JP2004353994A - Reheated steam temperature control device and control method - Google Patents

Reheated steam temperature control device and control method Download PDF

Info

Publication number
JP2004353994A
JP2004353994A JP2003153980A JP2003153980A JP2004353994A JP 2004353994 A JP2004353994 A JP 2004353994A JP 2003153980 A JP2003153980 A JP 2003153980A JP 2003153980 A JP2003153980 A JP 2003153980A JP 2004353994 A JP2004353994 A JP 2004353994A
Authority
JP
Japan
Prior art keywords
combustion gas
boiler
steam temperature
reheater
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003153980A
Other languages
Japanese (ja)
Inventor
Hiroshi Oshima
拓 大島
Mitsugi Sugasawa
貢 菅澤
Moriji Miyake
盛士 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2003153980A priority Critical patent/JP2004353994A/en
Publication of JP2004353994A publication Critical patent/JP2004353994A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method of the boiler steam temperature capable of always stable reheated steam temperature control, without deviating from a preset prefixed value, when a load changes. <P>SOLUTION: A reheating boiler sends exhaust steam after working by a high pressure turbine as reheated steam, to a medium/low pressure turbine 23 of a rear stage, by reheating the steam by a primary reheater 2 arranged in a combustion gas flow passage for flowing combustion gas generated by combustion of fuel in a furnace of a boiler, and a secondary reheater 3 on the upstream side of an exhaust gas flow of the primary reheater 2; and controls so as to operate dampers 7 and 9 in advance, by capturing the outlet temperature of the primary reheater 2 changing before the outlet temperature of the secondary reheater 3 slower in reaction than a change in the operation end, in a response to a change in opening of the dampers 7 and 9, when controlling the reheated steam temperature for sending a flow rate of boiler combustion gas supplied for heating in the primary reheater 2 and the secondary reheater 3, to the intermediate/low pressure turbine 23, by adjusting the opening of the dampers 7 and 9. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、再熱蒸気温度の安定な制御を行うのに好適な再熱蒸気温度制御方法と装置に関する。
【0002】
【従来の技術】
図2にボイラにおけるプロセス機器構成と制御回路部を示し、図2の制御回路部の代表的な従来技術の詳細構成図を図3に示す。ボイラ火炉6及び火炉6からの排ガスが流れる排ガス流路内には過熱器1と二次再熱器3が配置され、二つの燃焼ガス流路に分けられたボイラ後部伝熱部の燃焼ガス流路の一方には一次再熱器2が配置され、他方の燃焼ガス流路には過熱器1と煙道蒸発器21が配置される。図示していない高圧タービンで仕事をした後の排出蒸気は一次再熱器2に供給され、該一次再熱器2で加熱された蒸気は二次再熱器3でさらに加熱されて中・低圧タービン23を駆動させる。蒸気の加熱に使用された燃焼ガスは脱硝処理装置や脱硫装置に回され、浄化処理がなされた後、大気中に放出される。
【0003】
後部伝熱部の二つの燃焼ガス流路の最下流部にはそれぞれ二つの流路を流れるガス量を分配制御するガス分配ダンパ7と該ダンパ7の駆動装置10が配置されており、該分配ダンパ7の開閉制御で各流路内を流れるガス流量を制御することで、前記流路内に設けられた過熱器1、一次再熱器2、煙道蒸発器21の伝熱量を制御することにより再熱蒸気温度又は過熱蒸気温度の制御が行われる。また、後部伝熱部から排出される燃焼ガスは燃焼ガス再循環流路を通り、火炉6の底部から再び火炉6内に循環供給される。燃焼ガス再循環流路にはガス再循環ファン(GRF)8を配置し、またそのファン8の前流側にGRF入口ダンパ(又はGRF入口ベーン)9を設けており、該ダンパ(又はベーン)9を駆動用装置11で開閉制御して、燃焼ガス再循環流量の制御を行う。
【0004】
図3において、ボイラの負荷信号51に基づき関数発生器52で二次再熱器出口蒸気温度設定値54が得られ、該二次再熱器出口蒸気温度設定値54と二次再熱器出口蒸気温度信号53との間の偏差が減算器55により求められ、二次再熱器出口蒸気温度偏差信号57が得られる。この偏差信号57はPID制御器56を経て、負荷信号51に基づき関数発生器60で得られた負荷信号51に応じたガス分配ダンパ7の開度先行信号61と加算器59により加算され、加算器出力信号62を得る。
【0005】
該加算器出力信号62は負荷信号51を微分器64で一回微分した後、先行信号65と加算器63により加算され、ガス分配ダンパ操作指令信号66を得て、ガス分配ダンパ7の駆動装置10を駆動させる。この動作を受けて、ガス分配ダンパ7の開度により一次再熱器2を配置した燃焼ガス流路上のボイラ燃焼燃焼ガス流路と、一次再熱器2以外の過熱器1と煙道蒸発器21などの伝熱面を配置した燃焼ガス流路を通過するボイラ燃焼ガスの割合が増減され、一次再熱器2の内部を流れる蒸気の収熱量が調節され、再熱蒸気温度が制御される。
【0006】
ガス分配ダンパ7は、機械的なリンケージまたは電気信号によるリンケージにより、一次再熱器2側のガス流路と過熱器1側のガス流路とで互いに逆方向に動作する機構を持つ。
【0007】
同様に、二次再熱器出口蒸気温度偏差信号57は比例制御器67を経て比例制御器出力信号68を得て、この信号68と負荷信号51に基づき関数発生器69で得られた負荷信号51に応じたGRF入口ダンパ(又はGRF入口ベーン)9の開度先行信号70と加算器71で加算され、加算器出力信号72を得る。
【0008】
該加算器出力信号72は負荷信号51を微分器73で一回微分した後先行信号74と加算器75で加算され、GRF入口ダンパ操作指令信号76を得て、GRF入口ダンパ9用の駆動装置11の駆動に利用される。
【0009】
この動作を受けて、GRF入口ダンパ(又はGRF入口ベーン)9により、ガス再循環量が増減され、火炉6から比較的遠い燃焼ガス流路に配置された過熱器1、再熱器2の系統の熱吸収量が調節され、上記で述べたと同様に再熱蒸気温度が調節される。
【0010】
前記図2、図3に示す従来技術におけるボイラ再熱蒸気温度制御は、二次再熱器3の出口蒸気温度をフィードバック信号とし、比例(P)、積分(I)及び微分(D)制御、いわゆるPID制御または比例(P)及び積分(I)制御、いわゆるPI制御を行うフィードバック制御81とプラント負荷信号を指標としてフィードバックの制御ゲインを低減するための操作端の位置(ガス分配ダンパ7の開度とダンパ9の開度)を決める位置先行制御82とプラント負荷信号を一回微分したボイラ加速指令信号(BIR)よりなるフィードバック信号の制御ゲインを低減するための信号成分、すなわち負荷変化時の過渡的な熱収支バランスに対応して早期に制御を安定させるための速度先行制御83とを併用することによって、一次再熱器2及び二次再熱器3を通過するボイラ燃焼ガス流量を増減する方法により行われている。
【0011】
ボイラ燃焼ガス流量の増減による再熱蒸気温度の制御は、具体的には図2に示すように燃焼ガス流路、すなわちボイラ煙道上における過熱器1と煙道蒸発器21を設置したガス流路を通る燃焼ガス流量と一次再熱器2を設置したガス流路を通る燃焼ガス流量の割合をガス分配ダンパ7の開閉度を調整することによって両者の熱吸収量の割合を変える方法、またはボイラ伝熱面を通過した燃焼ガスを再び火炉6に戻す循環燃焼ガス流量をGRF入口ダンパ9の開閉制御により、火炉6と火炉以降に配置される過熱器1、再熱器2等の伝熱面の熱吸収量の割合を変化させる方法により行う。
【0012】
なお、再熱蒸気温度が異常に上昇したような危急時には、再熱蒸気温度の異常上昇を低減させるための再熱蒸気配管にボイラへの給水の一部を火炉6の上流側から分岐して噴霧する再熱蒸気温度低減器5を設けて再熱蒸気温度を低減させる制御機能を併用する場合もある。
【0013】
図3において、フィードバック制御81は、再熱蒸気温度が上昇又は低下した場合、PID制御のP制御及びI制御によりボイラ燃焼ガス流量を適正に減少又は増加させるように、またD制御により再熱蒸気温度の上昇又は低下傾向に従い一次再熱器2、二次再熱器3、特に一次再熱器2を加熱するボイラ燃焼ガス流量を減少または増加させる信号で補正を加えることにより行う。
【0014】
一次再熱器2側の位置先行制御82はプラントの負荷が変化した場合、一次再熱器2を加熱するボイラ燃焼ガス流量を増減する操作端の位置(ダンパ7の開度)を、各プラント負荷の安定状態に対して定まる値に負荷変化と共に移動させることにより、上記フィードバック制御81の制御ゲインを低減することを可能とし、負荷変化時およびその後における制御動作の過剰な応答を防止し、安定制御を行うためのものである。
【0015】
プラント負荷が上昇した場合又は負荷が降下した場合、過渡的な熱収支のアンバランスの関係上、再熱蒸気温度は一時的に上昇または低下傾向となる。
また、速度先行制御83は前記過渡的な熱収支のアンバランスを補うためにプラント負荷信号を一回微分した信号に比例した信号を操作端(特にダンパ7の開度)の開度指令に加算することにより、一次再熱器2を過熱するボイラ燃焼ガス流量を、負荷上昇中は多めに、負荷降下中は少なめになるようにするもので、これもまた位置先行制御82と同様にフィードバック制御81の制御ゲインを低減することを可能とし、制御動作の過剰な応答を防止し、安定制御を行うためのものである。
【0016】
また、上記再熱蒸気温度制御として下記の公知例がある。
【0017】
【特許文献1】
特開平7−113501号公報
【0018】
【特許文献2】
特開平3−20502号公報
【0019】
【特許文献3】
特開平3−20501号公報
【0020】
【発明が解決しようとする課題】
前述した従来技術のフィードバック制御81、位置先行制御82および速度先行制御83を併用しただけでは、制御に用いる操作端(ダンパ7、ダンパ9)の開度を変化させたときに制御対象とするプロセス量(再熱蒸気温度)が変化するまでの時間が非常に長い場合は、安定制御を行うことが困難である。
【0021】
すなわち、本発明の適用対象であるガス分配ダンパ7およびボイラガス循環ダンパ9の開度により再熱蒸気温度を制御する場合は、ガス分配ダンパ7およびボイラガス循環ダンパ9の開度を変化させてから再熱蒸気温度が変化するまでの時間が非常に長く、図4(a)に示すように無駄時間が約2分で時定数が約10分であるような例が見られる。
【0022】
一方、負荷変化をさせた時はプラント全体の熱収支の変化の影響を受け、バーナでの燃料の燃焼量の変化の影響をすぐに再熱器2、3が受けるために、図4(b)に示すように負荷変化が始まってから比較的早い時期(Tp=3分)に急激な再熱蒸気温度の変化が現れ始める。
【0023】
従って、再熱蒸気温度制御にフィードバック制御81、位置先行制御82および速度先行制御83を併用しただけの従来技術では、負荷変化開始直後の急激な再熱蒸気温度変化の抑制に的を絞って調整を行うと、操作端(ダンパ7、ダンパ9)の変化に対するプロセス量の応答速度があまりに遅いため、それを補うためにフィードバック制御成分と速度先行制御成分を過剰に効かす調整を余儀なくされる。
【0024】
その結果、図4(c)に示すように負荷変化開始直後の再熱蒸気温度の変動の抑制は果たせたとしても、しばらくしてフィードバック制御81の成分と速度先行制御83の成分の動作の影響が遅れて作用し、温度は負荷変化開始直後の動作方向とは逆方向に激しく揺り戻されることとなる。
【0025】
これは、速度先行制御83成分が負荷変化開始から終了まで一貫して、負荷変化開始直後の温度変動を抑制するための高いレベルで入り続け、その作用が遅れて悪影響として現れたものである。
【0026】
本発明の課題は、このような問題を解決し、負荷変化時に予め設定した既定値から逸脱せず、常に安定した再熱蒸気温度制御が可能なボイラ蒸気温度の制御を行うことである。
【0027】
【課題を解決するための手段】
本発明の上記課題を解決するためには、操作端の変化から制御対象のプロセスに対しての効きが遅いことを改善するため、遅い制御対象プロセスに先立って変化するプロセス量を捉えて事前に操作端を動作させるよう制御する方法を採用する。
【0028】
そのために、ガス分配ダンパ開度の変化に対する応答において、ボイラ火炉6からの排ガス流路で、その上流側流路内に配置される二次再熱器3の出口蒸気温度よりも無駄時間が0.5〜1.5分程度短く、また時定数が1.5〜3分程度短い後流側流路であるボイラ後部伝熱部に配置される一次再熱器2の出口蒸気温度を再熱蒸気温度制御に適用することとし、主として次の様な構成を採用する。
【0029】
高圧タービン排気蒸気を一次再熱器2と二次再熱器3で再加熱して後段の中・低圧タービン23へ再熱蒸気を送気する再熱型のボイラにおいて、前記一次再熱器2及び二次再熱器3における加熱に供するボイラ燃焼ガスの流量を調整することにより前記中・低圧タービン23へ送気する再熱蒸気温度を制御する装置において、二次再熱器3の出口蒸気温度のフィードバック比例・積分制御信号に一次再熱器2の出口蒸気温度のフィードバック比例信号成分を加算し、前記ボイラ燃焼ガスの流量調整信号を調整するものである。
【0030】
すなわち、本発明は、次の構成からなる。
(1)ボイラの火炉内での燃料の燃焼により発生した燃焼ガスが流れる燃焼ガス流路に配置される横置型伝熱面を有する一次再熱器と該一次再熱器よりも排ガス流れの上流側の吊下型伝熱面を有する二次再熱器に高圧タービンで仕事をした後の排蒸気を順番に供給して前記燃焼ガスにより再加熱した後、高圧タービンの後段に配置される中・低圧タービンへ再熱蒸気として送気する再熱型ボイラの再熱蒸気温度制御方法において、
二次再熱器出口蒸気温度とその負荷信号に対応した設定温度の偏差に基づくフィードバック比例・積分制御信号成分に、一次再熱器出口蒸気温度とその負荷信号に対応した設定温度の偏差に基づくフィードバック比例制御信号成分を加算し、前記一次再熱器及び前記二次再熱器における再熱蒸気加熱用のボイラ燃焼ガスの流量を調整する再熱蒸気温度制御方法。
【0031】
前記再熱蒸気温度制御方法において、ボイラ燃焼ガスの流量の調整は、ボイラの燃焼ガス流路を二分する一方の燃焼ガス流路に配置される一次再熱器と他方の燃焼ガス流路に配置される伝熱面への燃焼ガス流量割合を変えるガス分配ダンパの開度及び/又はボイラの燃焼ガス流路を出た燃焼ガスを再び火炉に帰還させるボイラ燃焼ガス循環流路に設けられた循環ダンパの開度を調整することによって行う方法を採用しても良い。
【0032】
(2)ボイラの火炉内での燃料の燃焼により発生した燃焼ガスが流れる燃焼ガス流路に配置される横置型伝熱面を有する一次再熱器と該一次再熱器よりも排ガス流れの上流側の吊下型伝熱面を有する二次再熱器に高圧タービンで仕事をした後の排蒸気を順番に供給して前記燃焼ガスにより再加熱した後、高圧タービンの後段に配置される中・低圧タービンへ再熱蒸気として送気する再熱型ボイラにおける前記一次再熱器及び前記二次再熱器における再熱蒸気を加熱するためのボイラ燃焼ガスの流量を調整するボイラ燃焼ガスの流量調整手段を備え、該ボイラ燃焼ガスの流量調整手段によるボイラ燃焼ガスの流量により前記中・低圧タービンへ送気する再熱蒸気温度を制御する再熱蒸気温度制御装置において、
二次再熱器出口蒸気温度とその負荷信号に対応した設定温度の偏差に基づくフィードバック比例・積分制御手段と、一次再熱器出口蒸気温度とその負荷信号に対応した設定温度の偏差に基づくフィードバック比例制御手段と、前記二次再熱器出口蒸気温度のフィードバック比例・積分制御手段で得られた信号に前記一次再熱器出口蒸気温度のフィードバック比例制御手段で得られた信号を加算する加算手段と、該加算手段で得られた加算値に基づき前記一次再熱器及び前記二次再熱器における再熱蒸気加熱用のボイラ燃焼ガスの流量調整手段でのボイラ燃焼ガスの流量を調整する再熱蒸気温度制御装置。
【0033】
前記再熱蒸気温度制御装置のボイラ燃焼ガスの流量調整手段は、例えばボイラの燃焼ガス流路を二分する一方の燃焼ガス流路に配置される一次再熱器と他方の燃焼ガス流路に配置される伝熱面への燃焼ガス流量割合を変えるガス分配ダンパの開度を調整する駆動手段及び/又はボイラの燃焼ガス流路を出たボイラ燃焼ガスを再び火炉に帰還させるボイラ燃焼ガス循環流路に設けられたボイラガス循環ダンパとその開度を調整する駆動手段を用いる。
【0034】
【発明の実施の形態】
本発明の実施の形態に係わる再熱蒸気温度制御装置について図面を用いて以下説明する。図1は、図2に示すボイラにおけるプロセス機器構成と制御回路部に用いる本実施の形態の再熱蒸気温度制御回路を示す。図1に示す本発明の実施の形態の再熱蒸気温度制御回路の特徴部分は次の通りである。
【0035】
すなわち、二次再熱器出口蒸気温度信号53は、負荷信号に応じて関数発生器52で得られる二次再熱器出口蒸気温度設定値54との間で減算器55により減算がされ、二次再熱器出口蒸気温度偏差57を得る。この偏差信号57は、PID制御器56を経て、負荷信号51に応じて関数発生器60で得られたガス分配ダンパ開度先行信号61と加算器59で加算され、さらに負荷信号51に応じて微分器64で一回微分したガス分配ダンパ用BIR信号65と加算器63で加算され、加算値77を得る。
【0036】
更に、一次再熱器出口蒸気温度信号110と負荷信号51に応じて関数発生器91で得られた一次再熱器出口蒸気温度設定値92との偏差が減算器93で得られ、得られた一次再熱器出口蒸気温度偏差94はP(比例)制御器95の出力信号96として加算器97で前記加算値77に加算され、ガス分配ダンパ操作指令66を得てガス分配ダンパ7用の駆動装置10を動作させる。
【0037】
この動作を受けて、ガス分配ダンパ7を開度調整することにより、一次再熱器2を配置したボイラ後部伝熱部のガス流路と、過熱器1及び煙道蒸発器21などの再熱器以外の伝熱面を配置したガス流路とを通過するボイラ燃焼ガスの割合が増減され、一次再熱器2の内部を流れる蒸気の収熱量が調節され、再熱蒸気温度が制御される。ガス分配ダンパ7は、機械的なリンケージまたは電気信号によるリンケージにより、一次再熱器2側のガス流路と過熱器1側のガス流路とで互いに逆方向に動作する機構を持つ。
【0038】
図1に示す本発明の実施の形態の再熱蒸気温度制御回路が図3に示す従来技術と異なる部分は、ガス分配ダンパ7の開度の変化に対して応答の早い一次再熱器2の出口蒸気温度信号110と負荷信号51に対する設定値92との温度偏差94の比例制御器出力信号96を加算器97により加算した点である。従来技術では、ガス分配ダンパ7の開度の変化に対して応答の遅い二次再熱器3の出口蒸気温度信号53によるフィードバック制御81を行っていたため、当該温度が反転するまで引き戻す制御とならないことに問題があった。
【0039】
そこで図1に示す本発明の実施の形態では、これをガス分配ダンパ7の開度の変化に対して応答の早いプロセス量で早めに引き戻すことにより、負荷変化時に予め設定した既定値から逸脱せず、常に安定した再熱蒸気温度制御が可能なボイラ蒸気温度の制御を行うことができるようになった。
【0040】
同様に、二次再熱器出口蒸気温度偏差信号57は、比例制御器67で比例制御器出力信号68を得て、この信号68と負荷信号51に応じて関数発生器69で得られたGRF入口ダンパ開度先行信号70とが加算器71で加算され、負荷信号51を微分器73で一回微分したGRF入口ダンパ開度先行信号74と加算器75で加算される。該加算器75で得られた加算値78は更に一次再熱器出口蒸気温度信号110と負荷信号51に応じて関数発生器98で得られた一次再熱器出口蒸気温度設定値99との間で減算器100により減算を行う。該減算器100で得られた一次再熱器出口蒸気温度偏差101はP(比例)制御器102の出力信号103として加算器104で前記加算値78に加算され、GRF入口ダンパ操作指令76を得てGRF入口ダンパ9用の駆動装置11を動作させる。
【0041】
この動作を受けて、GRF入口ダンパ(又はGRF入口ベーン)9により、ガス再循環量が増減され、火炉6から比較的遠い煙道の後流側に配置された再熱器系の熱吸収量が調節され、上記で述べたと同様に再熱蒸気温度が調節される。
【0042】
GRF入口ダンパ(又はGRF入口ベーン)9によるガス再循環量の制御もGRF入口ダンパ(又はGRF入口ベーン)9の開度の変化に対して応答の早い一次再熱器2の出口蒸気温度信号110と負荷信号51に対する設定値99との温度偏差101の比例制御器出力信号103を加算器104により加算器75で得られた加算値78に加算して、GRF入口ダンパ(又はGRF入口ベーン)9の開度の変化に対して比較的応答の早いプロセス量(一次再熱器2の出口蒸気温度信号110)で早めに引き戻すことにより、負荷変化時に予め設定した既定値から逸脱せず、常に安定した再熱蒸気温度制御が可能なボイラ蒸気温度の制御を行うことができるようになった。
【0043】
【発明の効果】
本発明によれば、再熱蒸気温度を安定に制御できる効果がある。
負荷変化時においても、再熱器を通過するボイラ燃焼ガスの流量を調整するための従来技術による制御信号に、ガス分配ダンパ開度の変化に対する応答の早い一次再熱器出口蒸気温度偏差からの比例制御負荷信号を加算することにより、二次再熱器出口蒸気温度は設定値から大きく逸脱することなく、常に安定した制御を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係わる再熱蒸気温度制御回路部の詳細を表す図である。
【図2】再熱蒸気温度制御に関連するプロセス機器構成と制御回路部を示す図である。
【図3】従来技術における再熱蒸気温度制御回路部の詳細を表す図である。
【図4】ガス分配ダンパステップ操作並びに負荷変化に対する再熱蒸気温度の応答特性を示すと共に従来技術による負荷変化時の温度応答特性を示す図である。
【符号の説明】
1 過熱器 2 一次再熱器
3 二次再熱器 5 再熱蒸気温度低減器
6 ボイラ火炉 7 ガス分配ダンパ
8 ガス再循環ファン
9 GRF入口ダンパ(又はGRF入口ベーン)
10 ガス分配ダンパ用駆動装置 11 GRF入口ダンパ用駆動装置
21 煙道蒸発器 23 中・低圧タービン
51 負荷信号 52 関数発生器
53 二次再熱器出口蒸気温度信号
54 二次再熱器出口蒸気温度設定値
55 減算器 56 PID制御器
57 二次再熱器出口蒸気温度偏差信号
59、63 加算器 60 関数発生器
61 ガス分配ダンパ開度先行信号
62 加算器出力信号 64 微分器
65 ガス分配ダンパ用BIR信号(速度先行信号)
66 ガス分配ダンパ操作指令信号
67 比例制御器 68 比例制御器出力信号
69 関数発生器
70 GRF入口ダンパ開度先行信号
71 加算器 72 加算器出力信号
73 微分器
74 GRF入口ダンパ開度先行信号
75 加算器 76 GRF入口ダンパ操作指令(信号)
77 加算値 78 加算値
81 フィードバック制御 82 位置先行制御
83 速度先行制御 91 関数発生器
92 一次再熱器出口蒸気温度設定値
93 減算器 94 一次再熱器出口蒸気温度偏差
95 P(比例)制御器 96 比例制御器出力信号
97 加算器 98 関数発生器
99 一次再熱器出口蒸気温度設定値
100 減算器 101 一次再熱器出口蒸気温度偏差
102 P(比例)制御器 103 比例制御器出力信号
104 加算器 110 一次再熱器出口蒸気温度信号
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reheat steam temperature control method and apparatus suitable for performing stable control of reheat steam temperature.
[0002]
[Prior art]
FIG. 2 shows a process equipment configuration and a control circuit unit in the boiler, and FIG. 3 shows a detailed configuration diagram of a typical prior art of the control circuit unit in FIG. A superheater 1 and a secondary reheater 3 are arranged in a boiler furnace 6 and an exhaust gas flow path through which exhaust gas from the furnace 6 flows, and a combustion gas flow in a boiler rear heat transfer section divided into two combustion gas flow paths. A primary reheater 2 is arranged on one side of the path, and a superheater 1 and a flue evaporator 21 are arranged on the other combustion gas flow path. Exhaust steam after working with a high-pressure turbine (not shown) is supplied to a primary reheater 2, and the steam heated by the primary reheater 2 is further heated by a secondary reheater 3 to be subjected to medium / low pressure The turbine 23 is driven. The combustion gas used for heating the steam is sent to a denitration treatment device or a desulfurization device, and after being purified, is released into the atmosphere.
[0003]
A gas distribution damper 7 for distributing and controlling the amount of gas flowing through each of the two flow paths and a driving device 10 for the damper 7 are arranged at the most downstream portions of the two combustion gas flow paths of the rear heat transfer section. By controlling the flow rate of gas flowing in each flow path by controlling the opening and closing of the damper 7, the amount of heat transferred to the superheater 1, the primary reheater 2, and the flue evaporator 21 provided in the flow path is controlled. Controls the temperature of the reheated steam or the temperature of the superheated steam. Further, the combustion gas discharged from the rear heat transfer section passes through the combustion gas recirculation flow path and is circulated and supplied from the bottom of the furnace 6 into the furnace 6 again. A gas recirculation fan (GRF) 8 is disposed in the combustion gas recirculation passage, and a GRF inlet damper (or GRF inlet vane) 9 is provided on the upstream side of the fan 8 so that the damper (or vane) is provided. 9 is controlled by a drive device 11 to control the combustion gas recirculation flow rate.
[0004]
In FIG. 3, the secondary reheater outlet steam temperature set value 54 is obtained by the function generator 52 based on the boiler load signal 51, and the secondary reheater outlet steam temperature set value 54 and the secondary reheater outlet The deviation from the steam temperature signal 53 is determined by a subtractor 55, and a secondary reheater outlet steam temperature deviation signal 57 is obtained. The deviation signal 57 passes through a PID controller 56 and is added by an adder 59 to an advance signal 61 of the opening degree of the gas distribution damper 7 corresponding to the load signal 51 obtained by the function generator 60 based on the load signal 51 and added. The device output signal 62 is obtained.
[0005]
The adder output signal 62 is obtained by differentiating the load signal 51 once by a differentiator 64 and then added by a preceding signal 65 and an adder 63 to obtain a gas distribution damper operation command signal 66 to obtain a driving device for the gas distribution damper 7. 10 is driven. In response to this operation, the boiler combustion combustion gas flow path on the combustion gas flow path where the primary reheater 2 is arranged, the superheater 1 other than the primary reheater 2 and the flue evaporator The ratio of the boiler combustion gas passing through the combustion gas flow path on which the heat transfer surface such as 21 is arranged is increased or decreased, the amount of heat collected by the steam flowing inside the primary reheater 2 is adjusted, and the reheat steam temperature is controlled. .
[0006]
The gas distribution damper 7 has a mechanism in which the gas flow path on the primary reheater 2 side and the gas flow path on the superheater 1 side operate in opposite directions by mechanical linkage or linkage by an electric signal.
[0007]
Similarly, the secondary reheater outlet steam temperature deviation signal 57 is passed through a proportional controller 67 to obtain a proportional controller output signal 68, and a load signal obtained by a function generator 69 based on the signal 68 and the load signal 51. The adder 71 adds the advance signal 70 of the opening degree of the GRF entrance damper (or GRF entrance vane) 9 corresponding to 51 to obtain an adder output signal 72.
[0008]
The adder output signal 72 is obtained by differentiating the load signal 51 once by a differentiator 73 and then added to a preceding signal 74 by an adder 75 to obtain a GRF entrance damper operation command signal 76 to obtain a driving device for the GRF entrance damper 9. 11 is used for driving.
[0009]
In response to this operation, the gas recirculation amount is increased or decreased by the GRF inlet damper (or GRF inlet vane) 9, and the system of the superheater 1 and the reheater 2 arranged in the combustion gas flow path relatively far from the furnace 6. Is adjusted, and the reheat steam temperature is adjusted in the same manner as described above.
[0010]
The boiler reheat steam temperature control according to the prior art shown in FIGS. 2 and 3 uses the outlet steam temperature of the secondary reheater 3 as a feedback signal, and performs proportional (P), integral (I) and derivative (D) control. A feedback control 81 that performs so-called PID control or proportional (P) and integral (I) control, that is, so-called PI control, and an operation end position (opening of the gas distribution damper 7) for reducing a feedback control gain using a plant load signal as an index. ) And a signal component for reducing the control gain of a feedback signal consisting of a boiler acceleration command signal (BIR) obtained by differentiating the plant load signal once, that is, when the load changes. The primary reheater 2 and the speed pre-control 83 for stabilizing the control early in response to the transient heat balance are used together. It is carried out by a method of increasing or decreasing the boiler combustion gas flow rate through the following reheater 3.
[0011]
The control of the reheat steam temperature by increasing or decreasing the flow rate of the boiler combustion gas is performed, specifically, as shown in FIG. 2, a combustion gas flow path, that is, a gas flow path in which a superheater 1 and a flue evaporator 21 are installed on a boiler flue. A method of changing the ratio of the amount of heat absorbed by adjusting the opening / closing degree of the gas distribution damper by changing the ratio of the flow rate of the combustion gas passing through the gas passage and the flow rate of the combustion gas passing through the gas flow path in which the primary reheater 2 is installed, or The flow rate of the circulating combustion gas that returns the combustion gas passing through the heat transfer surface back to the furnace 6 is controlled by opening and closing the GRF inlet damper 9 to control the heat transfer surface of the furnace 6 and the superheater 1 and the reheater 2 disposed after the furnace. Is performed by a method of changing the ratio of the amount of heat absorbed by the above method.
[0012]
In an emergency such as when the reheat steam temperature rises abnormally, part of the water supply to the boiler is branched from the upstream side of the furnace 6 to a reheat steam pipe for reducing the abnormal rise in the reheat steam temperature. In some cases, a control function for reducing the reheat steam temperature by providing the reheat steam temperature reducer 5 for spraying may be used.
[0013]
In FIG. 3, when the reheat steam temperature rises or falls, the feedback control 81 appropriately reduces or increases the boiler combustion gas flow rate by P control and I control of PID control, and reheat steam by D control. This is done by making corrections with signals that decrease or increase the boiler combustion gas flow that heats the primary reheater 2, the secondary reheater 3, and in particular the primary reheater 2, according to the increasing or decreasing tendency of the temperature.
[0014]
When the load on the plant changes, the position preceding control 82 on the primary reheater 2 side determines the position of the operating end (opening degree of the damper 7) for increasing or decreasing the flow rate of the boiler combustion gas for heating the primary reheater 2 in each plant. By moving the load together with the load change to a value determined with respect to the stable state of the load, it is possible to reduce the control gain of the feedback control 81, to prevent an excessive response of the control operation at the time of the load change and thereafter, It is for controlling.
[0015]
When the plant load increases or the load decreases, the reheat steam temperature tends to temporarily increase or decrease due to a transient heat balance imbalance.
The speed leading control 83 adds a signal proportional to a signal obtained by differentiating the plant load signal once to the opening command of the operation terminal (particularly the opening of the damper 7) in order to compensate for the transient heat balance imbalance. By doing so, the flow rate of the boiler combustion gas that overheats the primary reheater 2 is increased during the load increase and decreased during the load decrease. This is to make it possible to reduce the control gain of 81, prevent an excessive response of the control operation, and perform stable control.
[0016]
Further, there is the following known example as the reheat steam temperature control.
[0017]
[Patent Document 1]
JP-A-7-113501
[Patent Document 2]
Japanese Patent Application Laid-Open No. Hei 3-20502
[Patent Document 3]
JP-A-3-20501
[Problems to be solved by the invention]
When the feedback control 81, the position preceding control 82, and the speed preceding control 83 of the related art described above are used together, the process to be controlled when the opening degree of the operation terminals (dampers 7, damper 9) used for the control is changed. If the time until the amount (reheated steam temperature) changes is extremely long, it is difficult to perform stable control.
[0021]
That is, when the reheat steam temperature is controlled by the opening degree of the gas distribution damper 7 and the boiler gas circulation damper 9 to which the present invention is applied, the opening degree of the gas distribution damper 7 and the boiler gas circulation damper 9 is changed, and then the reheating steam temperature is changed. The time until the heat steam temperature changes is very long, and there is an example in which the dead time is about 2 minutes and the time constant is about 10 minutes as shown in FIG.
[0022]
On the other hand, when the load is changed, the reheaters 2 and 3 are immediately affected by the change in the heat balance of the burner and are affected by the change in the heat balance of the entire plant. ), A rapid change in the reheat steam temperature starts to appear relatively early (Tp = 3 minutes) after the load change starts.
[0023]
Therefore, in the related art in which the feedback control 81, the position preceding control 82, and the speed preceding control 83 are only used in combination with the reheat steam temperature control, the adjustment is focused on suppressing the sudden reheat steam temperature change immediately after the start of the load change. Is performed, the response speed of the process amount to the change of the operation end (damper 7, damper 9) is too slow, so that it is necessary to adjust the feedback control component and the speed preceding control component excessively to compensate for the change.
[0024]
As a result, as shown in FIG. 4C, even if the fluctuation of the reheat steam temperature can be suppressed immediately after the start of the load change, the influence of the operation of the component of the feedback control 81 and the operation of the component of the speed preceding control 83 will be shortly after. Acts with a delay, and the temperature violently swings back in the direction opposite to the operation direction immediately after the start of the load change.
[0025]
This is because the speed leading control 83 component has been continuously entered from the start to the end of the load change at a high level for suppressing the temperature fluctuation immediately after the start of the load change, and its action has been delayed and appears as an adverse effect.
[0026]
It is an object of the present invention to solve such a problem and to control a boiler steam temperature capable of always performing a stable reheat steam temperature control without deviating from a preset value set when a load changes.
[0027]
[Means for Solving the Problems]
In order to solve the above-mentioned problem of the present invention, in order to improve that the effect on the process to be controlled is slow due to a change in the operation end, a process amount that changes prior to the slow process to be controlled is captured in advance. A method of controlling the operation terminal to operate is adopted.
[0028]
Therefore, in response to the change in the opening degree of the gas distribution damper, the dead time in the exhaust gas flow path from the boiler furnace 6 is smaller than the dead steam temperature of the outlet steam temperature of the secondary reheater 3 disposed in the upstream flow path. Reheat the outlet steam temperature of the primary reheater 2 disposed in the boiler rear heat transfer section, which is a downstream flow path having a time constant of about 1.5 to 1.5 minutes and a time constant of about 1.5 to 3 minutes. It is applied to steam temperature control and mainly adopts the following configuration.
[0029]
In a reheat-type boiler that reheats high-pressure turbine exhaust steam in a primary reheater 2 and a secondary reheater 3 and feeds the reheat steam to a subsequent middle / low-pressure turbine 23, the primary reheater 2 And a device for controlling the temperature of the reheat steam sent to the middle / low pressure turbine 23 by adjusting the flow rate of the boiler combustion gas used for heating in the secondary reheater 3. A feedback proportional signal component of the outlet steam temperature of the primary reheater 2 is added to the temperature feedback proportional / integral control signal to adjust the flow rate adjustment signal of the boiler combustion gas.
[0030]
That is, the present invention has the following configuration.
(1) A primary reheater having a horizontal heat transfer surface disposed in a combustion gas flow path through which a combustion gas generated by combustion of fuel in a furnace of a boiler flows, and an exhaust gas flow upstream of the primary reheater After the exhaust steam after working with the high-pressure turbine is sequentially supplied to the secondary reheater having the suspended-type heat transfer surface on the side and reheated by the combustion gas, it is disposed at the subsequent stage of the high-pressure turbine. -In the reheat steam temperature control method of the reheat type boiler that sends air as reheat steam to the low pressure turbine,
Based on the feedback proportional / integral control signal component based on the difference between the secondary reheater outlet steam temperature and the set temperature corresponding to the load signal, based on the difference between the primary reheater outlet steam temperature and the set temperature corresponding to the load signal A reheat steam temperature control method for adding a feedback proportional control signal component to adjust a flow rate of boiler combustion gas for reheat steam heating in the primary reheater and the secondary reheater.
[0031]
In the reheat steam temperature control method, the adjustment of the flow rate of the boiler combustion gas is performed by disposing the primary reheater disposed on one of the combustion gas flow paths that divides the combustion gas flow path of the boiler and the other on the other combustion gas flow path. The degree of opening of the gas distribution damper for changing the flow rate of the combustion gas to the heat transfer surface and / or the circulation provided in the boiler combustion gas circulation path for returning the combustion gas exiting the boiler combustion gas path to the furnace again A method performed by adjusting the opening degree of the damper may be adopted.
[0032]
(2) A primary reheater having a horizontal heat transfer surface disposed in a combustion gas flow path through which a combustion gas generated by combustion of fuel in a furnace of a boiler flows, and an exhaust gas flow upstream of the primary reheater. After the exhaust steam after working with the high-pressure turbine is sequentially supplied to the secondary reheater having the suspended-type heat transfer surface on the side and reheated by the combustion gas, it is disposed at the subsequent stage of the high-pressure turbine. A flow rate of the boiler combustion gas for adjusting the flow rate of the boiler combustion gas for heating the reheat steam in the primary reheater and the secondary reheater in the reheat type boiler that feeds the reheat steam to the low pressure turbine A reheat steam temperature control device comprising an adjusting means, for controlling a reheat steam temperature to be sent to the medium / low pressure turbine by a flow rate of the boiler combustion gas by the boiler combustion gas flow rate adjusting means,
Feedback proportional / integral control means based on the difference between the secondary reheater outlet steam temperature and the set temperature corresponding to the load signal, and feedback based on the difference between the primary reheater outlet steam temperature and the set temperature corresponding to the load signal Adding means for adding the signal obtained by the feedback proportional control means of the primary reheater outlet steam temperature to the signal obtained by the proportional control means and the feedback proportional / integral control means of the secondary reheater outlet steam temperature; Adjusting the flow rate of the boiler combustion gas by the flow rate adjusting means for the boiler combustion gas for reheating steam in the primary reheater and the secondary reheater based on the added value obtained by the addition means. Hot steam temperature control device.
[0033]
The flow rate adjusting means of the boiler combustion gas of the reheat steam temperature control device is disposed, for example, in a primary reheater disposed in one combustion gas flow path that divides a combustion gas flow path of a boiler into two and in the other combustion gas flow path. Drive means for adjusting the opening degree of the gas distribution damper for changing the flow rate of the combustion gas to the heat transfer surface to be heated and / or the boiler combustion gas circulation flow for returning the boiler combustion gas exiting the boiler combustion gas flow path to the furnace again A boiler gas circulation damper provided on the road and a driving means for adjusting the opening thereof are used.
[0034]
BEST MODE FOR CARRYING OUT THE INVENTION
A reheat steam temperature control device according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a reheat steam temperature control circuit of the present embodiment used for the process equipment configuration and the control circuit unit in the boiler shown in FIG. The features of the reheat steam temperature control circuit according to the embodiment of the present invention shown in FIG. 1 are as follows.
[0035]
That is, the secondary reheater outlet steam temperature signal 53 is subtracted by the subtractor 55 between the secondary reheater outlet steam temperature set value 54 obtained by the function generator 52 according to the load signal, The secondary reheater outlet steam temperature deviation 57 is obtained. The deviation signal 57 is added via a PID controller 56 to a gas distribution damper opening advance signal 61 obtained by a function generator 60 in accordance with a load signal 51 and an adder 59 in accordance with a load signal 51. The BIR signal 65 for the gas distribution damper that has been differentiated once by the differentiator 64 is added to the adder 63 to obtain an added value 77.
[0036]
Further, a difference between the primary reheater outlet steam temperature set value 92 obtained by the function generator 91 according to the primary reheater outlet steam temperature signal 110 and the load signal 51 is obtained by the subtractor 93, and is obtained. The primary reheater outlet steam temperature deviation 94 is added to the added value 77 by an adder 97 as an output signal 96 of a P (proportional) controller 95 to obtain a gas distribution damper operation command 66 to drive the gas distribution damper 7. The device 10 is operated.
[0037]
In response to this operation, the degree of opening of the gas distribution damper 7 is adjusted, so that the gas flow path of the heat transfer section at the rear of the boiler in which the primary reheater 2 is arranged and the reheating of the superheater 1 and the flue evaporator 21 are performed. The ratio of the boiler combustion gas passing through the gas flow path on which the heat transfer surfaces other than the heat exchanger is arranged is increased or decreased, the amount of heat collected by the steam flowing inside the primary reheater 2 is adjusted, and the reheat steam temperature is controlled. . The gas distribution damper 7 has a mechanism in which the gas flow path on the primary reheater 2 side and the gas flow path on the superheater 1 side operate in opposite directions by mechanical linkage or linkage by an electric signal.
[0038]
The difference between the reheat steam temperature control circuit of the embodiment of the present invention shown in FIG. 1 and the prior art shown in FIG. 3 is that the reheat steam temperature control circuit of the primary reheater 2 has a quick response to a change in the opening degree of the gas distribution damper 7. This is the point where the proportional controller output signal 96 of the temperature deviation 94 between the outlet steam temperature signal 110 and the set value 92 for the load signal 51 is added by the adder 97. In the related art, since the feedback control 81 based on the outlet steam temperature signal 53 of the secondary reheater 3 having a slow response to the change in the opening degree of the gas distribution damper 7 is performed, the control is not returned until the temperature is inverted. There was a problem.
[0039]
Therefore, in the embodiment of the present invention shown in FIG. 1, by returning the gas distribution damper 7 earlier with a process amount that responds quickly to the change in the opening degree of the gas distribution damper 7, the load deviates from a preset value set in advance when the load changes. In addition, it has become possible to control the boiler steam temperature, which enables stable reheat steam temperature control at all times.
[0040]
Similarly, the secondary reheater outlet steam temperature deviation signal 57 is obtained by obtaining a proportional controller output signal 68 by the proportional controller 67 and obtaining the GRF obtained by the function generator 69 in accordance with the signal 68 and the load signal 51. An inlet damper opening advance signal 70 is added by an adder 71, and a load signal 51 is differentiated by a differentiator 73 once and a GRF inlet damper opening advance signal 74 is added by an adder 75. The sum 78 obtained by the adder 75 is further between the primary reheater outlet steam temperature signal 110 and the primary reheater outlet steam temperature set value 99 obtained by the function generator 98 in response to the load signal 51. The subtractor 100 performs the subtraction. The primary reheater outlet steam temperature deviation 101 obtained by the subtractor 100 is added to the addition value 78 by an adder 104 as an output signal 103 of a P (proportional) controller 102 to obtain a GRF inlet damper operation command 76. The driving device 11 for the GRF entrance damper 9 is operated.
[0041]
In response to this operation, the gas recirculation amount is increased or decreased by the GRF inlet damper (or GRF inlet vane) 9, and the heat absorption amount of the reheater system arranged downstream of the flue relatively far from the furnace 6. Is adjusted, and the reheat steam temperature is adjusted as described above.
[0042]
The control of the amount of gas recirculation by the GRF inlet damper (or GRF inlet vane) 9 also allows the outlet steam temperature signal 110 of the primary reheater 2 to respond quickly to a change in the opening degree of the GRF inlet damper (or GRF inlet vane) 9. The proportional controller output signal 103 of the temperature deviation 101 between the load signal 51 and the set value 99 with respect to the load signal 51 is added by the adder 104 to the addition value 78 obtained by the adder 75, and the GRF inlet damper (or GRF inlet vane) 9 Is quickly returned by the process amount (outlet steam temperature signal 110 of the primary reheater 2) which has a relatively quick response to the change of the opening degree, so that the load does not deviate from the preset value at the time of load change and is always stable. It has become possible to control the boiler steam temperature, which enables the reheat steam temperature control.
[0043]
【The invention's effect】
According to the present invention, there is an effect that the reheat steam temperature can be controlled stably.
Even when the load changes, the control signal according to the prior art for adjusting the flow rate of the boiler combustion gas passing through the reheater includes a control signal from the primary reheater outlet steam temperature deviation that responds quickly to a change in the gas distribution damper opening. By adding the proportional control load signal, stable control can always be performed without the secondary reheater outlet steam temperature largely deviating from the set value.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating details of a reheat steam temperature control circuit unit according to an embodiment of the present invention.
FIG. 2 is a diagram showing a process device configuration and a control circuit unit related to reheat steam temperature control.
FIG. 3 is a diagram illustrating details of a reheat steam temperature control circuit unit according to the related art.
FIG. 4 is a diagram showing a response characteristic of a reheat steam temperature to a gas distribution damper step operation and a load change, and a temperature response characteristic at the time of a load change according to the related art.
[Explanation of symbols]
Reference Signs List 1 superheater 2 primary reheater 3 secondary reheater 5 reheat steam temperature reducer 6 boiler furnace 7 gas distribution damper 8 gas recirculation fan 9 GRF inlet damper (or GRF inlet vane)
Reference Signs List 10 Drive for gas distribution damper 11 Drive for GRF inlet damper 21 Flue gas evaporator 23 Medium / low pressure turbine 51 Load signal 52 Function generator 53 Secondary reheater outlet steam temperature signal 54 Secondary reheater outlet steam temperature Set value 55 Subtractor 56 PID controller 57 Secondary reheater outlet steam temperature deviation signal 59, 63 Adder 60 Function generator 61 Gas distribution damper opening advance signal 62 Adder output signal 64 Differentiator 65 For gas distribution damper BIR signal (speed advance signal)
66 Gas distribution damper operation command signal 67 Proportional controller 68 Proportional controller output signal 69 Function generator 70 GRF inlet damper opening advance signal 71 Adder 72 Adder output signal 73 Differentiator 74 GRF inlet damper opening advance signal 75 Addition 76 GRF entrance damper operation command (signal)
77 Addition value 78 Addition value 81 Feedback control 82 Position leading control 83 Speed leading control 91 Function generator 92 Primary reheater outlet steam temperature set value 93 Subtractor 94 Primary reheater outlet steam temperature deviation 95 P (proportional) controller 96 Proportional controller output signal 97 Adder 98 Function generator 99 Primary reheater outlet steam temperature set value 100 Subtractor 101 Primary reheater outlet steam temperature deviation 102 P (proportional) controller 103 Proportional controller output signal 104 Addition Vessel 110 Primary reheater outlet steam temperature signal

Claims (4)

ボイラの火炉内での燃料の燃焼により発生した燃焼ガスが流れる燃焼ガス流路に配置される横置型伝熱面を有する一次再熱器と該一次再熱器よりも排ガス流れの上流側の吊下型伝熱面を有する二次再熱器に高圧タービンで仕事をした後の排蒸気を順番に供給して前記燃焼ガスにより再加熱した後、高圧タービンの後段に配置される中・低圧タービンへ再熱蒸気として送気する再熱型ボイラの再熱蒸気温度制御方法において、
二次再熱器出口蒸気温度とその負荷信号に対応した設定温度の偏差に基づくフィードバック比例・積分制御信号成分に、一次再熱器出口蒸気温度とその負荷信号に対応した設定温度の偏差に基づくフィードバック比例制御信号成分を加算し、前記一次再熱器及び前記二次再熱器における再熱蒸気加熱用のボイラ燃焼ガスの流量を調整することを特徴とする再熱蒸気温度制御方法。
A primary reheater having a horizontal heat transfer surface disposed in a combustion gas flow path through which combustion gas generated by combustion of fuel in a furnace of a boiler flows, and a suspension on an upstream side of an exhaust gas flow from the primary reheater; After the exhaust steam after working with the high-pressure turbine is sequentially supplied to the secondary reheater having the lower heat transfer surface and reheated by the combustion gas, the medium- and low-pressure turbines are disposed at the subsequent stage of the high-pressure turbine. In the reheat steam temperature control method of a reheat type boiler that sends air as reheat steam to
Based on the feedback proportional / integral control signal component based on the difference between the secondary reheater outlet steam temperature and the set temperature corresponding to the load signal, based on the difference between the primary reheater outlet steam temperature and the set temperature corresponding to the load signal A reheat steam temperature control method, comprising adding a feedback proportional control signal component and adjusting a flow rate of a boiler combustion gas for heating reheat steam in the primary reheater and the secondary reheater.
ボイラ燃焼ガスの流量の調整は、ボイラの燃焼ガス流路を二分する一方の燃焼ガス流路に配置される一次再熱器と他方の燃焼ガス流路に配置される伝熱面への燃焼ガス流量割合を変えるガス分配ダンパの開度及び/又はボイラの燃焼ガス流路を出た燃焼ガスを再び火炉に帰還させるボイラ燃焼ガス循環流路に設けられた循環ダンパの開度を調整することによって行うことを特徴とする請求項1記載の再熱蒸気温度制御方法。Adjustment of the flow rate of the boiler combustion gas is performed by dividing the combustion gas flow path of the boiler into two in the primary reheater disposed in one combustion gas flow path and the combustion gas flowing to the heat transfer surface disposed in the other combustion gas flow path. By adjusting the opening of the gas distribution damper for changing the flow rate ratio and / or the opening of the circulation damper provided in the boiler combustion gas circulation channel for returning the combustion gas exiting the boiler combustion gas channel to the furnace again. The reheat steam temperature control method according to claim 1, wherein the method is performed. ボイラの火炉内での燃料の燃焼により発生した燃焼ガスが流れる燃焼ガス流路に配置される横置型伝熱面を有する一次再熱器と該一次再熱器よりも排ガス流れの上流側の吊下型伝熱面を有する二次再熱器に高圧タービンで仕事をした後の排蒸気を順番に供給して前記燃焼ガスにより再加熱した後、高圧タービンの後段に配置される中・低圧タービンへ再熱蒸気として送気する再熱型ボイラにおける前記一次再熱器及び前記二次再熱器における再熱蒸気を加熱するためのボイラ燃焼ガスの流量を調整するボイラ燃焼ガスの流量調整手段を備え、該ボイラ燃焼ガスの流量調整手段によるボイラ燃焼ガスの流量により前記中・低圧タービンへ送気する再熱蒸気温度を制御する再熱蒸気温度制御装置において、二次再熱器出口蒸気温度とその負荷信号に対応した設定温度の偏差に基づくフィードバック比例・積分制御手段と、
一次再熱器出口蒸気温度とその負荷信号に対応した設定温度の偏差に基づくフィードバック比例制御手段と、
前記二次再熱器出口蒸気温度のフィードバック比例・積分制御手段で得られた信号に前記一次再熱器出口蒸気温度のフィードバック比例制御手段で得られた信号を加算する加算手段と、
該加算手段で得られた加算値に基づき前記一次再熱器及び前記二次再熱器における再熱蒸気加熱用のボイラ燃焼ガスの流量調整手段でのボイラ燃焼ガスの流量を調整することを特徴とする再熱蒸気温度制御装置。
A primary reheater having a horizontal heat transfer surface disposed in a combustion gas flow path through which combustion gas generated by combustion of fuel in a furnace of a boiler flows, and a suspension on an upstream side of an exhaust gas flow from the primary reheater; After the exhaust steam after working with the high-pressure turbine is sequentially supplied to the secondary reheater having the lower heat transfer surface and reheated by the combustion gas, the medium- and low-pressure turbines are disposed at the subsequent stage of the high-pressure turbine. Boiler combustion gas flow rate adjusting means for adjusting the flow rate of boiler combustion gas for heating the reheat steam in the primary reheater and the secondary reheater in the reheat type boiler which sends air as reheat steam to A reheat steam temperature control device for controlling a reheat steam temperature to be sent to the medium / low pressure turbine according to a flow rate of the boiler combustion gas by the flow rate adjustment means for the boiler combustion gas; Its load signal A feedback proportional-integral controller based on the deviation of the corresponding set temperature,
Feedback proportional control means based on the deviation of the set temperature corresponding to the primary reheater outlet steam temperature and its load signal,
Adding means for adding the signal obtained by the feedback proportional control means of the primary reheater outlet steam temperature to the signal obtained by the feedback proportional / integral control means of the secondary reheater outlet steam temperature,
The flow rate of the boiler combustion gas is adjusted by the flow rate adjustment means for the boiler combustion gas for heating the reheat steam in the primary reheater and the secondary reheater based on the addition value obtained by the addition means. Reheat steam temperature control device.
ボイラ燃焼ガスの流量調整手段は、ボイラの燃焼ガス流路を二分する一方の燃焼ガス流路に配置される一次再熱器と他方の燃焼ガス流路に配置される伝熱面への燃焼ガス流量割合を変えるガス分配ダンパの開度を調整する駆動手段及び/又はボイラの燃焼ガス流路を出たボイラ燃焼ガスを再び火炉に帰還させるボイラ燃焼ガス循環流路に設けられたボイラガス循環ダンパとその開度を調整する駆動手段であることを特徴とする請求項3記載の再熱蒸気温度制御装置。The boiler combustion gas flow rate adjusting means includes a primary reheater disposed in one combustion gas flow path that bisects the combustion gas flow path of the boiler, and a combustion gas flow to a heat transfer surface disposed in the other combustion gas flow path. A drive means for adjusting the opening of the gas distribution damper for changing the flow rate ratio and / or a boiler gas circulation damper provided in the boiler combustion gas circulation path for returning the boiler combustion gas exiting the boiler combustion gas path to the furnace again. 4. The reheat steam temperature control device according to claim 3, wherein the drive means is a driving means for adjusting the opening degree.
JP2003153980A 2003-05-30 2003-05-30 Reheated steam temperature control device and control method Pending JP2004353994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153980A JP2004353994A (en) 2003-05-30 2003-05-30 Reheated steam temperature control device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153980A JP2004353994A (en) 2003-05-30 2003-05-30 Reheated steam temperature control device and control method

Publications (1)

Publication Number Publication Date
JP2004353994A true JP2004353994A (en) 2004-12-16

Family

ID=34048760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153980A Pending JP2004353994A (en) 2003-05-30 2003-05-30 Reheated steam temperature control device and control method

Country Status (1)

Country Link
JP (1) JP2004353994A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751738A (en) * 2012-06-26 2012-10-24 云南电力试验研究院(集团)有限公司电力研究院 Control method for preventing oscillation during power regulation of thermal power unit
CN114063437A (en) * 2021-10-22 2022-02-18 北京京能科技有限公司 Method for controlling flue gas baffle of reheater of supercritical unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751738A (en) * 2012-06-26 2012-10-24 云南电力试验研究院(集团)有限公司电力研究院 Control method for preventing oscillation during power regulation of thermal power unit
CN114063437A (en) * 2021-10-22 2022-02-18 北京京能科技有限公司 Method for controlling flue gas baffle of reheater of supercritical unit
CN114063437B (en) * 2021-10-22 2023-08-08 北京京能科技有限公司 Control method for flue gas baffle of reheater of supercritical unit

Similar Documents

Publication Publication Date Title
JPS58501866A (en) Damper control device for heat recovery steam generator
JP4117733B2 (en) Method and apparatus for boiler reheat steam temperature control
JP2004353994A (en) Reheated steam temperature control device and control method
JP4062810B2 (en) Control method and apparatus for air preheater bypass damper
JP2002106831A (en) Pulverized coal fired boiler facility
JP3673295B2 (en) Method and apparatus for controlling reheat steam temperature of boiler
JP3755910B2 (en) Water injection control device for reheat steam desuperheater
JP3932628B2 (en) Boiler exhaust gas flow rate control method and apparatus for air preheater in exhaust recombustion combined cycle power plant
JPH11351512A (en) Reheat steam temperature controller for boiler
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JP3845905B2 (en) Outlet feed water temperature control device for gas high pressure feed water heater in exhaust recombustion combined cycle plant
JPH1054508A (en) Temperature control method and apparatus for main steam
JP2000161606A (en) Steaming prevention control method nd apparatus for coal saving apparatus
JP3707087B2 (en) Reheater outlet steam temperature control system in an exhaust-fired combined cycle plant
JP2000205510A (en) Temperature controller for boiler steam
JP3354776B2 (en) Operation method of incinerator complex plant equipment
JPH1181919A (en) White smoke of exhaust gas preventing method in binary cycle gas turbine device
JP6036244B2 (en) Boiler control method and boiler control device during suit blower operation
JP2894118B2 (en) Boiler steam temperature control method
JP2000314504A (en) Controller and control method of reheat steam temperature for heavy oil/orimulsion boiler
JP2708592B2 (en) Boiler startup temperature rise control device
JP2002168406A (en) Reheat steam temperature controller for boiler
JPH0545841B2 (en)
JP2645129B2 (en) Condensate recirculation flow control device
JPH09236202A (en) Apparatus and method for controlling fuel of boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060509

A977 Report on retrieval

Effective date: 20080401

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080409

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090422