JP2002323203A - Vapor temperature control method and device for once- through boiler - Google Patents

Vapor temperature control method and device for once- through boiler

Info

Publication number
JP2002323203A
JP2002323203A JP2001127665A JP2001127665A JP2002323203A JP 2002323203 A JP2002323203 A JP 2002323203A JP 2001127665 A JP2001127665 A JP 2001127665A JP 2001127665 A JP2001127665 A JP 2001127665A JP 2002323203 A JP2002323203 A JP 2002323203A
Authority
JP
Japan
Prior art keywords
steam temperature
superheater
final
temperature
superheaters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001127665A
Other languages
Japanese (ja)
Other versions
JP4453858B2 (en
Inventor
Moriji Miyake
盛士 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2001127665A priority Critical patent/JP4453858B2/en
Publication of JP2002323203A publication Critical patent/JP2002323203A/en
Application granted granted Critical
Publication of JP4453858B2 publication Critical patent/JP4453858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vapor temperature control method and control device for a once-through boiler, in which main vapor temperature is controlled in a stable manner even under a great change of load between a sprayed water control loop of a final superheat reduction device and a fuel flow control loop. SOLUTION: The final desuperheater spray water control loop controls the outlet vapor temperature (main vapor temperature) of a final super-heater and the fuel flow control loop controls the front flow side temperature of the final desuperheater device. When heat is apt to be insufficient to lower the vapor temperature, the main vapor temperature is controlled, by the immediately effective desuperheater spray water control loop to be stable. However, the front flow side temperature of final desuperheater falls due to the feature of the once-through boiler that the front flow side temperature at a position where the sprayed water is supplied falls, when the sprayed water is decreased, in addition to a tendency that the temperature falls due to the shortage of heat by a burner. The fuel flow is increased by the fuel flow control loop for controlling it, which can contribute to the substantial recovery of thermal balance and the main vapor temperature can be controlled in a stable manner. When hart is excessive and temperature is a tendency to rise, effects are reverse to the above.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に主蒸気温度の
安定性を高めるのに好適な貫流ボイラの蒸気温度制御方
法と装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for controlling the steam temperature of a once-through boiler, which is particularly suitable for improving the stability of the main steam temperature.

【0002】[0002]

【従来の技術】従来の貫流ボイラの過熱蒸気温度制御機
構図を図2に示す。蒸発器(火炉伝熱壁も含む)1と上
流過熱器群2と最終過熱器5が順次配置された貫流ボイ
ラの主幹系統において、上流過熱器群2と最終過熱器5
の間に最終過熱低減器4が配置され、最終過熱器5の下
流側には過熱低減器は設けられておらず、前記最終過熱
低減器4で温度調節された蒸気がボイラ蒸気供給先装置
(蒸気タービン等)7の蒸気の需要先の装置が設けられ
ている。
2. Description of the Related Art FIG. 2 shows a conventional superheated steam temperature control mechanism of a once-through boiler. In the main system of a once-through boiler in which an evaporator (including a furnace heat transfer wall) 1, an upstream superheater group 2, and a final superheater 5 are sequentially arranged, an upstream superheater group 2 and a final superheater 5 are provided.
The final superheat reducer 4 is disposed between the first and second superheaters, and no superheat reducer is provided downstream of the final superheater 5. The steam whose temperature has been adjusted by the final superheat reducer 4 is supplied to the boiler steam supply device ( A steam turbine etc. 7) is provided.

【0003】従来の貫流ボイラの過熱蒸気温度制御は、
最終過熱器出口蒸気温度計6の測定値とボイラ負荷指令
51に基づく関数発生器52の出力値を減算器53で減
算して比例積分調節器54で調節する積分動作を伴った
フィードバック制御により、燃料流量調節操作端31を
調節してバーナ32での燃料の燃焼量を制御していた。
[0003] The conventional superheated steam temperature control of a once-through boiler is as follows.
The feedback control with the integral operation of subtracting the output value of the function generator 52 based on the measured value of the final superheater outlet steam thermometer 6 and the output value of the function generator 52 based on the boiler load command 51 by the subtractor 53 and adjusting by the proportional-integral controller 54, The amount of fuel burned by the burner 32 was controlled by adjusting the fuel flow rate adjusting operation end 31.

【0004】また、貫流ボイラ配管の主幹系統(水およ
び蒸気系統)の蒸発器1と上流過熱器群2とを迂回して
最終過熱低減器4に給水の一部を補水してスプレーノズ
ルからスプレー水として供給する最終過熱低減器スプレ
ー水配管8を設け、該スプレー水の流量調節操作端9の
増減によりスプレー水流量を調節する構成としている。
前記流量調節操作端9によるスプレー水流量の調節は最
終過熱器出口蒸気温度計6の測定値を用いてボイラ負荷
指令51に基づく関数発生器55の出力値を減算器56
で減算して比例積分調節器57で調節する積分動作を伴
ったフィードバック制御により行っている。
In addition, a part of the feed water is supplied to the final desuperheater 4 by bypassing the evaporator 1 and the upstream superheater group 2 of the main system (water and steam system) of the once-through boiler pipe and sprayed from the spray nozzle. A spray water pipe 8 is provided as a final superheat reducer to be supplied as water, and the flow rate of the spray water is adjusted by increasing or decreasing the flow rate adjusting operation end 9 of the spray water.
The control of the spray water flow rate by the flow rate control operation end 9 uses the measured value of the final superheater outlet steam thermometer 6 to subtract the output value of the function generator 55 based on the boiler load command 51 by a subtractor 56.
Is performed by feedback control with an integral operation of adjusting by the proportional-integral adjuster 57 by subtracting.

【0005】上記従来の技術では、最終過熱器出口蒸気
温度(主蒸気温度)の変動を、まず蒸気中に直接スプレ
ー水をスプレーすることから即効性の高い最終過熱低減
器スプレー水の制御ループにより修正し、長期的には最
終過熱器出口蒸気温度のバランス値を決める燃料流量制
御ループにより、規定値に制御する考え方である。
In the above prior art, the fluctuation of the steam temperature (main steam temperature) at the outlet of the final superheater is controlled by a control loop of the spray water of the final superheat reducing device having a high immediate effect because the spray water is sprayed directly into the steam. The concept is to adjust the temperature to a specified value by a fuel flow rate control loop that determines the balance value of the final superheater outlet steam temperature in the long term.

【0006】すなわち、最終過熱器出口蒸気温度は、下
流側の蒸気タービン等、蒸気の需要先が要求する温度範
囲に調節されなければならないが、それには即効性のあ
るスプレー水が効果的である。しかしながら、上流側か
らの蒸気温度変動の要因が取り除かれたものではないた
め、何らかの調節が必要である。
That is, the final superheater outlet steam temperature must be adjusted to a temperature range required by a steam demander such as a downstream steam turbine, and spray water having an immediate effect is effective for that purpose. . However, some adjustment is necessary because the factor of the steam temperature fluctuation from the upstream side has not been removed.

【0007】具体的には、スプレー水を蒸発器1への給
水の一部を抽水しているため、抽水を増やした場合には
蒸発器1への給水が減少し、このためボイラの火炉内で
の燃料の燃焼によって発生した燃焼ガスと、その排ガス
が流れる煙道部に配置された蒸発器1における熱吸収量
が減少し、煙道部の上流側に配設された過熱器群2にお
ける熱吸収量が増大するため、最終過熱器出口蒸気温度
は時間とともにスプレー水で調節する前の温度に戻るこ
とになる。スプレー水を減少させた場合は、この逆であ
る。
[0007] Specifically, since a part of the water supplied to the evaporator 1 is sprayed as spray water, the amount of water supplied to the evaporator 1 decreases when the amount of water extracted is increased. The amount of heat absorbed by the combustion gas generated by the combustion of the fuel in the evaporator 1 disposed in the flue portion through which the exhaust gas flows and the amount of heat absorbed by the evaporator 1 is reduced, and the superheater group 2 disposed on the upstream side of the flue portion Due to the increased heat absorption, the final superheater outlet steam temperature will return to the temperature before conditioning with spray water over time. The converse is true if the spray water is reduced.

【0008】しかし、変化幅の大きい負荷変化などの主
蒸気温度のバランスを崩す要因が継続的に作用し続ける
場合は、主蒸気温度に即応性の高い過熱低減器スプレー
水の制御ループに存在する積分調節器57がこれを吸収
し続け、その間見かけの主蒸気温度が変動しないため、
最終的な主蒸気温度のバランスを決める燃料流量の修正
は行われない。そして、スプレー水がゼロ(スプレー水
を減少させた場合)、または、容量限度に到達した直後
に積分調節器57による吸収が行われなくなるため、主
蒸気温度の急激な低下または上昇が起こり、その時点か
らは燃料流量の修正が行われるが、効き始めるのが遅い
ために手遅れとなり、主蒸気温度の大幅な低下または上
昇を引き起こし、蒸気を需要する側の要求範囲外とな
り、重大事故を生じることにもつながる。
[0008] However, when a factor that disturbs the balance of the main steam temperature such as a load change having a large change width continues to act, it exists in the control loop of the superheat reducer spray water that is highly responsive to the main steam temperature. Since the integral controller 57 continues to absorb this while the apparent main steam temperature does not fluctuate,
No fuel flow correction is made to balance the final main steam temperature. Then, since the absorption by the integral controller 57 is not performed immediately after the spray water becomes zero (when the spray water is reduced) or the capacity limit is reached, the main steam temperature sharply decreases or rises. From the point in time, the fuel flow rate will be corrected, but it will be too late to take effect, causing a significant drop or increase in the main steam temperature, falling outside the required range of the steam demander, and causing a serious accident. Also leads to.

【0009】[0009]

【発明が解決しようとする課題】上記した従来の技術
は、同じプロセス値である主蒸気温度から最終過熱低減
器スプレー水制御ループと燃料流量制御ループという異
なる2つの積分動作を伴うフィードバック制御ループを
構成したことにより、変化幅の大きい負荷変化などが作
用し続けると主蒸気温度の大幅な低下または上昇を引き
起こすという問題があった。
The above-mentioned prior art uses a feedback control loop with two different integral operations of a final superheater spray water control loop and a fuel flow rate control loop from the same process value of the main steam temperature. With this configuration, there is a problem that if a load change or the like having a large change width continues to act, the main steam temperature is greatly reduced or increased.

【0010】本発明の課題は、最終過熱低減器スプレー
水制御ループと燃料流量制御ループの変化幅の大きい負
荷変化でも主蒸気温度を安定に制御する貫流ボイラの蒸
気温度制御方法と制御装置を提供することである。
An object of the present invention is to provide a steam temperature control method and a control device for a once-through boiler for stably controlling the main steam temperature even in a load change in which a final superheat reducer spray water control loop and a fuel flow rate control loop have a large change width. It is to be.

【0011】[0011]

【課題を解決するための手段】上記した従来の技術の課
題を解決するため、本発明は上記2つの制御ループがそ
れぞれ別のプロセス値を制御するような構成にした。す
なわち、最終過熱器低減器スプレー水制御ループは最終
過熱器出口蒸気温度(主蒸気温度)を制御し、燃料流量
制御ループは最終過熱低減器前流側温度を制御する構成
にした。
In order to solve the above-mentioned problems of the prior art, the present invention has a configuration in which the two control loops control different process values. That is, the final superheater reducer spray water control loop controls the final superheater outlet steam temperature (main steam temperature), and the fuel flow control loop controls the final superheat reducer upstream side temperature.

【0012】すなわち、本発明は次の(1)、(2)の
構成からなる。 (1)複数の過熱器を直列配置し、該複数の過熱器の中
の最下流側の最終過熱器とその前流側の過熱器との間に
前記複数の過熱器の中の最上流側の過熱器より上流側の
水供給配管から複数の過熱器をバイパスしてスプレー水
を供給する過熱低減器を接続し、さらに前記複数の過熱
器を過熱するためのバーナに燃料を供給する燃料配管を
備えた貫流ボイラの蒸気温度制御方法において、最終過
熱器の出口蒸気温度に基づいたフィードバック制御によ
り、前記過熱低減器へ供給するスプレー水の流量を調節
して、最終過熱器の出口蒸気温度を制御し、更に過熱低
減器前流側の蒸気温度に基づいたフィードバック制御に
より、バーナへの燃料流量を調節して、過熱低減器前流
側の蒸気温度を制御する貫流ボイラの蒸気温度制御方法
である。上記発明は、より具体的には、最終過熱器の出
口蒸気温度とボイラ負荷指令値に対応する値との偏差に
基づき最終過熱器の出口蒸気温度をフィードバック制御
し、過熱低減器前流側の蒸気温度とボイラ負荷指令値に
対応する値との偏差に基づき過熱低減器前流側の蒸気温
度をフィードバック制御する方法である。
That is, the present invention comprises the following constitutions (1) and (2). (1) A plurality of superheaters are arranged in series, and the most upstream side of the plurality of superheaters is located between the last downstream superheater and the upstream superheater among the plurality of superheaters. A fuel pipe for supplying fuel to a burner for superheating the plurality of superheaters, connecting a superheat reducer for supplying spray water by bypassing the plurality of superheaters from a water supply pipe upstream of the superheater. In the once-through boiler steam temperature control method comprising, by feedback control based on the outlet steam temperature of the final superheater, the flow rate of spray water supplied to the superheat reducer is adjusted, and the outlet steam temperature of the final superheater is adjusted. And a feedback control based on the steam temperature on the upstream side of the superheat reducer to adjust the fuel flow rate to the burner to control the steam temperature on the upstream side of the superheat reducer. is there. More specifically, the present invention feedback-controls the outlet steam temperature of the final superheater based on the difference between the outlet steam temperature of the final superheater and a value corresponding to the boiler load command value, and controls the upstream side of the superheat reducer. This is a method of feedback-controlling the steam temperature on the upstream side of the superheat reducer based on the difference between the steam temperature and a value corresponding to the boiler load command value.

【0013】(2)配管に直列配置された複数の過熱器
と、前記複数の過熱器の中の最下流側の最終過熱器とそ
の前流側の過熱器との間に前記複数の過熱器の中の最上
流側の過熱器より上流側から複数の過熱器をバイパスし
て接続されたスプレー水を供給する過熱低減器と、前記
複数の過熱器を過熱するための燃料配管と、その先端部
に設けられたバーナとを備えた貫流ボイラの蒸気温度制
御装置において、最終過熱器の出口蒸気温度を測定する
最終過熱器の出口温度計と、ボイラ負荷指令値に基づい
て関数を発生させる第一の関数発生器と、前記最終過熱
器の出口蒸気温度計の測定値と前記第一の関数発生器の
出力値との偏差を演算する第一の減算器と、該第一の減
算器で得られた偏差値に基づき応答信号が発生する第一
の調節器(比例積分する第一の比例積分調節器)と、該
第一の調節器(第一の比例積分調節器)の出力に基づき
前記過熱低減器へ供給するスプレー水を増減させるスプ
レー水の流量調節操作端と、前記過熱低減器前流側の蒸
気温度を測定する蒸気温度計と、ボイラ負荷指令値に基
づき関数を発生させる第二の関数発生器と、前記過熱低
減器前流側の蒸気温度計の測定値と前記第二の関数発生
器の出力値との偏差を演算する第二の減算器と、該第二
の減算器で得られた偏差値に基づき応答信号が発生する
第二の調節器(比例積分する第二の比例積分調節器)
と、該第二の調節器(第二の比例積分調節器)の出力に
基づき燃料配管に設けられた燃料供給量を調節する燃料
流量調節操作端とを備えた貫流ボイラの蒸気温度制御装
置。
(2) A plurality of superheaters arranged in series in a pipe, and the plurality of superheaters between the last superheater on the most downstream side and the superheater on the upstream side of the plurality of superheaters. A superheat reducer for supplying spray water connected by bypassing the plurality of superheaters from the upstream side of the most upstream side superheater, a fuel pipe for superheating the plurality of superheaters, and a tip thereof In the steam temperature control device for a once-through boiler provided with a burner provided in the section, an outlet thermometer for measuring the outlet steam temperature of the final superheater, and a function for generating a function based on the boiler load command value. A first function generator, a first subtractor that calculates a deviation between a measured value of the outlet steam thermometer of the final superheater and an output value of the first function generator, and the first subtractor. A first controller (proportional product) in which a response signal is generated based on the obtained deviation value A first proportional-integral controller), and a spray-water flow control operation end for increasing / decreasing spray water supplied to the overheat reducer based on an output of the first controller (first proportional-integral controller). A steam thermometer for measuring the steam temperature on the upstream side of the superheat reducer, a second function generator for generating a function based on the boiler load command value, and a measurement of the steam thermometer on the upstream side of the superheat reducer. A second subtractor for calculating a deviation between the value and the output value of the second function generator, and a second controller (for generating a response signal based on the deviation obtained by the second subtractor). Second proportional-integral controller for proportional integration)
And a fuel flow rate control operation end provided in the fuel pipe based on the output of the second regulator (second proportional-integral regulator) to control the fuel supply amount.

【0014】なお、本発明において燃料流量制御ループ
の制御対象を単に過熱低減器の前流の蒸気温度とせず
に、特に最終過熱低減器前流の蒸気温度としたのは、以
下の理由を考慮したためである。 (a)主蒸気温度制御装置としての最終的な制御対象で
ある最終過熱器出口にできるだけ近い箇所の蒸気温度を
測定することで、流体経路の上流側に配置した過熱器で
受けた制御外乱も含めて検知し、しかるべき制御動作に
よりこれを修正することができ、本発明の主蒸気温度の
制御の目的により一層かなう。 (b)過熱器を流れる蒸気には、温度が高い領域ほど比
熱が低い(別の言い方をすると同じ比エンタルピ変動量
に対して温度の変動幅が大きい)特性があるので、同じ
熱的な外乱を受けても過熱器の後流側で測定した方が蒸
気温度の変動を顕著に検知することができ、本発明の課
題のように即効性が要求される場合については、制御対
象としてより好都合である。
In the present invention, the control target of the fuel flow control loop is not simply the steam temperature in the upstream of the superheat reducer, but the steam temperature in the upstream of the final superheat reducer. Because he did. (A) By measuring the steam temperature as close as possible to the final superheater outlet, which is the final control target as the main steam temperature control device, the control disturbance received by the superheater arranged on the upstream side of the fluid path is also reduced. This can be detected and corrected by appropriate control actions, which is better served by the purpose of controlling the main steam temperature of the present invention. (B) Since the steam flowing through the superheater has the characteristic that the higher the temperature is, the lower the specific heat is (in other words, the fluctuation of the temperature is large with respect to the same specific enthalpy fluctuation), the same thermal disturbance Even if the temperature is measured on the downstream side of the superheater, the fluctuation of the steam temperature can be detected more remarkably, and in the case where immediate effect is required as in the problem of the present invention, it is more convenient as a control object. It is.

【0015】[0015]

【作用】本発明により、例えば加熱量が不足して蒸気温
度が低下する傾向にあるとき、主蒸気温度は即効性のあ
る過熱低減器スプレー水制御ループによってスプレー水
を減少することにより制御され、安定に推移する。しか
し、バーナによる加熱量が不足していることによる温度
低下傾向に加えて、スプレー水が減少すると、その前流
側の蒸気温度が低下するという貫流ボイラの特徴が合わ
さり、最終過熱低減器の前流側の蒸気温度は低下する
が、これを制御する燃料流量制御ループにより燃料流量
が増加され、本質的な熱バランスの回復に寄与すること
ができ、安定な主蒸気温度制御が期待できる。また、加
熱量が過剰で蒸気温度が上昇する傾向であるときは、こ
の逆である。
According to the invention, the main steam temperature is controlled by reducing the spray water by means of a rapid-acting superheat reducer spray water control loop, for example, when the steam temperature tends to decrease due to insufficient heating, Transition to stable. However, in addition to the tendency of temperature decrease due to insufficient heating by the burner, the characteristics of once-through boilers, in which the steam temperature on the upstream side decreases when spray water decreases, combine with the characteristics of the once-through boiler before the final desuperheater. Although the steam temperature on the downstream side drops, the fuel flow rate is increased by the fuel flow rate control loop that controls this, which can contribute to the recovery of the essential heat balance, and stable main steam temperature control can be expected. When the heating amount is excessive and the steam temperature tends to increase, the reverse is true.

【0016】[0016]

【発明の実施の形態】本発明の貫流ボイラの過熱蒸気温
度制御機構の実施の形態について図1と共に説明する。
図1では図2に示す従来の過熱蒸気温度制御機構と同様
に、蒸発器1と上流過熱器群2と最終過熱器5が順次配
置された貫流ボイラ配管の主幹系統において、上流過熱
器群2と最終過熱器5の間に最終過熱低減器4が配置さ
れ、最終過熱器5の下流側には過熱低減器は設けられて
おらず、前記最終過熱低減器4で温度調節された蒸気が
ボイラ蒸気供給先装置(蒸気タービン等)7の蒸気の需
要先の装置が設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a superheated steam temperature control mechanism for a once-through boiler according to the present invention will be described with reference to FIG.
1, in the main system of the once-through boiler pipe in which the evaporator 1, the upstream superheater group 2 and the final superheater 5 are sequentially arranged, as in the conventional superheated steam temperature control mechanism shown in FIG. The final superheater 4 is disposed between the final superheater 5 and the final superheater 5, and the superheat reducer is not provided downstream of the final superheater 5. A steam supply destination device (steam turbine or the like) 7 is provided with a device for demanding steam.

【0017】上記過熱蒸気温度制御機構では、ボイラ負
荷指令51により関数発生器55で定まる最終過熱器出
口蒸気温度設定値と最終過熱器出口蒸気温度計6での測
定温度とを減算器56により突き合わせ、比例積分調節
器57により調節信号を発信し、その信号で最終過熱低
減器スプレー水流量調節操作端9のポジションを操作す
る。最終過熱低減器スプレー水配管8を流れるスプレー
水の流量は、その配管8の途中に設けた最終過熱低減器
スプレー水流量調節操作端9の増減により調節され、最
終過熱器5の前流側に設けられた最終過熱低減器4を通
して主幹系統に注水され、蒸気温度の増減に寄与する。
すなわち、先に述べたようにスプレー水の注水量が多く
なると、一時的であるが最終過熱器出口蒸気温度計6で
測定される最終過熱器出口蒸気温度を下げ、逆にスプレ
ー水の注水量が少なくなると一時的に温度を上昇させ
る。
In the above superheated steam temperature control mechanism, the set value of the final superheater outlet steam temperature determined by the function generator 55 based on the boiler load command 51 and the temperature measured by the final superheater outlet steam thermometer 6 are compared by a subtractor 56. , A control signal is transmitted by the proportional-integral controller 57, and the position of the final superheat reducer spray water flow rate control operation end 9 is operated by the control signal. The flow rate of the spray water flowing through the final superheat reducer spray water pipe 8 is adjusted by increasing / decreasing the final superheat reducer spray water flow rate adjusting operation end 9 provided in the middle of the pipe 8, and is provided upstream of the final superheater 5. Water is injected into the main system through the provided final superheat reducer 4 and contributes to increase and decrease of the steam temperature.
That is, as described above, when the injection amount of the spray water is increased, the temporary superheater outlet steam temperature measured by the final superheater outlet steam thermometer 6 is temporarily reduced, and conversely, the spray water injection amount is increased. When the temperature decreases, the temperature is temporarily increased.

【0018】図1に示す過熱蒸気温度制御機構で図2に
示す従来の過熱蒸気温度制御機構と異なる所は、上流過
熱器群2と最終過熱低減器4の間に最終過熱低減器前流
側温度計3を設けたことと、ボイラ負荷指令51に基づ
く関数発生器52の出力値と前記最終過熱低減器前流側
温度計3で得られた測定値により減算器53で減算処理
して得られた偏差値に基づき比例積分調節器54で積分
動作を伴ったフィードバック制御により燃料流量調節操
作端31を調節してバーナ32での燃料の燃焼量を制御
することである。
The superheated steam temperature control mechanism shown in FIG. 1 is different from the conventional superheated steam temperature control mechanism shown in FIG. 2 in that a upstream side of the final superheat reducer is located between the upstream superheater group 2 and the final superheat reducer 4. The subtractor 53 subtracts the thermometer 3 from the output value of the function generator 52 based on the boiler load command 51 and the measured value obtained by the thermometer 3 on the upstream side of the final superheat reducer. In other words, the proportional-integral adjuster 54 controls the fuel flow rate adjusting operation end 31 by feedback control with an integral operation based on the deviation value to control the amount of fuel burned by the burner 32.

【0019】図1に示す構成により、例えば負荷変化な
どで過熱蒸気温度が上昇する方向に外乱を生じたことを
考えたとき、最終過熱器出口蒸気温度計6で測定される
温度が上昇し、減算器56の出力信号は相対的にプラス
方向に動作し、それを受けて比例積分調節器57は出力
信号を増加する方向に動作する。この信号を受けて最終
過熱低減器スプレー水流量調節操作端9の開度を増し、
一時的には蒸気の冷却効果が効いて、最終過熱低減器4
の後流側に位置する最終過熱器出口蒸気温度計6での測
定温度は低下し、スプレー水による制御は遅れが少な
く、応答性が良いことから、最終過熱器出口蒸気温度と
しては比較的速やかに該述の外乱によって上昇した値を
元に戻すことができ、安定な制御が継続する。
With the configuration shown in FIG. 1, when a disturbance is generated in a direction in which the superheated steam temperature rises due to, for example, a load change, the temperature measured by the final superheater outlet steam thermometer 6 rises. The output signal of the subtractor 56 operates relatively in the positive direction, and accordingly, the proportional-integral controller 57 operates in the direction of increasing the output signal. In response to this signal, the degree of opening of the final superheat reducer spray water flow control operation end 9 is increased,
Temporarily the steam cooling effect is effective, and the final superheat reducer 4
Since the temperature measured by the final superheater outlet steam thermometer 6 located on the downstream side of the heater decreases, the control by the spray water has little delay and the response is good, the final superheater outlet steam temperature is relatively quick. Then, the value increased by the above-described disturbance can be returned to the original value, and stable control is continued.

【0020】一方、外乱により最終過熱器前流側温度計
3での測定温度も上昇するが、更に最終過熱低減器スプ
レー水の増加で主幹系統を流れる蒸気流量が減少するの
で、最終過熱低減器前流側温度は更に上昇し、この温度
上昇が顕著な形で検出できることになる。最終過熱低減
器前流側温度計3での測定温度の信号が上昇し、減算器
53の出力信号は相対的にマイナス方向(減算器53の
プラス、マイナスの方向に注意)に動作し、それを受け
て比例積分調節器54は出力信号を減少する方向に動作
する。この信号を受けて燃料流量調節操作端31は燃料
流量を絞り、バーナー32の燃焼量が減じられ、蒸気温
度の長期的なバランス変動を低減する方向に引き戻すよ
うに作用する。
On the other hand, the temperature measured by the thermometer 3 on the upstream side of the final superheater also rises due to disturbance, but the flow rate of steam flowing through the main system decreases due to an increase in the spray water of the final superheat reducer. The upstream temperature further increases, and this temperature increase can be detected in a remarkable manner. The signal of the temperature measured by the thermometer 3 on the upstream side of the final superheat reducer 3 rises, and the output signal of the subtractor 53 operates relatively in the minus direction (note the plus and minus directions of the subtractor 53). In response, the proportional-integral controller 54 operates in a direction to decrease the output signal. In response to this signal, the fuel flow rate adjusting operation end 31 acts to reduce the fuel flow rate, reduce the combustion amount of the burner 32, and return the steam temperature to the direction of reducing the long-term balance fluctuation of the steam temperature.

【0021】[0021]

【発明の効果】本発明によれば、ボイラ熱バランスの変
動を燃料流量制御ループが的確に捉え、動作すること
で、主蒸気温度の安定な制御に効果がある。
According to the present invention, the fluctuation of the boiler heat balance is accurately detected and operated by the fuel flow control loop, so that the main steam temperature can be stably controlled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態の貫流ボイラの過熱蒸気
温度制御機構を示す図である。
FIG. 1 is a diagram showing a superheated steam temperature control mechanism of a once-through boiler according to an embodiment of the present invention.

【図2】 従来技術による貫流ボイラの過熱蒸気温度制
御機構を示す図である。
FIG. 2 is a diagram illustrating a superheated steam temperature control mechanism of a once-through boiler according to the related art.

【符号の説明】[Explanation of symbols]

1 蒸発器(火炉伝熱壁も含む) 2 上流過熱
器群 3 最終過熱低減器前流側温度計 4 最終過熱
低減器 5 最終過熱器 6 最終過熱
器出口蒸気温度計 7 ボイラ蒸気供給先装置(蒸気タービン等) 8 最終過熱低減器スプレー水配管 9 スプレー
水の流量調節操作端 31 燃料流量調節操作端 32 バーナ 51 ボイラ負荷指令 52、55
関数発生器 53、56 減算器 54、57
比例積分調節器
1 Evaporator (including furnace heat transfer wall) 2 Upstream superheater group 3 Final superheat reducer upstream thermometer 4 Final superheat reducer 5 Final superheater 6 Final superheater outlet steam thermometer 7 Boiler steam supply device ( 8 Spray water piping for final superheat reducer 9 Spray water flow control operation terminal 31 Fuel flow control operation terminal 32 Burner 51 Boiler load command 52, 55
Function generators 53, 56 Subtractors 54, 57
Proportional integral controller

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の過熱器を直列配置し、該複数の過
熱器の中の最下流側の最終過熱器とその前流側の過熱器
との間に前記複数の過熱器の中の最上流側の過熱器より
上流側の水供給配管から複数の過熱器をバイパスしてス
プレー水を供給する過熱低減器を接続し、さらに前記複
数の過熱器を過熱するためのバーナに燃料を供給する燃
料配管を備えた貫流ボイラの蒸気温度制御方法におい
て、 最終過熱器の出口蒸気温度に基づいたフィードバック制
御により、前記過熱低減器へ供給するスプレー水の流量
を調節して、最終過熱器の出口蒸気温度を制御し、更に
過熱低減器前流側の蒸気温度に基づいたフィードバック
制御により、バーナへの燃料流量を調節して、過熱低減
器前流側の蒸気温度を制御することを特徴とする貫流ボ
イラの蒸気温度制御方法。
1. A plurality of superheaters are arranged in series, and a most superheater of the plurality of superheaters is disposed between a most downstream superheater and a superheater upstream of the plurality of superheaters. A superheat reducer that supplies spray water by bypassing a plurality of superheaters from a water supply pipe upstream of the upstream superheater is connected, and further supplies fuel to a burner for superheating the plurality of superheaters. In a once-through boiler steam temperature control method provided with a fuel pipe, the flow rate of spray water supplied to the superheat reducer is adjusted by feedback control based on the outlet steam temperature of the final superheater, and the outlet steam of the final superheater is adjusted. A once-through flow characterized by controlling the temperature, and further controlling the fuel flow to the burner by feedback control based on the steam temperature on the upstream side of the superheat reducer to control the steam temperature on the upstream side of the superheat reducer. Boiler steam temperature Your way.
【請求項2】 最終過熱器の出口蒸気温度とボイラ負荷
指令値に対応する値との偏差に基づき最終過熱器の出口
蒸気温度をフィードバック制御し、過熱低減器前流側の
蒸気温度とボイラ負荷指令値に対応する値との偏差に基
づき過熱低減器前流側の蒸気温度をフィードバック制御
することを特徴とする請求項1記載の貫流ボイラの蒸気
温度制御方法。
2. A feedback control of an outlet steam temperature of the final superheater based on a difference between an outlet steam temperature of the final superheater and a value corresponding to the boiler load command value, so that a steam temperature and a boiler load upstream of the superheat reducer are provided. 2. The steam temperature control method for a once-through boiler according to claim 1, wherein the steam temperature on the upstream side of the superheat reducer is feedback-controlled based on a deviation from a value corresponding to the command value.
【請求項3】 配管に直列配置された複数の過熱器と、
前記複数の過熱器の中の最下流側の最終過熱器とその前
流側の過熱器との間に前記複数の過熱器の中の最上流側
の過熱器より上流側から複数の過熱器をバイパスして接
続されたスプレー水を供給する過熱低減器と、前記複数
の過熱器を過熱するための燃料配管と、その先端部に設
けられたバーナとを備えた貫流ボイラの蒸気温度制御装
置において、 最終過熱器の出口蒸気温度を測定する最終過熱器の出口
蒸気温度計と、 ボイラ負荷指令値に基づいて関数を発生させる第一の関
数発生器と、 前記最終過熱器の出口蒸気温度計の測定値と前記第一の
関数発生器の出力値との偏差を演算する第一の減算器
と、 該第一の減算器で得られた偏差値に基づき応答信号が発
生する第一の調節器と、 該第一の調節器の出力値に基づき前記過熱低減器へ供給
するスプレー水を増減させるスプレー水の流量調節操作
端と、 前記過熱低減器前流側の蒸気温度を測定する蒸気温度計
と、 ボイラ負荷指令値に基づき関数を発生させる第二の関数
発生器と、 前記過熱低減器前流側の蒸気温度計の測定値と前記第二
の関数発生器の出力値との偏差を演算する第二の減算器
と、 該第二の減算器で得られた偏差値に基づき応答信号が発
生する第二の調節器と、 該第二の調節器の出力値に基づき燃料配管に設けられた
燃料供給量を調節する燃料流量調節操作端と、を備えた
ことを特徴とする貫流ボイラの蒸気温度制御装置。
3. A plurality of superheaters arranged in series in a pipe,
A plurality of superheaters from the upstream of the most upstream superheater in the plurality of superheaters between the most downstream final superheater and the upstream superheater in the plurality of superheaters. In a steam temperature control device for a once-through boiler comprising a superheat reducer for supplying spray water connected by bypass, a fuel pipe for superheating the plurality of superheaters, and a burner provided at a tip end thereof. An outlet steam thermometer of the final superheater for measuring the outlet steam temperature of the final superheater; a first function generator for generating a function based on the boiler load command value; and an outlet steam thermometer of the final superheater. A first subtractor for calculating a deviation between a measured value and an output value of the first function generator; a first controller for generating a response signal based on the deviation obtained by the first subtractor And supplying the superheat reducer based on the output value of the first controller. A spray water flow control operation end for increasing or decreasing the spray water, a steam thermometer for measuring a steam temperature on the upstream side of the superheat reducer, and a second function generator for generating a function based on a boiler load command value. A second subtractor for calculating a deviation between a measured value of the steam thermometer upstream of the superheat reducer and an output value of the second function generator; and a deviation obtained by the second subtractor. A second regulator that generates a response signal based on the value, and a fuel flow rate adjusting operation end that adjusts a fuel supply amount provided in the fuel pipe based on an output value of the second regulator. A steam temperature controller for once-through boilers.
JP2001127665A 2001-04-25 2001-04-25 Steam temperature control method and apparatus for once-through boiler Expired - Fee Related JP4453858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001127665A JP4453858B2 (en) 2001-04-25 2001-04-25 Steam temperature control method and apparatus for once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001127665A JP4453858B2 (en) 2001-04-25 2001-04-25 Steam temperature control method and apparatus for once-through boiler

Publications (2)

Publication Number Publication Date
JP2002323203A true JP2002323203A (en) 2002-11-08
JP4453858B2 JP4453858B2 (en) 2010-04-21

Family

ID=18976492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001127665A Expired - Fee Related JP4453858B2 (en) 2001-04-25 2001-04-25 Steam temperature control method and apparatus for once-through boiler

Country Status (1)

Country Link
JP (1) JP4453858B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183068A (en) * 2006-01-10 2007-07-19 Babcock Hitachi Kk Once-through exhaust heat recovery boiler
JP2008032367A (en) * 2006-07-31 2008-02-14 Babcock Hitachi Kk Control method for once-through waste heat recovery boiler
JP2009168373A (en) * 2008-01-17 2009-07-30 Samson Co Ltd Superheated steam apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6461525B2 (en) * 2014-09-11 2019-01-30 株式会社東芝 Steam temperature control device, steam temperature control method, and power generation system
JP7465641B2 (en) 2019-08-14 2024-04-11 三菱重工業株式会社 Once-through boiler control device, power plant, and once-through boiler control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183068A (en) * 2006-01-10 2007-07-19 Babcock Hitachi Kk Once-through exhaust heat recovery boiler
JP2008032367A (en) * 2006-07-31 2008-02-14 Babcock Hitachi Kk Control method for once-through waste heat recovery boiler
JP2009168373A (en) * 2008-01-17 2009-07-30 Samson Co Ltd Superheated steam apparatus

Also Published As

Publication number Publication date
JP4453858B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
US8104283B2 (en) Steam temperature control in a boiler system using reheater variables
CN103343961B (en) Dynamic compensation method of attemperation water impact leading steam temperature measuring point in boiler steam temperature control system
JP4854422B2 (en) Control method for once-through exhaust heat recovery boiler
JP5318880B2 (en) Method for operation of once-through boiler and forced once-through boiler
US20120036852A1 (en) Dynamic tuning of dynamic matrix control of steam temperature
KR101606293B1 (en) Method for operating a recirculating waste heat steam generator
JP2007071416A (en) Reheat steam system of boiler, and control method of reheat steam temperature
CA2747921A1 (en) Dynamic matrix control of steam temperature with prevention of saturated steam entry into superheater
CN106016229B (en) The main-stream control method and apparatus of supercritical circulating fluidized bed boiler unit
JP2002323203A (en) Vapor temperature control method and device for once- through boiler
JPH0942606A (en) Once-through boiler steam temperature control device
JP2000257809A (en) Pressurized fluidized bed boiler and starting method of same
JPH1151306A (en) Boiler and control method therefor
JPH10299424A (en) Steam temperature controlling method for refuse incinerating power plant
JP2645707B2 (en) Boiler automatic controller
JPH0688605A (en) Controlling device for temperature of steam in boiler
JPH1181919A (en) White smoke of exhaust gas preventing method in binary cycle gas turbine device
JP2002081607A (en) Steam temperature controller for variable pressure once-through boiler
JPH0412329Y2 (en)
JP2894118B2 (en) Boiler steam temperature control method
JPH0412330Y2 (en)
JP2004019963A (en) Once-through waste-heat boiler
JPH0318082B2 (en)
JP2725143B2 (en) Combustion superheater
JPH11351512A (en) Reheat steam temperature controller for boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees