JP2005155349A - Boiler control method following up load variation - Google Patents

Boiler control method following up load variation Download PDF

Info

Publication number
JP2005155349A
JP2005155349A JP2003391519A JP2003391519A JP2005155349A JP 2005155349 A JP2005155349 A JP 2005155349A JP 2003391519 A JP2003391519 A JP 2003391519A JP 2003391519 A JP2003391519 A JP 2003391519A JP 2005155349 A JP2005155349 A JP 2005155349A
Authority
JP
Japan
Prior art keywords
boiler
bypass valve
turbine bypass
steam
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003391519A
Other languages
Japanese (ja)
Inventor
Ken Takarabe
謙 財部
Yoshiyuki Tsurumine
義之 鶴峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2003391519A priority Critical patent/JP2005155349A/en
Publication of JP2005155349A publication Critical patent/JP2005155349A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent stopping of a boiler caused by followup failure by making generated power follow up a variation in load electric power with excellent responsiveness in a private power generation facility, and also to perform efficient operation by reducing external electric power. <P>SOLUTION: This boiler control method following up the load variation adjusts a power generation amount in the private power generation equipment. Excessive fuel is previously supplied to a fuel supply amount on static characteristics, a turbine bypass valve arranged in a turbine inlet part supplying steam from a boiler is set to have an intermediate opening, and steam pressure is adjusted by operating the turbine bypass valve in contrast with a turbine main steam regulating valve. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自家発電設備において、発電電力を負荷電力の変化に応答性良く追従させることを可能とするボイラの制御方法に関する。 The present invention relates to a boiler control method capable of causing generated power to follow changes in load power with good responsiveness in a private power generation facility.

図1は、自家発電設備の系統構成図を示し、自社工場41内で消費する電力に相当する負荷電力42は、自家発電設備45で発電する発電電力43と電力会社など他の電源から受電する外部電力44とからなっており、負荷電力42のうち発電電力43でまかなう量が多いほど、外部電力44を少なくできるので経済的である。 FIG. 1 shows a system configuration diagram of a private power generation facility, and load power 42 corresponding to the power consumed in the own factory 41 is received from the generated power 43 generated by the private power generation facility 45 and other power sources such as an electric power company. The more the amount of load power 42 that can be covered by the generated power 43, the more economical the external power 44 can be reduced.

外部電力44を少なくするためには、負荷電力42の変化に発電電力43を応答性良く追従させることが必要であるが、従来技術では、負荷電力42の変化に発電電力43を安定して追従させることが困難であり、図5に示すように発電電力43(破線)は要求される瞬時の負荷電力42(実線)の変化に追従できない。その結果、発電電力43と負荷電力42との差が大きくなり、不足電力を外部電力44(斜線部)で補うことになる。 In order to reduce the external power 44, it is necessary to make the generated power 43 follow the change in the load power 42 with good responsiveness, but in the conventional technology, the generated power 43 is stably followed to the change in the load power 42. As shown in FIG. 5, the generated power 43 (broken line) cannot follow the required change in the instantaneous load power 42 (solid line). As a result, the difference between the generated power 43 and the load power 42 becomes large, and the insufficient power is compensated by the external power 44 (shaded portion).

負荷電力の変化に発電電力を応答性良く追従できない理由を図3に示す回路構成図で説明する。従来のドラム型ボイラではドラム内の蒸気圧力1を検出して、これを制御器2で設定値3と比較し、その偏差をなくすようにボイラマスタ信号6を変化させる。このボイラマスタ信号6は燃料および空気の供給量の指令となる。 The reason why the generated power cannot follow the change in the load power with good response will be described with reference to the circuit configuration diagram shown in FIG. In the conventional drum type boiler, the steam pressure 1 in the drum is detected, and this is compared with the set value 3 by the controller 2, and the boiler master signal 6 is changed so as to eliminate the deviation. This boiler master signal 6 serves as a command for the amount of fuel and air supplied.

負荷電力に変化が生じた場合は、蒸気タービンで消費する蒸気量が変化するため蒸気圧力1が変化するが、この変化が現れるまでには時間遅れが生じる。この時間遅れを補うために蒸気圧力1よりも早く負荷電力の変化による変化が現れる主蒸気配管内の蒸気流量4を検出し、蒸気流量4に変化が生じた場合に、その変化分に見合った量を加算器5で先行的にボイラマスタ信号6に加算する。いわゆるボイラ追従制御を行う。 When the load power changes, the steam pressure 1 changes because the amount of steam consumed by the steam turbine changes, but there is a time delay before this change appears. In order to compensate for this time delay, when the steam flow rate 4 in the main steam pipe where the change due to the change in the load power appears earlier than the steam pressure 1 is detected and the steam flow rate 4 changes, the change is met. The amount is added to the boiler master signal 6 in advance by the adder 5. So-called boiler tracking control is performed.

しかしながら、ボイラマスタ信号6により燃料および空気の供給料を増減させても、発電電力が増減するまでには時間を要するため、負荷電力の変化に発電電力を応答性よく追従させることができず、最悪の場合は燃料および空気の過剰供給によりボイラ停止に至ってしまう場合があった。 However, even if the fuel and air supply charges are increased / decreased by the boiler master signal 6, it takes time for the generated power to increase / decrease, so that the generated power cannot follow the change in the load power with good responsiveness. In this case, the boiler could be stopped due to excessive supply of fuel and air.

一方、外部電力を少なくするために発電電力を高目に設定する方法が考えられるが、発電電力は追従性が悪いため発電電力が負荷電力を超えた場合は図5に示すように余剰電力47が発生する。余剰電力47は外部電力の上流側の送電系統に対して外乱となる等の理由により許されていないため、発電電力を高目に設定することはできない。 On the other hand, in order to reduce the external power, a method of setting the generated power high is conceivable. However, when the generated power exceeds the load power because the follow-up power is poor, surplus power 47 as shown in FIG. Will occur. Since the surplus power 47 is not allowed for reasons such as disturbance to the transmission system upstream of the external power, the generated power cannot be set high.

また、外部電力を少なくする方法として、負荷電力の変化を予測し、発電電力を負荷電力の変化に追従させる方法が、例えば特許文献1および2により知られているが、負荷電力の変化を精度よく予測することは困難であるという問題点があった。 Further, as a method of reducing external power, a method of predicting a change in load power and causing the generated power to follow the change in load power is known from Patent Documents 1 and 2, for example. There was a problem that it was difficult to predict well.

特開平8−186932号公報JP-A-8-186932 特開2001−69669号公報JP 2001-69669 A

本発明は、自家発電設備において負荷電力の変化に発電電力を応答性よく追従させることにより、追従不良によるボイラ停止を防止するとともに、外部電力を少なくして効率の良い操業を行うことを課題とする。   It is an object of the present invention to prevent the boiler from being stopped due to poor tracking and to perform efficient operation by reducing external power by making the generated power follow the change in the load power with good responsiveness in the private power generation equipment. To do.

本発明は、前記課題を解決するために鋭意検討の結果なされたものであり、その要旨とするところは特許請求の範囲に記載した通りの下記内容である
(1)負荷変化に追従して自家発電設備における発電量を調整するボイラ制御方法であって、
静特性上の燃料供給量に対し予め過剰の燃料を供給し、
前記ボイラから蒸気を供給するタービン入口部に設置したタービンバイパス弁を中間開度とし、かつ、該タービンバイパス弁にタービン主蒸気加減弁と逆の動きをさせることにより前記蒸気圧力を調整することを特徴とする負荷変化に追従するボイラ制御方法。
(2)前記蒸気圧力とその設定値との偏差からなるボイラマスタ信号をホールドし、タービンバイパス弁規定開度バイアス設定値の燃料バイアス量を前記ボイラマスタ信号に加算することにより、静特性上の燃料供給量に対して予め過剰の燃料を供給し、前記タービンバイパス弁を開とすることにより該タービンバイパス弁による蒸気圧力の調整を行い、
該タービンバイパス弁を中間開度に制御する制御器および開度特性によるゲイン調整用の関数発生器により前記タービンバイパス弁の開度補正量を求め、該開度補正量を蒸気流量に加算して、前記タービンバイパス弁の開度補正を行うことを特徴とする請求項1に記載の負荷変化に追従するボイラ制御方法。
The present invention has been made as a result of intensive studies in order to solve the above-mentioned problems, and the gist of the present invention is the following contents as described in the claims: (1) Self-following load change A boiler control method for adjusting a power generation amount in a power generation facility,
Supply excess fuel in advance with respect to the static fuel supply amount,
Adjusting the steam pressure by setting an intermediate opening of a turbine bypass valve installed at a turbine inlet for supplying steam from the boiler, and causing the turbine bypass valve to move in the opposite direction to the turbine main steam control valve. A boiler control method that follows a characteristic load change.
(2) Holding a boiler master signal consisting of a deviation between the steam pressure and a set value thereof, and adding a fuel bias amount of a turbine bypass valve specified opening bias set value to the boiler master signal, thereby providing a static fuel supply An excess amount of fuel is supplied in advance with respect to the amount, and by adjusting the steam pressure by the turbine bypass valve by opening the turbine bypass valve,
The turbine bypass valve opening correction amount is obtained by a controller for controlling the turbine bypass valve to an intermediate opening and a function generator for gain adjustment based on opening characteristics, and the opening correction amount is added to the steam flow rate. The boiler control method for following a load change according to claim 1, wherein the opening degree of the turbine bypass valve is corrected.

本発明によれば自家発電設備において、負荷電力の変化に対してボイラ入力を一定とし、タービン側で必要とする蒸気流量の調整をタービンバイパス弁にて行うことで負荷電力の変化に発電電力を応答性よく追従させることができる。その結果、外部電力を小さくするとともに余剰電力の発生を防止することができる。 According to the present invention, in a private power generation facility, the boiler input is made constant with respect to a change in load power, and the generated steam is adjusted to the change in load power by adjusting the steam flow required on the turbine side with the turbine bypass valve. It is possible to follow with good responsiveness. As a result, it is possible to reduce the external power and prevent the generation of surplus power.

以下、本発明の実施形態に係るボイラ制御方法について図面を用いて説明する。
図1に示した自家発電設備の系統構成図において、自家発電設備45の発電電力を急に増加させる必要が生じた場合、ボイラ46から蒸気タービン34に多量の蒸気を送ると、ボイラ46の蒸気圧力1が低下する結果、発電電力を増加させることができない。この場合、蒸気圧力1が一定になるようにボイラを運転するためには、燃料および空気量を増加させて蒸気の発生量を増加させる必要がある。
Hereinafter, a boiler control method according to an embodiment of the present invention will be described with reference to the drawings.
In the system configuration diagram of the private power generation facility shown in FIG. 1, when a large amount of steam is sent from the boiler 46 to the steam turbine 34 when it is necessary to suddenly increase the generated power of the private power generation facility 45, the steam of the boiler 46 As a result of the pressure 1 being lowered, the generated power cannot be increased. In this case, in order to operate the boiler so that the steam pressure 1 is constant, it is necessary to increase the amount of steam generated by increasing the amount of fuel and air.

逆に、発電電力を急に減少させる必要が生じた場合、ボイラ46から蒸気タービン34に送る蒸気量を減少させると、ボイラ46で蒸気が余剰となってボイラの蒸気圧力1が上昇する結果、発電電力を減少させることができない。この場合、蒸気圧力が一定になるようにボイラを運転するためには、燃料および空気量を減少させて蒸気の発生量を減少させる必要がある。前述した燃料および空気量を増加または減少させる指令となるのが、ボイラマスタ信号6である。   On the contrary, when it is necessary to reduce the generated power suddenly, if the amount of steam sent from the boiler 46 to the steam turbine 34 is decreased, the steam is surplus in the boiler 46 and the steam pressure 1 of the boiler rises. The generated power cannot be reduced. In this case, in order to operate the boiler so that the steam pressure becomes constant, it is necessary to reduce the amount of steam generated by reducing the amount of fuel and air. The boiler master signal 6 is a command for increasing or decreasing the amount of fuel and air.

図2は本発明の実施形態を示すボイラ制御系統図である。図3と同じ符号は、名称および機能ともに同じであり、また、図1と図2とは、蒸気圧力1と1、蒸気流量4と4、タービンバイパス蒸気流量11と11、タービンバイパス弁開度13と13およびタービンバイパス弁20と20がそれぞれ対応している。図2のボイラマスタ信号6は、図1の給炭機37および石炭粉砕機38に出力される。 FIG. 2 is a boiler control system diagram showing an embodiment of the present invention. 3 are the same in name and function, and in FIGS. 1 and 2, steam pressures 1 and 1, steam flow rates 4 and 4, turbine bypass steam flow rates 11 and 11, turbine bypass valve opening degree. 13 and 13 and turbine bypass valves 20 and 20 correspond respectively. The boiler master signal 6 in FIG. 2 is output to the coal feeder 37 and the coal grinder 38 in FIG.

図2において、蒸気圧力1を検出し、これを制御器2で設定値3と比較し、その偏差をなくするように制御器出口のボイラマスタ信号23を変化させる。また、主蒸気配管内のボイラに供給される蒸気流量4を検出し、蒸気流量4に変化が生じた場合には、その変化分に見合った量を加算器5で先行的にボイラマスタ信号6に加算する、いわゆるボイラ追従制御を行う。   In FIG. 2, the steam pressure 1 is detected, compared with the set value 3 by the controller 2, and the boiler master signal 23 at the controller outlet is changed so as to eliminate the deviation. Further, when the steam flow rate 4 supplied to the boiler in the main steam pipe is detected and a change occurs in the steam flow rate 4, an amount corresponding to the change is preliminarily added to the boiler master signal 6 by the adder 5. Addition, so-called boiler tracking control is performed.

負荷電力の変化に対して発電電力が応答性よく追従するモード(以下、フリンジモードと称す)とするために、タービンバイパス弁20にて発電電力の追従を図る。フリンジモードでは、ボイラマスタ信号回路上の切替器9により上流側のボイラマスタ信号23をホールドすると共にタービンバイパス弁規定開度バイアス設定値10の燃料バイアス量を加算器8にてボイラマスタ信号24に加算することにより、静特性上の燃料供給量に対して予め過剰の燃料を供給する。 In order to achieve a mode in which the generated power follows the change in the load power with good responsiveness (hereinafter referred to as a fringe mode), the turbine bypass valve 20 tracks the generated power. In the fringe mode, the boiler master signal 23 on the upstream side is held by the switch 9 on the boiler master signal circuit, and the fuel bias amount of the turbine bypass valve specified opening bias setting value 10 is added to the boiler master signal 24 by the adder 8. Thus, an excessive amount of fuel is supplied in advance with respect to the static fuel supply amount.

ここで、切替器9は、通常時はb→cとなり、フリンジモードではa→cとなってボイラマスタ信号23がホールドされるように動作し、ボイラマスタ信号24にタービンバイパス弁規定開度バイアス設定値10が加算される。この際、フリンジモードは、例えばフリンジモード押しボタン(図示しない)をオペレータがオンすることによって作動する態様である。 Here, the switch 9 operates normally so that b → c and in the fringe mode a → c, and the boiler master signal 23 is held, and the boiler master signal 24 is set to the turbine bypass valve specified opening bias setting value. 10 is added. At this time, the fringe mode is a mode in which, for example, the operator operates when a fringe mode push button (not shown) is turned on.

上述した燃料バイアス加算によりボイラから供給される蒸気圧力1は上昇するが、切替器9では上流側のボイラマスタ信号23をホールドしているため、蒸気圧力1によるボイラマスタ信号23の調整は行われず、蒸気圧力1は制御器18において設定値19と比較され、その偏差によりボイラ圧力制御出力51が出力され、タービンバイパス弁20が開となり、蒸気圧力の調整を行う。 Although the steam pressure 1 supplied from the boiler rises due to the fuel bias addition described above, the switch 9 holds the boiler master signal 23 on the upstream side, so the boiler master signal 23 is not adjusted by the steam pressure 1, and steam The pressure 1 is compared with the set value 19 in the controller 18, and the boiler pressure control output 51 is output based on the deviation, and the turbine bypass valve 20 is opened to adjust the steam pressure.

ここで、タービンバイパス弁規定開度バイアス設定値10の燃料バイアス量は、タービンバイパス弁20の弁開度特性により制御性が良い開度範囲の中間位置(中間開度)となる燃料バイアス量を設定してあるため、タービバイパス弁20は中間開度となる。また、減算器12ではタービンバイパス蒸気流量11をボイラから供給される蒸気流量4から減算することにより、タービンバイパス弁20の開閉動作による蒸気流量4の変化に伴うボイラマスタ信号23,24の変化を防止している。   Here, the fuel bias amount of the turbine bypass valve specified opening bias setting value 10 is a fuel bias amount that becomes an intermediate position (intermediate opening) of the opening range with good controllability by the valve opening characteristic of the turbine bypass valve 20. Since it is set, the turbine bypass valve 20 has an intermediate opening. Further, the subtractor 12 subtracts the turbine bypass steam flow rate 11 from the steam flow rate 4 supplied from the boiler, thereby preventing changes in the boiler master signals 23 and 24 due to the change in the steam flow rate 4 due to the opening / closing operation of the turbine bypass valve 20. doing.

発電に使用される蒸気流量の信号を図2の減算器12の出力から取出し、該蒸気流量と同量で逆符号の流量指令を逆特性関数49で発生させ、タービンバイパス弁20の開度指令に加えることにより、タービンバイパス弁20をタービン主蒸気加減弁33(図1)と逆の動きをさせる。その結果、ボイラから供給される蒸気流量4(発電用蒸気流量+タービンバイパス蒸気流量)が、ほぼ一定に保たれ、蒸気使用量の急激な変化が主な原因であるボイラの蒸気圧力変化を小さくすることができ、蒸気圧力がボイラ圧力許容値を超えることがなくなるので、ボイラ停止を防止できる。 A steam flow signal used for power generation is taken out from the output of the subtractor 12 in FIG. In addition, the turbine bypass valve 20 is moved in the opposite direction to the turbine main steam control valve 33 (FIG. 1). As a result, the steam flow rate 4 (power generation steam flow rate + turbine bypass steam flow rate) supplied from the boiler is kept almost constant, and the steam pressure change in the boiler, which is mainly caused by a rapid change in steam usage, is reduced. Since the steam pressure does not exceed the allowable boiler pressure value, the boiler stop can be prevented.

また、ボイラ圧力変化を入力とする制御装置18の出力51の働きにより、タービンバイパス弁20の開度を補正することにより、緩やかな発電出力変化に対してフリンジモードでの制御可能な発電出力の使用範囲を大きくすることができ、外部電力を少なくして高率のよい操業を行うことができる。
小さい負荷変化48(図4)が発生すると、蒸気タービン34(図1)で蒸気流量が変化し、蒸気圧力1が変化するが、蒸気圧力1は制御器18によるタービンバイパス弁20の開度調整により制御される。さらに、フリンジモードで切替器16を補正側(a→c)に切替え、タービンバイパス弁開度13を中間開度に制御する制御器14および開度特性によるゲイン調整用の関数発生器15によりタービンバイパス弁20の開度補正量を求め、開度補正量を加算器17により蒸気流量4に加算することにより、タービンバイパス弁20の開度補正を行い、タービンバイパス弁20を中間開度に維持することができる。ここで、切替器16は通常時にはb→cになり、フリンジモードでa→cとなり開度補正が行われるように動作する。
Further, by correcting the opening degree of the turbine bypass valve 20 by the function of the output 51 of the control device 18 that receives the boiler pressure change, the power generation output that can be controlled in the fringe mode with respect to a gradual power generation output change. The range of use can be increased, and high power operation can be performed with less external power.
When a small load change 48 (FIG. 4) occurs, the steam flow rate changes in the steam turbine 34 (FIG. 1) and the steam pressure 1 changes. The steam pressure 1 is adjusted by the controller 18 to adjust the opening of the turbine bypass valve 20. Controlled by Further, in the fringe mode, the switch 16 is switched to the correction side (a → c), the controller 14 for controlling the turbine bypass valve opening 13 to an intermediate opening, and the function generator 15 for gain adjustment based on the opening characteristics. By calculating the opening correction amount of the bypass valve 20 and adding the opening correction amount to the steam flow rate 4 by the adder 17, the opening correction of the turbine bypass valve 20 is performed and the turbine bypass valve 20 is maintained at the intermediate opening. can do. Here, the switch 16 operates normally so that b → c and a → c in the fringe mode, and the opening degree correction is performed.

なお、3は蒸気圧力の設定値、7は切替器、25は通常時バイアス量、26は脱気器、27は給水ポンプ、28は給水調節弁、29は節炭器、30はドラム、31は水壁、32は過熱器、33は主蒸気加減弁、35は復水器、36は復水ポンプ、39は一次空気ファン、40は発電機である。 3 is a set value of the steam pressure, 7 is a switch, 25 is a normal bias amount, 26 is a deaerator, 27 is a water supply pump, 28 is a water supply control valve, 29 is a economizer, 30 is a drum, 31 Is a water wall, 32 is a superheater, 33 is a main steam control valve, 35 is a condenser, 36 is a condensate pump, 39 is a primary air fan, and 40 is a generator.

図4は本実施形態を適用する負荷の変化パターン図であり、図4に示すように小さな負荷変化幅48で負荷が変化しており、5〜10%/分の高負荷変化率が必要とされている。   FIG. 4 is a load change pattern diagram to which this embodiment is applied. As shown in FIG. 4, the load changes with a small load change width 48, and a high load change rate of 5 to 10% / min is required. Has been.

図6は、本実施形態による負荷変化への追従を示す特性図である。ここで、負荷変化幅と負荷変化率の関係、並びに本発明に係る制御が対象とする負荷変化態様について説明する。従来技術では、小さな負荷変化幅、例えば6〜7%程度の負荷変化幅で、その負荷変化率が例えば3%/分未満(低負荷変化率)の場合は、負荷変化頻度が低ければ制御可能であるが、負荷変化頻度が高い場合は制御できない。これに対して、本発明ではフリンジモードによって負荷変化頻度に関係なく制御可能であり、負荷変化率が3%/分を超える場合でも制御可能である。 FIG. 6 is a characteristic diagram showing the follow-up to the load change according to the present embodiment. Here, the relationship between the load change width and the load change rate, and the load change mode targeted by the control according to the present invention will be described. In the conventional technology, when the load change rate is small, for example, about 6 to 7%, and the load change rate is less than 3% / min (low load change rate), control is possible if the load change frequency is low. However, control is not possible when the load change frequency is high. In contrast, in the present invention, control is possible regardless of the load change frequency by the fringe mode, and control is possible even when the load change rate exceeds 3% / min.

以上説明したように、本発明の主たる特徴は、高負荷変化率で小さい負荷変化幅に対して、ボイラ入力を一定とし、タービンバイパス弁20にてタービン34側で必要とする蒸気量の調整を行うものである。なお、以上の説明ではタービンバイパス弁20の出側に覆水器35を接続した例で説明したが、覆水器35に代えて蒸気アキユームレータなどに接続し、そこから必要量を工場プロセス蒸気として供給すれば、タービンバイパス弁20を通過する蒸気を無駄に水に戻すことなく有効に利用することが可能である。 As described above, the main feature of the present invention is that the boiler input is fixed with respect to a small load change width at a high load change rate, and the steam amount required on the turbine 34 side is adjusted by the turbine bypass valve 20. Is what you do. In the above description, the water cover 35 is connected to the outlet side of the turbine bypass valve 20. However, instead of the water cover 35, the water cover 35 is connected to a steam accumulator or the like, and the necessary amount is converted into factory process steam from there. If supplied, the steam passing through the turbine bypass valve 20 can be used effectively without wasting it back to water.

本発明を適用する自家発電設備の制御系統図である。It is a control system diagram of the private power generation equipment to which the present invention is applied. 本発明の実施形態を示すボイラマスタ制御の制御系統図である。It is a control system diagram of boiler master control showing an embodiment of the present invention. 従来技術のボイラマスタ制御の制御系統図である。It is a control-system figure of boiler master control of a prior art. 本発明を適用する負荷電力の変化パターンを示す図である。It is a figure which shows the change pattern of the load electric power to which this invention is applied. 従来における負荷電力への発電電力の追従性を示す図である。It is a figure which shows the followable | trackability of the generated electric power to the load electric power in the past. 本発明による負荷電力への発電電力の追従性を示す図である。It is a figure which shows the followable | trackability of the generated electric power to the load electric power by this invention.

符号の説明Explanation of symbols

1 蒸気圧力
2 制御器
3 設定値
4 ボイラから供給される蒸気流量
5 加算器
6 ボイラマスタ信号
7 切替器
8 加算器
9 切替器
10 タービンバイパス弁規定開度バイアス設定値
11 タービンバイパス蒸気流量
12 減算器
13 タービンバイパス弁開度
14 制御器
15 関数発生器
16 切替器
17 加算器
18 制御器
19 設定値
20 タービンバイパス弁
23 ボイラマスタ信号(蒸気圧力制御器出口)
24 ボイラマスタ信号(蒸気流量加算器出口)
25 通常時バイアス量
26 脱気器
27 給水ポンプ
28 給水調節弁
29 節炭器
30 ドラム
31 水壁
32 過熱器
33 主蒸気加減弁
34 蒸気タービン
35 復水器
36 復水ポンプ
37 給炭機
38 石炭粉砕機
39 一次空気ファン
40 発電機
41 自社工場
42 負荷電力
43 発電電力
44 外部電力
45 自家発電設備
46 ボイラ
47 余剰電力
48 小さい負荷変化
49 逆特性関数
50 発電に使用される蒸気流量
51 ボイラ圧力制御出力
DESCRIPTION OF SYMBOLS 1 Steam pressure 2 Controller 3 Set value 4 Steam flow supplied from boiler 5 Adder 6 Boiler master signal 7 Switcher 8 Adder 9 Switcher 10 Turbine bypass valve regulation opening bias set value 11 Turbine bypass steam flow rate 12 Subtractor 13 turbine bypass valve opening 14 controller 15 function generator 16 switch 17 adder 18 controller 19 set value 20 turbine bypass valve 23 boiler master signal (steam pressure controller outlet)
24 Boiler master signal (steam flow rate adder exit)
25 Normal-time bias amount 26 Deaerator 27 Water supply pump 28 Water supply control valve 29 Carburizer 30 Drum 31 Water wall 32 Superheater 33 Main steam control valve 34 Steam turbine 35 Condenser 36 Condensate pump 37 Coal feeder 38 Coal Crusher 39 Primary air fan 40 Generator 41 Own factory 42 Load power 43 Generated power 44 External power 45 Private power generation equipment 46 Boiler 47 Surplus power 48 Small load change 49 Reverse characteristic function 50 Steam flow used for power generation 51 Boiler pressure control output

Claims (2)

負荷変化に追従して自家発電設備における発電量を調整するボイラ制御方法であって、
静特性上の燃料供給量に対し予め過剰の燃料を供給し、
前記ボイラから蒸気を供給するタービン入口部に設置したタービンバイパス弁を中間開度とし、かつ、該タービンバイパス弁にタービン主蒸気加減弁と逆の動きをさせることにより前記蒸気圧力を調整することを特徴とする負荷変化に追従するボイラ制御方法。
A boiler control method for adjusting the amount of power generation in a private power generation facility following a load change,
Supply excess fuel in advance with respect to the static fuel supply amount,
Adjusting the steam pressure by setting an intermediate opening of a turbine bypass valve installed at a turbine inlet for supplying steam from the boiler, and causing the turbine bypass valve to move in the opposite direction to the turbine main steam control valve. A boiler control method that follows a characteristic load change.
前記蒸気圧力とその設定値との偏差からなるボイラマスタ信号をホールドし、タービンバイパス弁規定開度バイアス設定値の燃料バイアス量を前記ボイラマスタ信号に加算することにより、静特性上の燃料供給量に対して予め過剰の燃料を供給し、前記タービンバイパス弁を開とすることにより該タービンバイパス弁による蒸気圧力の調整を行い、
該タービンバイパス弁を中間開度に制御する制御器および開度特性によるゲイン調整用の関数発生器により前記タービンバイパス弁の開度補正量を求め、該開度補正量を蒸気流量に加算して、前記タービンバイパス弁の開度補正を行うことを特徴とする請求項1に記載の負荷変化に追従するボイラ制御方法。
By holding a boiler master signal consisting of a deviation between the steam pressure and its set value, and adding the fuel bias amount of the turbine bypass valve prescribed opening bias set value to the boiler master signal, By supplying excess fuel in advance and adjusting the steam pressure by the turbine bypass valve by opening the turbine bypass valve,
The turbine bypass valve opening correction amount is obtained by a controller for controlling the turbine bypass valve to an intermediate opening and a function generator for gain adjustment based on opening characteristics, and the opening correction amount is added to the steam flow rate. The boiler control method for following a load change according to claim 1, wherein the opening degree of the turbine bypass valve is corrected.
JP2003391519A 2003-11-21 2003-11-21 Boiler control method following up load variation Withdrawn JP2005155349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003391519A JP2005155349A (en) 2003-11-21 2003-11-21 Boiler control method following up load variation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003391519A JP2005155349A (en) 2003-11-21 2003-11-21 Boiler control method following up load variation

Publications (1)

Publication Number Publication Date
JP2005155349A true JP2005155349A (en) 2005-06-16

Family

ID=34718513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003391519A Withdrawn JP2005155349A (en) 2003-11-21 2003-11-21 Boiler control method following up load variation

Country Status (1)

Country Link
JP (1) JP2005155349A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052489A (en) * 2007-08-28 2009-03-12 Miura Co Ltd Steam system
US8522523B2 (en) 2008-03-06 2013-09-03 Miura Co., Ltd. Steam system
JP2014088812A (en) * 2012-10-30 2014-05-15 Takuma Co Ltd Operational method for urban refuse incineration plant with steam turbine power generation device and calculation controller for adjusting steam pressure of steam turbine inlet
JP2017109738A (en) * 2017-01-04 2017-06-22 三菱重工業株式会社 Steam line of LNG carrier
CN108005735A (en) * 2017-11-04 2018-05-08 国网江西省电力公司电力科学研究院 A kind of real-time dynamic correcting method of optimal first pressing of Steam Turbine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052489A (en) * 2007-08-28 2009-03-12 Miura Co Ltd Steam system
US8522523B2 (en) 2008-03-06 2013-09-03 Miura Co., Ltd. Steam system
JP2014088812A (en) * 2012-10-30 2014-05-15 Takuma Co Ltd Operational method for urban refuse incineration plant with steam turbine power generation device and calculation controller for adjusting steam pressure of steam turbine inlet
JP2017109738A (en) * 2017-01-04 2017-06-22 三菱重工業株式会社 Steam line of LNG carrier
CN108005735A (en) * 2017-11-04 2018-05-08 国网江西省电力公司电力科学研究院 A kind of real-time dynamic correcting method of optimal first pressing of Steam Turbine

Similar Documents

Publication Publication Date Title
CA2309058C (en) Method for closed-loop output control of a steam power plant, and a steam power plant
JP5108644B2 (en) Boiler control device and boiler control method
JP2010229962A (en) Hydraulic turbine and speed governing controller for pump turbine
KR20150009931A (en) Method and device for controlling regulation valve, and power generating plant using them
JP2005155349A (en) Boiler control method following up load variation
JP2001082701A (en) Boiler/turbine generator control system
JP2000249305A (en) Stem temperature controller for boiler
JPH11223302A (en) Automatic control device and method of power generating plant
JP2008075529A (en) Device and method for stabilizing system frequency
JPS58179702A (en) Drum type boiler load follow-up controller
JPH0988507A (en) Control method of turbine for water supply pump and controller thereof
JP2006057929A (en) Auxiliary steam pressure control method for once-through boiler
JPH05272361A (en) Load controller of combined-cycle power generating plant
JP3673295B2 (en) Method and apparatus for controlling reheat steam temperature of boiler
JP3324899B2 (en) Turbine gland steam pressure controller
JP2007132630A (en) Boiler reheating steam temperature control device and method
JPH07310902A (en) Steam temperature control for once-through boiler
JP2749588B2 (en) Fuel control method for coal-fired boiler
JPH10212906A (en) Flow control valve control system for steam turbine
JPH108914A (en) Turbine control device
JPH0122521B2 (en)
JPH11108306A (en) Spray controller for superheater
JPH11182808A (en) Steam temperature control device for boiler
JP2001263606A (en) Steam temperature controller for boiler
SU429181A1 (en) METHOD OF REGULATING THE BOILER BLOCK — TURBINE

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206