511400B2 (en) Steam temperature control method for once-through boiler
JP4453858B2 (en) Steam temperature control method and apparatus for once-through boiler
JP2006064188A (en) Method and device for controlling reheater steam temperature for boiler
JPH0688605A (en) Controlling device for temperature of steam in boiler
JP2931141B2 (en) Control method and apparatus for variable-pressure Benson boiler
JPH11351512A (en) Reheat steam temperature controller for boiler
JP3221738B2 (en) Steam temperature controller for variable-pressure once-through boiler
JP2894118B2 (en) Boiler steam temperature control method
JPH02154902A (en) Steam temperature control system at time of starting plant
JPH0238843B2 (en)
JPH01212802A (en) Steam temperature control device for boiler

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090708