JP2002081607A - Steam temperature controller for variable pressure once-through boiler - Google Patents

Steam temperature controller for variable pressure once-through boiler

Info

Publication number
JP2002081607A
JP2002081607A JP2000273351A JP2000273351A JP2002081607A JP 2002081607 A JP2002081607 A JP 2002081607A JP 2000273351 A JP2000273351 A JP 2000273351A JP 2000273351 A JP2000273351 A JP 2000273351A JP 2002081607 A JP2002081607 A JP 2002081607A
Authority
JP
Japan
Prior art keywords
water
temperature
steam temperature
boiler
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000273351A
Other languages
Japanese (ja)
Inventor
Takeo Nakashige
猛雄 中重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2000273351A priority Critical patent/JP2002081607A/en
Publication of JP2002081607A publication Critical patent/JP2002081607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To correct the water/fuel ratio of a boiler so that the outlet temperature of an evaporator may maintain a degree of superheat and may not rush into saturation. SOLUTION: A steam temperature controller for a variable pressure once- through boiler is provided with a facility which sprays water upon a desuperheater installed at the outlet of the superheater of each section from the outlet portion of an economizer and controls (proportionally and integrally) the steam temperature of the boiler while the boiler is operated in an once- through mode by adjusting the water/fuel ratio which is the ratio of the quantity of feed water to the quantity of supplied fuel and the quantity of the sprayed water. The controller secures the degree of superheat of the outlet temperature of the evaporator by controlling the steam temperature by correcting the water/ fuel ratio based on the deviation of the fluid temperature at the outlet of the evaporator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、貫流ボイラの蒸気
温度制御に係わり、特に負荷変化時の蒸気温度の安定な
制御を行うのに好適なボイラの蒸気温度制御装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam temperature control of a once-through boiler, and more particularly to a steam temperature control device of a boiler suitable for performing stable control of a steam temperature when a load changes.

【0002】[0002]

【従来の技術】火炉水壁入口より上流側の給水系統から
抽水して火炉水壁出口より下流側の蒸気系統に一つ又は
複数段に分割して設けられる過熱器出口のそれぞれの蒸
気温度が所定の値になるように、前記抽水した水をスプ
レーにより蒸気流中に注水する減温器を有するボイラに
おいて、前記過熱器出口の蒸気温度のうち最終過熱器出
口の蒸気温度(以下、主蒸気温度と称する)の制御は、
水燃比とスプレー量にてPI制御するが、主蒸気温度の
過渡的な変化修正に対しては即応性の高いスプレーにて
制御し、全体的には水燃比のバイアス操作にて安定させ
る方式としている。
2. Description of the Related Art The steam temperature at the outlet of a superheater, which is extracted from a water supply system upstream of a furnace water wall inlet and divided into one or more stages in a steam system downstream of a furnace water wall outlet, is determined. In a boiler having a desuperheater for injecting the extracted water into a steam flow by spraying so as to have a predetermined value, the steam temperature at the final superheater outlet (hereinafter referred to as main steam) among the steam temperatures at the superheater outlet Control).
The PI is controlled by the water-fuel ratio and the spray amount, but it is controlled by the spray which has a high responsiveness to the correction of the transient change of the main steam temperature. I have.

【0003】水燃比制御は、ボイラへの給水量とボイラ
への燃料量との比を変えて主蒸気温度を所定値に制御す
るものであり、実際には、ボイラ入力指令100からの
ボイラ入力指令値に対応する燃料燃焼量指令値に主蒸気
温度の偏差を加味して燃料燃焼量を指令する制御である
(図2のボイラ入力指令と燃料燃焼量指令のルート参
照)。
The water-fuel ratio control is to control the main steam temperature to a predetermined value by changing the ratio between the amount of water supplied to the boiler and the amount of fuel to the boiler. This is a control in which the fuel combustion amount is commanded by adding the deviation of the main steam temperature to the fuel combustion amount command value corresponding to the command value (see the route of the boiler input command and the fuel combustion amount command in FIG. 2).

【0004】また、スプレー制御は、図4に示すように
負荷指令200からの負荷指令値を基に関数発生器2に
て作成した主蒸気温度設定値と主蒸気温度計300から
の実温度を減算器1で減算した偏差により比例・積分動
作(1→7→8→21→20)を行っているが、過熱器
が複数段ある場合(図4においては三段)には、各過熱
器の出口温度設定値の修正分を求め、この修正分を前記
負荷指令200をベースに作成した主蒸気温度設定値に
加算して温度設定値を作成し、前記作成した設定値とな
るようにスプレー弁を操作する2段PI制御方式(カス
ケード制御方式)としている。
As shown in FIG. 4, the spray control uses a main steam temperature set value created by the function generator 2 based on the load command value from the load command 200 and an actual temperature from the main steam thermometer 300. The proportional / integral operation (1 → 7 → 8 → 21 → 20) is performed based on the deviation subtracted by the subtractor 1, but when there are a plurality of superheaters (three stages in FIG. 4), each superheater A correction value of the outlet temperature set value is obtained, and this correction value is added to the main steam temperature set value generated based on the load command 200 to create a temperature set value, and the spray is set so as to have the generated set value. A two-stage PI control system (cascade control system) that operates a valve is used.

【0005】負荷整定時にはスプレー量をボイラバラン
ス点に保持し、スプレーによる制御裕度を確保するよう
にコンスタントスプレー補正を行っている。ガス・油焚
きボイラの場合は収熱特性が変わらないため、負荷に対
するスプレー量の比率を一定とする一定比率制御が行わ
れるが、石炭焚きの場合は炭種(主に燃料比)による火
炉収熱量の変化に対応するため、負荷に対するスプレー
量の比率設定プログラムを可変にして対応するようにし
ている。
When the load is settled, the spray amount is kept at the boiler balance point, and constant spray correction is performed so as to secure a control margin by spraying. In the case of gas- and oil-fired boilers, the heat collection characteristics do not change, so a constant ratio control is performed to keep the ratio of the spray amount to the load constant. However, in the case of coal-fired boilers, furnace collection by coal type (mainly fuel ratio) is performed. In order to cope with the change in the amount of heat, the program for setting the ratio of the spray amount to the load is made variable to cope with the change.

【0006】なお、変圧ボイラの場合は、過熱器の入口
温度が過熱度(飽和温度+余裕値)を保持するように蒸
気圧力からの飽和温度制御設定値を作成し、入口温度設
定に下限動作を与えるよう考慮している。
[0006] In the case of a variable-pressure boiler, a saturation temperature control set value based on steam pressure is created so that the inlet temperature of the superheater maintains the degree of superheat (saturation temperature + margin value), and the lower limit operation is performed on the inlet temperature setting. Is considered to give.

【0007】次に、従来技術における蒸気温度制御装置
の具体的構成を図4と図2を用いて以下説明する。図4
は従来技術における主蒸気温度制御バイアスの作成を示
す制御ブロック図であり、図2はこの主蒸気温度制御バ
イアスを利用して燃料燃焼量指令を作成する制御ブロッ
ク図であって、この燃料燃焼量指令が水燃比制御の一つ
を表すものである(水燃比制御では、燃料燃焼量の他
に、ボイラへの給水量(火炉への給水量と減温器への給
水量との総量)を制御する)。図2の制御ブロック図は
本発明にも従来技術にも適用される共通の制御ブロック
図である。
Next, a specific configuration of a conventional steam temperature control apparatus will be described with reference to FIGS. 4 and 2. FIG. FIG.
FIG. 2 is a control block diagram showing creation of a main steam temperature control bias in the prior art, and FIG. 2 is a control block diagram for creating a fuel combustion amount command using the main steam temperature control bias. The command represents one of the water-fuel ratio controls. (In the water-fuel ratio control, in addition to the fuel combustion amount, the water supply amount to the boiler (total amount of the water supply to the furnace and the water supply to the desuperheater) Control). The control block diagram of FIG. 2 is a common control block diagram applied to both the present invention and the prior art.

【0008】図4において、主蒸気温度制御は、中給
(中央給電指令所)からの指令(DPC)又は所内(発
電所毎)にて設置した指令(ALR)の何れかにて設定
された負荷指令200より関数発生器2にてプログラム
された主蒸気温度設定値と主蒸気温度計300からの実
温度(MST)を減算器1で算出した偏差に前記減算器
1からの偏差を微分器6に入力してその出力を加算器8
で加えて、更に主蒸気温度偏差にスプレー流量偏差ΔS
PFを加算器21にて加算した後、積分器20に入力し
てその出力を変化率制限器22を通して主蒸気温度制御
バイアスを作成する。ここで、変化率制限器は入力信号
の変化率を制限してその出力に緩衝特性を持たせるもの
である。
In FIG. 4, the main steam temperature control is set by either a command (DPC) from the middle supply (central power supply command station) or a command (ALR) installed in the station (for each power station). A difference between the main steam temperature set value programmed by the function generator 2 based on the load command 200 and the actual temperature (MST) from the main steam thermometer 300 calculated by the subtractor 1 is used as a differentiator. 6 and outputs the result to an adder 8
In addition, the main steam temperature deviation and the spray flow rate deviation ΔS
After the PF is added by the adder 21, the PF is input to the integrator 20 and the output is passed through the rate-of-change limiter 22 to create a main steam temperature control bias. Here, the rate-of-change limiter limits the rate of change of the input signal so that its output has a buffer characteristic.

【0009】燃料燃焼量変化による主蒸気温度の応答時
定数や変化量が負荷により変動するため、比例分及び積
分分についてボイラ入力指令(BID)から関数発生器
13及び14により修正を加えている。
Since the response time constant and the amount of change of the main steam temperature due to the change in the fuel combustion amount fluctuate depending on the load, the proportional and integral components are corrected by the function generators 13 and 14 from the boiler input command (BID). .

【0010】また、前記加算器8には、一次過熱器、二
次過熱器及び三次過熱器出口温度偏差にボイラ入力指令
(BID)から関数発生器15〜17による補正値を加
えた比例制御信号を加算器10に加えたものを加算する
ことで修正を加えている。
The adder 8 has a proportional control signal obtained by adding a correction value by the function generators 15 to 17 from the boiler input command (BID) to the primary superheater, secondary superheater and tertiary superheater outlet temperature deviation. Is added to the adder 10 to add the correction.

【0011】負荷変化中は蒸気温度の時定数が長いため
に、過渡的な温度変動を修正した場合は、負荷変化終了
後の水燃比が適正値から外れ、蒸気温度の外乱となるた
め積分器20入力を切替器18により信号発生器19の
発生する0に切り替えて、主蒸気温度の偏差による積分
動作をブロックする。
Since the time constant of the steam temperature is long during the load change, if the transient temperature fluctuation is corrected, the water-fuel ratio after the end of the load change deviates from an appropriate value, which causes disturbance of the steam temperature. The input 20 is switched by the switch 18 to 0 generated by the signal generator 19, and the integration operation based on the deviation of the main steam temperature is blocked.

【0012】また、図2において、蒸発器出口の過熱度
制御として、汽水分離器タンク圧力600(STP)よ
り関数発生器5,6にて設定された蒸発器出口温度の上
限及び下限値と蒸発器出口温度計700からの実温度の
偏差が規定値を超えた場合、燃料に対する増減バイアス
を加えることで蒸発器出口の過熱度が規定値以内になる
ように制御するが、この制御は貫流運転中のみ補正さ
れ、ボイラ入力指令(BID)による関数発生器4から
の補正値を使用し、負荷変化中は信号発生器7の補正値
を使用する。ここで、一例として過熱度制限設定は上限
が飽和温度+60°C、下限が飽和温度+10°Cを設
定し、温度偏差が+側で2T/H、−側で4.5T/H
程度の設定としている。
In FIG. 2, as the superheat control at the evaporator outlet, the upper and lower limits of the evaporator outlet temperature set by the function generators 5 and 6 based on the steam separator tank pressure 600 (STP), and evaporation. When the deviation of the actual temperature from the evaporator outlet thermometer 700 exceeds the specified value, the superheat degree at the evaporator outlet is controlled to be within the specified value by applying an increase / decrease bias to the fuel. The correction is performed only in the middle, and the correction value from the function generator 4 according to the boiler input command (BID) is used. During the load change, the correction value of the signal generator 7 is used. Here, as an example, in the superheat degree limit setting, the upper limit is set to the saturation temperature + 60 ° C, the lower limit is set to the saturation temperature + 10 ° C, and the temperature deviation is 2 T / H on the + side and 4.5 T / H on the-side.
It is set to the degree.

【0013】この様な主蒸気温度制御方式において、負
荷上昇を行った場合(電力需要増大の求めに対応して、
所定の蒸気圧力を維持した状態で蒸気流量を増加すべ
く、燃料を増やすことで火炉からの排ガス温度が上昇す
る)、過渡的に一次過熱器、二次過熱器及び三次過熱器
の熱吸収量が増加するため、各過熱器出口部の温度が上
昇するため、各部のスプレー流量を増加して各温度設定
値となるような制御が行われる。スプレーの追従により
温度偏差は少ないため、水燃比制御への補正は無いが、
スプレー流量変化による偏差分から水燃比制御に減バイ
アスとして補正される。
In such a main steam temperature control method, when the load is increased (in response to the demand for increased power demand,
In order to increase the steam flow while maintaining the predetermined steam pressure, the temperature of the exhaust gas from the furnace rises by increasing the fuel in order to increase the steam flow), and the heat absorption of the primary superheater, the secondary superheater and the tertiary superheater transiently. Increases, the temperature at the outlet of each superheater rises, and control is performed so that the spray flow rate at each section is increased to achieve each temperature set value. There is no correction to the water-fuel ratio control because the temperature deviation is small by following the spray,
The deviation due to the change in the spray flow rate is corrected as a de-bias for the water-fuel ratio control.

【0014】また、スプレー流量増加による火炉側への
流体量が減少するため(給水量は火炉分とスプレー分と
の和であるからスプレーが増加すればその分だけ火炉へ
の水量は減ることとなる)、蒸発器出口流体温度が増加
し、過熱度が増加するため、過熱度制御からも水燃比制
御に減バイアス補正が入ることになる。
Further, since the amount of fluid to the furnace side decreases due to an increase in the spray flow rate (the water supply amount is the sum of the furnace part and the spray part, so that if the spray increases, the water amount to the furnace decreases accordingly. ), The evaporator outlet fluid temperature increases and the degree of superheat increases, so that the de-bias correction is included in the water-fuel ratio control from the superheat degree control.

【0015】負荷上昇が収束に向かうにつれて温度偏差
が少なくなるため、スプレー流量が減少し、負荷バラン
ス点に収束するように引き戻されていくため、火炉側へ
の流体量が増加する。その時点で蒸気温度偏差修正及び
スプレー流量偏差修正量は無くなるが、水燃比はアンバ
ランス状態(給水に対して燃料が少ない)であるため、
蒸発器出口の流体温度が低下する。
Since the temperature deviation decreases as the load rise approaches convergence, the spray flow rate decreases, and the flow is returned so as to converge to the load balance point, so that the amount of fluid to the furnace increases. At that time, the steam temperature deviation correction and the spray flow rate deviation correction amount disappear, but the water-fuel ratio is in an unbalanced state (there is less fuel than the water supply).
The fluid temperature at the evaporator outlet drops.

【0016】水燃比制御は蒸発器出口の過熱度制御によ
る水燃比の増バイアス操作を行うが、流体温度へ寄与す
るまでに時間がかかるため、一時的に飽和域に入ること
から、気水混合状態となり、水壁部の温度アンバランス
発生及び一次過熱器の管内熱負荷がアンバランスの発生
となる。
In the water-fuel ratio control, the water-fuel ratio is biased by increasing the superheat at the evaporator outlet. However, it takes time to contribute to the fluid temperature. In this state, the temperature imbalance of the water wall portion and the heat load in the pipe of the primary superheater cause the imbalance.

【0017】この現象は負荷変化率及び変化幅が大きい
場合、及び高燃料比炭の場合(燃料比が高い程、火炉部
での熱吸収が少なく、後部熱吸収量が多い)に見られ
る。
This phenomenon is observed when the load change rate and the change width are large, and in the case of high fuel ratio coal (the higher the fuel ratio, the smaller the heat absorption in the furnace part and the larger the rear heat absorption amount).

【0018】[0018]

【発明が解決しようとする課題】この様な主蒸気温度制
御方式において、過渡的温度変化に対してスプレー流量
を変化させて温度制御を行うが、負荷上昇過程におい
て、水燃比はアンバランス状態(給水に対して燃料が少
ない)が発生し、蒸発器出口の流体温度の過熱度が確保
できず、一時的に飽和域に入ることから、水壁部の温度
アンバランスが発生するとともに一次過熱器の管内にお
いて気水混合状態になるため管内熱負荷がアンバランス
となり、過熱器チューブが損傷する等の課題があった。
In such a main steam temperature control method, temperature control is performed by changing a spray flow rate in response to a transient temperature change. (The amount of fuel is less than the feed water), and the superheat degree of the fluid temperature at the evaporator outlet cannot be secured, and it temporarily enters the saturation region. Therefore, the temperature imbalance of the water wall occurs and the primary superheater There is a problem that the heat load in the pipe becomes unbalanced because the air-water mixture state occurs in the pipe, and the superheater tube is damaged.

【0019】本発明の目的は、上記した従来技術の課題
を解決し、蒸発器出口温度を飽和に突入しないように過
熱度を維持させるように水燃比を補正する回路を提供す
ることにある。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a circuit for correcting the water-fuel ratio so as to maintain the degree of superheat so that the evaporator outlet temperature does not enter saturation.

【0020】[0020]

【課題を解決するための手段】前記課題を解決するため
に、本発明は次のような構成を採用する。
In order to solve the above problems, the present invention employs the following configuration.

【0021】火炉水壁入口より上流側の給水系統、例え
ば節炭器出口部分から各部の過熱器出口の減温器へスプ
レー注水する設備を有し、給水と燃料の比である水燃比
とスプレー注水量とで貫流運転中の蒸気温度を制御する
変圧貫流ボイラの蒸気温度制御装置であって、蒸発器の
出口流体温度の偏差により前記水燃比を修正して蒸気温
度を制御し、前記蒸発器出口温度の過熱度を確保する変
圧貫流ボイラの蒸気温度制御装置。
The system has a facility for spraying water from a water supply system upstream of the furnace water wall inlet, for example, from the outlet of the economizer to the desuperheater at the outlet of each superheater. A steam temperature control device of a variable-pressure once-through boiler for controlling steam temperature during once-through operation with a water injection amount, wherein the steam temperature is controlled by correcting the water-fuel ratio based on a deviation of an outlet fluid temperature of an evaporator. A steam temperature control unit for a variable-pressure once-through boiler that ensures the superheat of the outlet temperature.

【0022】[0022]

【発明の実施の形態】本発明の実施形態に係る変圧貫流
ボイラの蒸気温度制御装置について、図1、図2、図3
を用いて以下説明する。図1は変圧貫流ボイラの流体経
路と貫流運転中の主蒸気温度の修正状況を示す図であ
り、図2は水燃比制御に繋がる燃料量指令を作成する制
御ブロックを示す図であり、図3は本発明の実施形態に
係る主蒸気制御バイアスを作成する蒸気温度制御装置の
構成を示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A steam temperature control apparatus for a variable-pressure once-through boiler according to an embodiment of the present invention is shown in FIGS.
This will be described below. FIG. 1 is a view showing a fluid path of a variable-pressure once-through boiler and a state of correction of a main steam temperature during a once-through operation. FIG. 2 is a view showing a control block for creating a fuel amount command leading to water-fuel ratio control. FIG. 1 is a diagram showing a configuration of a steam temperature control device for creating a main steam control bias according to an embodiment of the present invention.

【0023】図1において、流体(蒸気)経路として
は、蒸発器51→汽水分離器52→一次過熱器53→二
次過熱器54→三次過熱器55→最終過熱器56を経
て、図示していないタービンへ供給される。蒸気温度を
調整するポイントとしては、一次過熱器53、二次過熱
器54及び三次過熱器55の出口部に設置した減温装置
60,61,62にスプレー水を注水して、過熱蒸気と
水を混合させて蒸気温度を制御する手法で、各過熱器で
の熱吸収量の変化に対して注水量を増減して蒸気温度を
調整している。
In FIG. 1, the fluid (steam) path is shown through an evaporator 51 → a steam separator 52 → a primary superheater 53 → a secondary superheater 54 → a tertiary superheater 55 → a final superheater 56. Not supplied to the turbine. The point at which the steam temperature is adjusted is that spray water is injected into the desuperheaters 60, 61, and 62 installed at the outlets of the primary superheater 53, the secondary superheater 54, and the tertiary superheater 55, and the superheated steam and water Is controlled by adjusting the steam temperature by changing the amount of water injected in response to changes in the amount of heat absorbed by each superheater.

【0024】貫流運転中の主蒸気温度は、水燃比とスプ
レーにてPI(比例+積分)制御されることになるが、
主蒸気温度の過渡的な変化修正は前述のスプレー(スプ
レー水の注入量)で制御し、主蒸気温度の整定時での静
的には水燃比(給水と燃費の割合)へのバイアス操作で
計画値のバランス点となるように修正して、温度を安定
させている。
The main steam temperature during the once-through operation is controlled by PI (proportional + integral) with the water-fuel ratio and the spray.
The correction of the transient change of the main steam temperature is controlled by the above-mentioned spray (spray water injection amount), and statically when the main steam temperature is settled by bias operation to the water / fuel ratio (ratio of feed water and fuel consumption). The temperature is stabilized by correcting it so that it becomes the balance point of the planned value.

【0025】また、図1において、図4に示す従来技術
における、一次過熱器、二次過熱器、三次過熱器の出口
温度の偏差を主蒸気温度制御バイアス作成に採用した場
合に、一次過熱器入口の蒸気が飽和に突入し、図3に示
す本発明の実施形態における、蒸発器出口温度の偏差を
主蒸気温度制御バイアスに採用した場合には一次過熱器
入口の蒸気が飽和に突入しないことを示している。
In FIG. 1, when the deviation of the outlet temperature of the primary superheater, the secondary superheater and the tertiary superheater in the prior art shown in FIG. If the steam at the inlet enters saturation and the deviation of the evaporator outlet temperature is employed as the main steam temperature control bias in the embodiment of the present invention shown in FIG. 3, the steam at the inlet of the primary superheater does not enter saturation. Is shown.

【0026】本発明の実施形態を示す図3によると、タ
ービン直前の蒸気に対する主蒸気温度制御は、従来と同
様に、中給からの指令(DPC)又は所内にて設定した
指令(ALR)の何れかにて設定された負荷指令200
より関数発生器2にてプログラムされた主蒸気温度設定
値(蒸発器出口過熱度を確保した修正値)と主蒸気温度
計300からの実温度MSTを減算器1で算出した偏差
に前記減算器1からの偏差を微分器6に入力してその出
力を加算器8で加えて、更に、主蒸気温度偏差にスプレ
ー流量偏差ΔSPFを加算器21にて加算した後、積分
器20に入力し、その出力を変化率制限器22を通して
主蒸気温度制御バイアスを作成する。
According to FIG. 3 showing the embodiment of the present invention, the main steam temperature control for the steam immediately before the turbine is performed in the same manner as in the prior art by the command from the middle supply (DPC) or the command (ALR) set in the plant. Load command 200 set by either
The difference between the main steam temperature set value programmed by the function generator 2 (corrected value for ensuring the degree of superheat at the evaporator outlet) and the actual temperature MST from the main steam thermometer 300 is calculated by the subtractor 1. The deviation from 1 is input to the differentiator 6 and the output thereof is added by the adder 8. Further, the spray flow rate deviation .DELTA.SPF is added to the main steam temperature deviation by the adder 21, and then input to the integrator 20, The output is passed through the rate-of-change limiter 22 to create a main steam temperature control bias.

【0027】また、燃料燃焼量変化による主蒸気温度の
応答時定数や変化量が負荷により変動するため、主蒸気
温度の偏差の積分分及び比例分について、ボイラ入力指
令(BID)から関数発生器13及び関数発生器14に
より修正を加えている。更に、前記加算器8には、ボイ
ラ入力指令(BID)から関数発生器16による補正値
を加えた比例制御信号を加算する。
Further, since the response time constant and the amount of change of the main steam temperature due to the change in the fuel combustion amount fluctuate depending on the load, the function generator for the integral and proportional components of the deviation of the main steam temperature from the boiler input command (BID). 13 and a function generator 14. Further, a proportional control signal obtained by adding a correction value by the function generator 16 from the boiler input command (BID) is added to the adder 8.

【0028】また、汽水分離器タンク圧力からのプログ
ラムにて設定された蒸発器出口温度の上限及び下限値と
蒸発器出口温度の偏差が規定値以内になるように制御す
る蒸発器過熱度制御からの修正値(ΔCEI)にボイラ
入力指令(BID)から関数発生器17による補正値を
加えた比例制御信号も加算器8において主蒸気温度制御
バイアスに加算させる。ここで、蒸発器出口過熱度補正
ΔCEIは、図2に示す燃料量指令を作成する制御ブラ
ック図において、気水分離器タンク圧力STPと蒸発器
出口温度STITに基づいて作成されるものである。
Further, the evaporator superheat control, which controls the deviation between the upper and lower limits of the evaporator outlet temperature set by the program from the steam pressure of the steam separator and the evaporator outlet temperature to be within a specified value, The proportional control signal obtained by adding the correction value of the function generator 17 from the boiler input command (BID) to the correction value (ΔCEI) of the above is also added to the main steam temperature control bias in the adder 8. Here, the evaporator outlet superheat correction ΔCEI is created based on the steam separator tank pressure STP and the evaporator outlet temperature SIT in the control black diagram for creating the fuel amount command shown in FIG.

【0029】更に、主蒸気温度偏差の比例分にスプレー
流量偏差ΔSPFを加算器22にて加算することにより
コンスタントスプレー制御を行っている。
Further, constant spray control is performed by adding the spray flow rate deviation .DELTA.SPF to the proportion of the main steam temperature deviation by the adder 22.

【0030】負荷変化中は蒸気温度の時定数が長いた
め、過渡的な温度変動を修正した場合は、負荷変化終了
後の水燃比が適正値から外れ、蒸気温度の外乱となるた
め積分器21への入力を切替器19により信号発生器2
0側にして0に切り替え、積分動作をブロックする。
Since the time constant of the steam temperature is long during the load change, if the transient temperature fluctuation is corrected, the water-fuel ratio after the end of the load change deviates from an appropriate value and becomes a disturbance of the steam temperature. The input to the signal generator 2 is switched by the switch 19
On the 0 side, switching to 0 is performed to block the integration operation.

【0031】本実施形態に係る蒸気温度制御装置が従来
技術のそれと相違する主要な点は、従来技術が主蒸気温
度の偏差の比例演算値を各過熱器出口温度偏差の総和に
て修正していた(図4の1SHOT、2SHOT、3S
HOTを参照)のに対して、蒸発器出口温度にて修正を
かけることにより、どのような熱吸収条件下においても
蒸発器出口温度が過熱度を確保するように修正が行われ
ることになるのである。即ち、蒸発器出口温度EVTの
実測値と目標負荷指令より関数発生器3にてプログラム
された蒸発器出口温度設定値(飽和に突入しない温度)
との偏差を加算器8に加算して主蒸気温度制御バイアス
を作成し、この主蒸気温度制御バイアスを図2に示す燃
料量指令FRDに適用して水燃比制御に利用するもので
ある。
The main difference of the steam temperature control apparatus according to the present embodiment from that of the prior art is that the prior art corrects the proportional calculation value of the deviation of the main steam temperature by the sum of the deviations of the outlet temperatures of the superheaters. (1SHOT, 2SHOT, 3S in FIG. 4)
(Refer to HOT), however, by making a correction at the evaporator outlet temperature, the correction will be made so that the evaporator outlet temperature will maintain the degree of superheat under any heat absorption conditions. is there. That is, the evaporator outlet temperature set value programmed by the function generator 3 from the actual measured value of the evaporator outlet temperature EVT and the target load command (the temperature that does not enter saturation)
Is added to the adder 8 to create a main steam temperature control bias, and this main steam temperature control bias is applied to the fuel amount command FRD shown in FIG. 2 and used for water-fuel ratio control.

【0032】以上説明したように、本発明の実施形態
は、蒸発器出口温度の過熱度を確保することにより、負
荷変化時においても一次過熱器入口温度の飽和域への突
入を防止することができるため過熱器の損傷を防止でき
る。
As described above, according to the embodiment of the present invention, it is possible to prevent the primary superheater inlet temperature from entering the saturation region even when the load changes, by securing the degree of superheat at the evaporator outlet temperature. Can prevent damage to the superheater.

【0033】[0033]

【発明の効果】本発明によれば、負荷変化時の水燃比バ
ランスがくずれても蒸発器出口の過熱度が確保されるこ
とにより、スプレー流量の変動に対しても一次過熱器入
口部の温度が飽和域に突入する恐れがないことにより、
過熱器チューブ損傷の防止を図ることができる。
According to the present invention, the superheat degree at the outlet of the evaporator is ensured even if the water-fuel ratio balance at the time of load change is lost. Is not likely to enter the saturation region,
It is possible to prevent the superheater tube from being damaged.

【0034】それにより、一次過熱器配管の材質の低減
を図ることもでき、抜管等による保守の軽減が図れるこ
ととなる。
Accordingly, the material of the primary superheater pipe can be reduced, and maintenance due to extubation can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】変圧貫流ボイラの流体経路と貫流運転中の主蒸
気温度の修正状況を示す図である。
FIG. 1 is a diagram showing a fluid path of a variable-pressure once-through boiler and a state of correction of a main steam temperature during a once-through operation.

【図2】水燃比制御に繋がる燃料量指令を作成する制御
ブロックを示す図である。
FIG. 2 is a diagram showing a control block for creating a fuel amount command that leads to water-fuel ratio control.

【図3】本発明の実施形態に係る主蒸気制御バイアスを
作成する蒸気温度制御装置の構成を示す図である。
FIG. 3 is a diagram illustrating a configuration of a steam temperature control device that creates a main steam control bias according to an embodiment of the present invention.

【図4】従来技術の蒸気温度制御装置の構成を示す図で
ある。
FIG. 4 is a diagram showing a configuration of a conventional steam temperature control device.

【符号の説明】[Explanation of symbols]

1,4 減算器(図3) 2,3,11,14〜18 関数発生器(図3) 5,7,9,12,13 乗算器(図3) 6 微分器(図3) 8,10,22,24 加算器(図3) 19 切替器(図3) 20 信号発生器(図3) 21 積分器(図3) 23 変化率制限器(図3) 1,4 Subtractor (FIG. 3) 2,3,11,14-18 Function Generator (FIG. 3) 5,7,9,12,13 Multiplier (FIG. 3) 6 Differentiator (FIG. 3) 8,10 , 22, 24 Adder (FIG. 3) 19 Switcher (FIG. 3) 20 Signal Generator (FIG. 3) 21 Integrator (FIG. 3) 23 Rate-of-Change Limiter (FIG. 3)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 火炉水壁入口より上流側の給水系統から
各部の過熱器出口の減温器へスプレー注水する設備を有
し、給水と燃料の比である水燃比とスプレー注水量とで
貫流運転中の蒸気温度を制御する変圧貫流ボイラの蒸気
温度制御装置であって、 蒸発器の出口流体温度の偏差により前記水燃比を修正し
て蒸気温度を制御し、前記蒸発器出口温度の過熱度を確
保することを特徴とする変圧貫流ボイラの蒸気温度制御
装置。
1. A facility for spraying water from a water supply system upstream of a furnace water wall inlet to a desuperheater at a superheater outlet in each section, wherein a water-fuel ratio, which is a ratio of feedwater to fuel, and a spray water injection amount flow through. A steam temperature control device for a variable-pressure once-through boiler for controlling a steam temperature during operation, wherein the steam temperature is controlled by correcting the water-fuel ratio based on a deviation of an outlet fluid temperature of an evaporator, and a degree of superheat of the evaporator outlet temperature. A steam temperature control device for a variable-pressure once-through boiler, characterized in that the temperature is maintained.
JP2000273351A 2000-09-08 2000-09-08 Steam temperature controller for variable pressure once-through boiler Pending JP2002081607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000273351A JP2002081607A (en) 2000-09-08 2000-09-08 Steam temperature controller for variable pressure once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000273351A JP2002081607A (en) 2000-09-08 2000-09-08 Steam temperature controller for variable pressure once-through boiler

Publications (1)

Publication Number Publication Date
JP2002081607A true JP2002081607A (en) 2002-03-22

Family

ID=18759310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000273351A Pending JP2002081607A (en) 2000-09-08 2000-09-08 Steam temperature controller for variable pressure once-through boiler

Country Status (1)

Country Link
JP (1) JP2002081607A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071166A (en) * 2004-09-01 2006-03-16 Babcock Hitachi Kk Steam temperature control device for once-through boiler
JP2015068586A (en) * 2013-09-30 2015-04-13 中国電力株式会社 Spray control device
CN105180137A (en) * 2015-10-20 2015-12-23 国家电网公司 Method for controlling saturated steam heating rate at startup heating stage of thermal power generation set

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071166A (en) * 2004-09-01 2006-03-16 Babcock Hitachi Kk Steam temperature control device for once-through boiler
JP2015068586A (en) * 2013-09-30 2015-04-13 中国電力株式会社 Spray control device
CN105180137A (en) * 2015-10-20 2015-12-23 国家电网公司 Method for controlling saturated steam heating rate at startup heating stage of thermal power generation set

Similar Documents

Publication Publication Date Title
US20080302102A1 (en) Steam Temperature Control in a Boiler System Using Reheater Variables
US20120036852A1 (en) Dynamic tuning of dynamic matrix control of steam temperature
US11092332B2 (en) Once-through evaporator systems
JP2010223579A (en) Single loop temperature regulation control mechanism
CA1244250A (en) Automatic control system for thermal power plant
US11092331B2 (en) Once-through evaporator systems
JP2002081607A (en) Steam temperature controller for variable pressure once-through boiler
US11242987B2 (en) Once-through evaporator systems
US11506378B2 (en) Once-through evaporator systems
JP2006071166A (en) Steam temperature control device for once-through boiler
JP4637943B2 (en) Control method of pressurized fluidized bed boiler
JP3755910B2 (en) Water injection control device for reheat steam desuperheater
JP2002323203A (en) Vapor temperature control method and device for once- through boiler
USRE35776E (en) Automatic control system for thermal power plant
JPH0754611A (en) Denitration control device
JP2511400B2 (en) Steam temperature control method for once-through boiler
JPS621162B2 (en)
JPH0318082B2 (en)
JPS62245009A (en) Automatic controller for boiler
JP2708592B2 (en) Boiler startup temperature rise control device
JPH0214599B2 (en)
JP2521709B2 (en) Steam temperature controller
JPH0238843B2 (en)
JPH0755109A (en) Multistage spray controller for once-through boiler
JPH01127806A (en) Boiler steam temperature controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519