JP2008075529A - Device and method for stabilizing system frequency - Google Patents

Device and method for stabilizing system frequency Download PDF

Info

Publication number
JP2008075529A
JP2008075529A JP2006255201A JP2006255201A JP2008075529A JP 2008075529 A JP2008075529 A JP 2008075529A JP 2006255201 A JP2006255201 A JP 2006255201A JP 2006255201 A JP2006255201 A JP 2006255201A JP 2008075529 A JP2008075529 A JP 2008075529A
Authority
JP
Japan
Prior art keywords
frequency
signal
output
command signal
load command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006255201A
Other languages
Japanese (ja)
Other versions
JP4656029B2 (en
Inventor
Nobuhiro Seki
信廣 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2006255201A priority Critical patent/JP4656029B2/en
Publication of JP2008075529A publication Critical patent/JP2008075529A/en
Application granted granted Critical
Publication of JP4656029B2 publication Critical patent/JP4656029B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To quickly set and keep system frequency in a predetermined rated frequency range when automatic frequency control signal is input. <P>SOLUTION: A frequency adjustment load command operation part 20 of a plant integrated control device 15 operates frequency adjustment load command signal AFCr based on automatic frequency control signal AFC, and correction operation part 21 operates correction signal corresponding to fluctuation of generator output by the frequency adjustment load command signal AFCr. Correction frequency adjustment load command signal AFCa is calculated by adding correction signal on frequency adjustment load command signal AFCr, and is added on load command signal DPC and is output as output command value MWr of the generator 14. A boiler control device 16 controls a boiler to form steam corresponding to output command value MWr. A turbine control device 17 controls a turbine to set generator output MW to output command value MWr and controls system frequency in a predetermined range of rated frequency. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、給電指令装置からの負荷指令信号及び自動周波数制御信号に基づいて発電所の発電機の出力指令値を演算し、発電機出力がその出力指令値になるように制御して、系統周波数を定格周波数の所定範囲内に制御する系統周波数安定化装置及び方法に関する。   The present invention calculates the output command value of the generator of the power plant based on the load command signal and the automatic frequency control signal from the power supply command device, and controls so that the generator output becomes the output command value. The present invention relates to a system frequency stabilization apparatus and method for controlling a frequency within a predetermined range of a rated frequency.

一般に、電力系統は所定の定格周波数(50Hzまたは60Hz)を維持するように運用されている。電力系統の負荷需要が増加すると系統周波数は低下し、負荷需要が減少すると系統周波数は上昇するので、電力需要の状況(例えば日負荷曲線)に応じて給電指令装置から負荷指令信号(DPC信号)が出力され、発電所の発電機出力を負荷指令信号を保つように運転し、系統周波数を所定の定格周波数に維持するようにしている。   Generally, the electric power system is operated so as to maintain a predetermined rated frequency (50 Hz or 60 Hz). When the load demand of the power system increases, the system frequency decreases, and when the load demand decreases, the system frequency increases. Therefore, the load command signal (DPC signal) from the power supply command device according to the power demand situation (for example, daily load curve) Is output, the generator output of the power plant is operated so as to maintain the load command signal, and the system frequency is maintained at a predetermined rated frequency.

また、一時的に負荷が急増した場合や負荷遮断が発生した場合には、発電機出力を負荷指令信号に維持するだけの運転では、系統周波数を所定の定格周波数に維持することができないので、給電指令装置から自動周波数制御信号(AFC信号)が出力され、これら負荷指令信号及び自動周波数制御信号に基づいて発電機出力を制御し、系統周波数を所定の定格周波数に維持するようにしている。   In addition, when the load suddenly increases or when a load interruption occurs, the system frequency cannot be maintained at the predetermined rated frequency by simply operating the generator output to the load command signal. An automatic frequency control signal (AFC signal) is output from the power supply command device, and the generator output is controlled based on the load command signal and the automatic frequency control signal to maintain the system frequency at a predetermined rated frequency.

例えば、火力発電所では、給電指令装置から負荷指令信号が変化した場合や新たに自動周波数制御信号が入力されると、プラント統括制御装置は負荷指令信号や自動周波数制御信号に基づいて火力発電所の発電機の出力指令値を演算し、その出力指令値に見合った蒸気を発生するようにバーナへの燃料流量や給水流量等を制御するとともに、発電機の出力指令値をタービン制御装置に出力する。タービン制御装置は発電機出力がその出力指令値になるように蒸気加減弁(CV)を制御する。   For example, in a thermal power plant, when the load command signal is changed from the power supply command device or when an automatic frequency control signal is newly input, the plant supervisory control device is based on the load command signal or the automatic frequency control signal. The output command value of the generator is calculated, and the fuel flow rate and feed water flow rate to the burner are controlled so that steam corresponding to the output command value is generated, and the output command value of the generator is output to the turbine controller To do. The turbine control device controls the steam control valve (CV) so that the generator output becomes the output command value.

ここで、タービン制御装置から送られるCV開度指令信号が出力される途中において、実機運転特性(主蒸気圧力、温度)とタービン制御系の固有値(加減弁流量特性、傾斜調定率)とを補正する制御系補正回路を追加して設け、理想的なCV開度特性及びCV通過流量を得て、傾斜調定率を安定させ負荷追従性を向上させるようにしたものがある(例えば、特許文献1参照)。
特開2001−82105号公報
Here, in the middle of the output of the CV opening command signal sent from the turbine controller, the actual machine operating characteristics (main steam pressure, temperature) and the turbine control system eigenvalues (regulating valve flow rate characteristics, slope adjustment rate) are corrected. A control system correction circuit is additionally provided to obtain an ideal CV opening characteristic and CV passage flow rate, to stabilize the slope adjustment rate and to improve load followability (for example, Patent Document 1). reference).
JP 2001-82105 A

しかし、特許文献1のものでは、タービン制御装置以降の蒸気加減弁CVの制御追従性は改善されるが、タービン制御装置自体が持つ追従性不足には対応できない。特に、タービン制御装置が機械式調速機MHCである場合には、ガバナ機構部のフリクション大による追従遅れが生じるので、タービン制御装置以降の蒸気加減弁CVの制御追従性が良くても、発電機出力を発電機の出力指令値に応答性良く追従させることができない。この機械式調速機MHCの追従遅れは各火力発電所の間でバラツキがある。   However, in the thing of patent document 1, although the control followability of the steam control valve CV after a turbine control apparatus is improved, it cannot respond to the lack of followability which a turbine control apparatus itself has. In particular, when the turbine control device is a mechanical governor MHC, a follow-up delay occurs due to the large friction of the governor mechanism, so even if the control follow-up performance of the steam control valve CV after the turbine control device is good, power generation The machine output cannot follow the generator output command value with good response. The follow-up delay of this mechanical governor MHC varies among thermal power plants.

従って、自動周波数制御信号(AFC信号)による実際の発電機出力の立ち上がり(立ち下がり)が遅くなり、系統周波数を所定の定格周波数範囲内に速やかに維持することができない場合がある。ガバナ機構部のメンテナンスを行うことで機械式調速機MHCの追従遅れを改善することができるがコストがかかる。   Therefore, the rise (fall) of the actual generator output due to the automatic frequency control signal (AFC signal) is delayed, and the system frequency may not be quickly maintained within the predetermined rated frequency range. Although the follow-up delay of the mechanical governor MHC can be improved by performing maintenance of the governor mechanism, it is expensive.

また、ボイラの追従性が悪いと出力指令値に見合った蒸気を発生するのに時間がかかり、実際の発電機出力が出力指令値になるまでに時間がかかる。この場合にも、系統周波数を所定の定格周波数範囲内に速やかに維持することができなくなる。   Further, when the followability of the boiler is poor, it takes time to generate steam commensurate with the output command value, and it takes time until the actual generator output becomes the output command value. Even in this case, the system frequency cannot be quickly maintained within a predetermined rated frequency range.

本発明の目的は、自動周波数制御信号が入力されたときに系統周波数を所定の定格周波数範囲内に速やかに維持することができる系統周波数安定化装置及び方法を提供することである。   An object of the present invention is to provide a system frequency stabilization device and method capable of quickly maintaining a system frequency within a predetermined rated frequency range when an automatic frequency control signal is input.

請求項1の発明に係わる系統周波数安定化装置は、給電指令装置からの負荷指令信号及び自動周波数制御信号に基づいて発電所の発電機の出力指令値を演算しその出力指令値に見合った蒸気を蒸気発生器が発生するように前記蒸気発生器を制御するプラント統括制御装置と、前記発電所の発電機出力が前記プラント統括制御装置からの出力指令値になるように蒸気加減弁を制御し系統周波数を定格周波数の所定範囲内に制御するタービン制御装置とを備えた系統周波数安定化装置において、前記プラント統括制御装置は、前記自動周波数制御信号に基づいて周波数調整用負荷指令信号を演算する周波数調整用負荷指令演算部と、前記周波数調整用負荷指令信号による発電機出力の変動量に応じた補正信号を演算する補正演算部と、前記補正演算部で得られた補正信号を前記周波数調整用負荷指令信号に加算して補正周波数調整用負荷指令信号を得る加算器と、前記加算器で得られた補正周波数調整用負荷指令信号を前記負荷指令信号に加算して発電機の出力指令値として出力する加算器とを備えたことを特徴とする。   The system frequency stabilizing apparatus according to the first aspect of the present invention calculates the output command value of the generator of the power plant based on the load command signal and the automatic frequency control signal from the power supply command device, and the steam commensurate with the output command value. A plant control unit that controls the steam generator so that the steam generator generates, and a steam control valve that controls the generator output of the power plant to be an output command value from the plant control unit. In the system frequency stabilizing device including the turbine control device that controls the system frequency within a predetermined range of the rated frequency, the plant integrated control device calculates a frequency adjustment load command signal based on the automatic frequency control signal. A load command calculation unit for frequency adjustment, a correction calculation unit for calculating a correction signal according to a fluctuation amount of a generator output by the load command signal for frequency adjustment, and the correction operation An adder that adds the correction signal obtained by the unit to the frequency adjustment load command signal to obtain a correction frequency adjustment load command signal, and the correction frequency adjustment load command signal obtained by the adder And an adder that adds the signal to the output command value of the generator.

請求項2の発明に係わる系統周波数安定化装置は、請求項1の発明において、前記補正演算部は、前記周波数調整用負荷指令信号の変動量を微分する微分回路と、前記周波数調整用負荷指令信号に所定のゲインを乗算する比例回路と、微分回路及び比例回路の加算出力が所定の制限値を逸脱しないように制限を加えるリミッターとを備えたことを特徴とする。   The system frequency stabilization apparatus according to a second aspect of the present invention is the system frequency stabilizing device according to the first aspect, wherein the correction calculation unit includes a differentiation circuit for differentiating a fluctuation amount of the frequency adjustment load command signal, and the frequency adjustment load command. A proportional circuit that multiplies a signal by a predetermined gain, and a limiter that limits the added value of the differentiating circuit and the proportional circuit so as not to deviate from a predetermined limit value.

請求項3の発明に係わる系統周波数安定化方法は、給電指令装置からの負荷指令信号及び自動周波数制御信号に基づいて発電所の発電機の出力指令値を演算し、前記発電所の発電機出力が演算した出力指令値になるように蒸気加減弁を制御し、系統周波数を定格周波数の所定範囲内に制御する系統周波数安定化方法において、前記給電指令装置からの自動周波数制御信号に基づいて周波数調整用負荷指令信号を演算し、前記周波数調整用負荷指令信号による発電機出力の変動量に応じた補正信号を演算し、この補正信号を前記周波数調整用負荷指令信号に加算して補正周波数調整用負荷指令信号を演算し、演算した補正周波数調整用負荷指令信号を前記負荷指令信号に加算して発電機の出力指令値として出力することを特徴とする。   A system frequency stabilization method according to a third aspect of the present invention calculates an output command value of a power plant generator based on a load command signal and an automatic frequency control signal from a power feeding command device, and generates a power generator output of the power plant. In the system frequency stabilization method for controlling the steam control valve so that the output command value is calculated and controlling the system frequency within a predetermined range of the rated frequency, the frequency is based on the automatic frequency control signal from the power supply command device. An adjustment load command signal is calculated, a correction signal corresponding to the fluctuation amount of the generator output due to the frequency adjustment load command signal is calculated, and this correction signal is added to the frequency adjustment load command signal to adjust the correction frequency. The load command signal is calculated, and the calculated correction frequency adjustment load command signal is added to the load command signal and output as an output command value of the generator.

請求項4の発明に係わる系統周波数安定化方法は、請求項3の発明において、前記周波数調整用負荷指令信号による発電機出力の変動量に応じた補正信号は、前記周波数調整用負荷指令信号の変動量を微分し、前記周波数調整用負荷指令信号の変動量に所定のゲインを乗算して比例値を求め、微分値及び比例値が所定の制限値を逸脱しないように制限を加えて求めることを特徴とする。   A system frequency stabilization method according to a fourth aspect of the present invention is the system frequency stabilizing method according to the third aspect, wherein the correction signal according to the amount of fluctuation in the generator output by the frequency adjustment load command signal is the frequency adjustment load command signal. Differentiating the fluctuation amount, multiplying the fluctuation amount of the frequency adjustment load command signal by a predetermined gain to obtain a proportional value, and obtaining the differential value and the proportional value so as not to deviate from the predetermined limit value. It is characterized by.

本発明によれば、給電指令装置からの自動周波数制御信号があったときは、自動周波数制御信号に基づいて周波数調整用負荷指令信号を演算し、その周波数調整用負荷指令信号による発電機出力の変動量に応じた補正信号を演算し、周波数調整用負荷指令信号に加算して、絶対値を大きくした補正周波数調整用負荷指令信号を演算する。そして、その補正周波数調整用負荷指令信号をさらに負荷指令信号に加算し発電機の出力指令値とするので、発電機の出力指令値が周波数調整用負荷指令信号による発電機出力の変動量に応じた大きな指令値となり、実際の発電機出力の出力指令値への追従性が良くなる。   According to the present invention, when there is an automatic frequency control signal from the power supply command device, a frequency adjustment load command signal is calculated based on the automatic frequency control signal, and the generator output by the frequency adjustment load command signal is calculated. A correction signal corresponding to the amount of fluctuation is calculated and added to the frequency adjustment load command signal to calculate a correction frequency adjustment load command signal having a larger absolute value. Then, the corrected frequency adjustment load command signal is further added to the load command signal to obtain the generator output command value, so that the generator output command value depends on the fluctuation amount of the generator output due to the frequency adjustment load command signal. Therefore, the followability of the actual generator output to the output command value is improved.

図1は本発明の実施の形態に係わる系統周波数安定化装置の構成図である。図1では、コンベンショナルな火力発電所に系統周波数安定化装置を適用した場合を示している。ボイラ11で発生した蒸気は、図示省略の主蒸気止め弁を介して蒸気加減弁(CV)12で蒸気流量が調節されて蒸気タービン13に供給される。そして、蒸気タービン13で発電機14を駆動し、発電機14から所定の発電機出力を得るようにしている。   FIG. 1 is a configuration diagram of a system frequency stabilization device according to an embodiment of the present invention. FIG. 1 shows a case where a system frequency stabilization device is applied to a conventional thermal power plant. The steam generated in the boiler 11 is supplied to the steam turbine 13 with the steam flow rate adjusted by a steam control valve (CV) 12 via a main steam stop valve (not shown). Then, the generator 14 is driven by the steam turbine 13 to obtain a predetermined generator output from the generator 14.

発電機14の発電機出力MWは、図示省略の給電指令装置からの負荷指令信号DPCになるように制御される。また、給電指令装置からは自動周波数制御信号AFCが出力され、系統周波数が所定の定格周波数(50Hzまたは60Hz)の範囲内(定格周波数±0.2Hz)を維持するように制御される。また、1日の周波数偏差の積分値(時差)が±15秒以内になるように制御される。   The generator output MW of the generator 14 is controlled to become a load command signal DPC from a power supply command device (not shown). Further, an automatic frequency control signal AFC is output from the power supply command device, and the system frequency is controlled so as to maintain a range (rated frequency ± 0.2 Hz) within a predetermined rated frequency (50 Hz or 60 Hz). Further, the integrated value (time difference) of the daily frequency deviation is controlled to be within ± 15 seconds.

給電指令装置からの負荷指令信号DPCや自動周波数制御信号AFCは、プラント統括制御装置15に入力される。プラント統括制御装置15は負荷指令信号DPCや自動周波数制御信号AFCに基づいて火力発電所の発電機の出力指令値MWrを演算し、ボイラ制御装置16に信号MWbを出力するとともに、タービン制御装置17に信号MWtを出力する。   A load command signal DPC and an automatic frequency control signal AFC from the power supply command device are input to the plant integrated control device 15. The plant integrated control device 15 calculates the output command value MWr of the generator of the thermal power plant based on the load command signal DPC and the automatic frequency control signal AFC, outputs the signal MWb to the boiler control device 16, and the turbine control device 17. To output a signal MWt.

ボイラ制御装置16の主蒸気圧力制御系18は、信号MWbに基づいて発電機の出力指令値MWrに見合った蒸気を発生するようにバーナへの燃料流量や給水流量等を制御する。一方、タービン制御装置17の主蒸気流量制御系19は、信号MWtに基づいて、発電機出力MWがその出力指令値MWrになるように蒸気加減弁12を制御する。これにより、系統周波数が定格周波数の所定範囲内を維持するように制御する。   The main steam pressure control system 18 of the boiler control device 16 controls the fuel flow rate, the feed water flow rate, and the like to the burner so as to generate steam corresponding to the output command value MWr of the generator based on the signal MWb. On the other hand, the main steam flow rate control system 19 of the turbine controller 17 controls the steam control valve 12 based on the signal MWt so that the generator output MW becomes the output command value MWr. Thereby, it controls so that a system | strain frequency may maintain in the predetermined range of a rated frequency.

給電指令装置からの負荷指令信号DPCはプラント統括制御装置15の加算器22に入力されるとともに減算器25に入力され発電機出力MWと比較され、出力偏差ΔP1が求められる。この出力偏差ΔP1は周波数調整用負荷指令信号AFCrによる発電機出力に相当するものである。   The load command signal DPC from the power supply command device is input to the adder 22 of the plant overall control device 15 and is also input to the subtractor 25 and compared with the generator output MW to obtain the output deviation ΔP1. This output deviation ΔP1 corresponds to the generator output by the frequency adjustment load command signal AFCr.

一方、給電指令装置からの自動周波数制御信号AFCは、プラント統括制御装置15の周波数調整用負荷指令演算部20に入力される。周波数調整用負荷指令演算部20は、自動周波数制御信号AFCに基づいて周波数調整用負荷指令信号AFCrを演算し、減算器26に出力するとともに加算器27に出力する。周波数調整用負荷指令信号AFCrは系統周波数の変動を補償するための出力指令値である。   On the other hand, the automatic frequency control signal AFC from the power supply command device is input to the frequency adjustment load command calculation unit 20 of the plant overall control device 15. The frequency adjustment load command calculation unit 20 calculates a frequency adjustment load command signal AFCr based on the automatic frequency control signal AFC, and outputs it to the subtracter 26 and to the adder 27. The frequency adjustment load command signal AFCr is an output command value for compensating for fluctuations in the system frequency.

減算器26は、周波数調整用負荷指令信号AFCrと出力偏差ΔP1との差分ΔP2を演算し、その差分ΔP2を補正演算部21に出力する。この差分ΔP2は、出力偏差ΔP1が周波数調整用負荷指令信号AFCrによる発電機出力に相当するものであることから、周波数調整用負荷指令信号AFCrによる発電機出力の変動量に相当するものである。   The subtractor 26 calculates a difference ΔP2 between the frequency adjustment load command signal AFCr and the output deviation ΔP1, and outputs the difference ΔP2 to the correction calculation unit 21. This difference ΔP2 corresponds to the fluctuation amount of the generator output due to the frequency adjustment load command signal AFCr because the output deviation ΔP1 corresponds to the generator output due to the frequency adjustment load command signal AFCr.

補正演算部21は、減算器26からの周波数調整用負荷指令信号AFCrと出力偏差ΔP1との差分ΔP2に基づいて、周波数調整用負荷指令信号AFCrによる発電機出力の変動量に応じた補正信号aを演算する。補正演算部21で演算された補正信号aは加算器27に入力され、周波数調整用負荷指令信号AFCrと加算されて、周波数調整用負荷指令信号AFCrより大きくした補正周波数調整用負荷指令信号AFCaを得る。加算器27で得られた補正周波数調整用負荷指令信号AFCaは、加算器22に出力される。   Based on the difference ΔP2 between the frequency adjustment load command signal AFCr from the subtractor 26 and the output deviation ΔP1, the correction calculation unit 21 corrects the correction signal a according to the amount of fluctuation in the generator output by the frequency adjustment load command signal AFCr. Is calculated. The correction signal a calculated by the correction calculation unit 21 is input to the adder 27, and is added to the frequency adjustment load command signal AFCr to obtain a corrected frequency adjustment load command signal AFCa that is larger than the frequency adjustment load command signal AFCr. obtain. The correction frequency adjusting load command signal AFCa obtained by the adder 27 is output to the adder 22.

ここで、周波数調整用負荷指令信号AFCrより大きくした補正周波数調整用負荷指令信号AFCaを求めるのは、ボイラ制御装置16やタービン制御装置17自体が持つ追従性不足に対応できるようにするためである。   Here, the reason why the corrected frequency adjustment load command signal AFCa that is larger than the frequency adjustment load command signal AFCr is obtained is to make it possible to cope with the lack of followability of the boiler control device 16 and the turbine control device 17 itself. .

加算器27で得られた補正周波数調整用負荷指令信号AFCaは、さらに加算器22で、給電指令装置からの負荷指令信号DPCに加算され、発電機の出力指令値MWrとしてボイラマスタ23及びタービンマスタ24に出力される。ボイラマスタ23は、ボイラ11が発電機の出力指令値MWrに見合った蒸気を発生するように、ボイラ制御装置16に信号MWbを出力する。ボイラ制御装置16の主蒸気圧力制御系18は、信号MWbを入力すると、発電機の出力指令値MWrに見合った蒸気を発生するようにバーナへの燃料流量や給水流量等を制御する。   The load command signal AFCa for correction frequency adjustment obtained by the adder 27 is further added to the load command signal DPC from the power supply command device by the adder 22, and as a generator output command value MWr, the boiler master 23 and the turbine master 24. Is output. The boiler master 23 outputs a signal MWb to the boiler control device 16 so that the boiler 11 generates steam commensurate with the output command value MWr of the generator. When the signal MWb is input, the main steam pressure control system 18 of the boiler control device 16 controls the fuel flow rate, feed water flow rate, and the like to the burner so as to generate steam corresponding to the output command value MWr of the generator.

タービンマスタ24は、タービン13に発電機出力MWがその出力指令値MWrになるようにタービン制御装置17に信号MWtを出力する。タービン制御装置の主蒸気流量制御系19は、信号MWtを入力すると、発電機出力MWがその出力指令値MWrになるように蒸気加減弁12を制御する。   The turbine master 24 outputs a signal MWt to the turbine controller 17 so that the generator output MW becomes the output command value MWr for the turbine 13. When the signal MWt is input, the main steam flow control system 19 of the turbine controller controls the steam control valve 12 so that the generator output MW becomes the output command value MWr.

図2は、本発明の実施の形態に係わる系統周波数安定化装置の各部の信号波形図である。図2では発電機出力MWを増加させる自動周波数制御信号AFCが入力された場合を示している。この場合は、上げ側のAFC信号で説明しているが、下げ側も信号は逆方向であるが同様となる。   FIG. 2 is a signal waveform diagram of each part of the system frequency stabilization apparatus according to the embodiment of the present invention. FIG. 2 shows a case where an automatic frequency control signal AFC for increasing the generator output MW is input. In this case, the AFC signal on the up side is described, but the signal on the down side is the same although the signal is in the opposite direction.

いま、給電指令装置からの負荷指令信号DPCが発電機出力MW0であるとする。この状態で系統周波数が低下し、その系統周波数の低下を補償するための自動周波数制御信号AFCの上げ信号が時点t1において入力されたとする。時点t1以前においては、発電機の発電機出力MWは負荷指令信号DPCで示される発電機出力MW0である。 Now, it is assumed that the load command signal DPC from the power supply command device is the generator output MW0. In this state, it is assumed that the system frequency is reduced, and an increase signal of the automatic frequency control signal AFC for compensating for the decrease in the system frequency is input at time t1. Before time t1, the generator output MW of the generator is the generator output MW0 indicated by the load command signal DPC.

時点t1で自動周波数制御信号AFCが入力されると、プラント統括制御装置15の周波数調整用負荷指令演算部20は、例えば、自動周波数制御信号AFCに対し比例及び積分演算を施し、周波数調整用負荷指令信号AFCrを求める。周波数調整用負荷指令信号AFCrは系統周波数の変動を補償するための出力指令値であり、図2では、発電機出力をΔMW分だけ増加させるための出力指令値となる。   When the automatic frequency control signal AFC is input at the time point t1, the frequency adjustment load command calculation unit 20 of the plant overall control device 15 performs, for example, proportional and integration calculations on the automatic frequency control signal AFC, and the frequency adjustment load A command signal AFCr is obtained. The frequency adjustment load command signal AFCr is an output command value for compensating for fluctuations in the system frequency. In FIG. 2, the load command signal AFCr is an output command value for increasing the generator output by ΔMW.

次に、補正演算部21は、周波数調整用負荷指令信号による発電機出力の変動量に応じた補正信号aを演算する。例えば、減算器26で得られた周波数調整用負荷指令信号AFCrの変動量(ΔP2)に対して微分回路で微分を施し、比例回路でゲインを乗算して比例信号を求め、これらを加算して周波数調整用負荷指令信号AFCrの変動量に応じた補正信号aを得る。   Next, the correction calculation unit 21 calculates a correction signal a corresponding to the amount of fluctuation of the generator output due to the frequency adjustment load command signal. For example, the variation amount (ΔP2) of the frequency adjustment load command signal AFCr obtained by the subtractor 26 is differentiated by a differentiation circuit, and a proportional signal is multiplied by a gain to obtain a proportional signal, and these are added. A correction signal a corresponding to the fluctuation amount of the frequency adjustment load command signal AFCr is obtained.

この場合、補正信号aが大きすぎると補正周波数調整用負荷指令信号AFCaが大きくなりすぎる場合があるので、リミッターを設け、微分回路の出力及び比例回路の出力が所定の制限値を逸脱しないように制限を加える。   In this case, if the correction signal a is too large, the correction frequency adjustment load command signal AFCa may become too large. Therefore, a limiter is provided so that the output of the differentiation circuit and the output of the proportional circuit do not deviate from a predetermined limit value. Add restrictions.

そして、負荷指令信号DPCに補正周波数調整用負荷指令信号AFCaを加算して発電機の出力指令値MWrを演算する。この出力指令値MWrに基づき、プラント統括制御装置15のボイラ制御装置16は、タービン13に供給される蒸気の圧力を制御し、タービン制御装置17は、タービン13に供給される蒸気の流量を制御し、発電機出力MWが出力指令値MWrになるように制御する。   Then, the load command signal DCa for correction frequency adjustment is added to the load command signal DPC to calculate the output command value MWr of the generator. Based on this output command value MWr, the boiler control device 16 of the plant integrated control device 15 controls the pressure of the steam supplied to the turbine 13, and the turbine control device 17 controls the flow rate of the steam supplied to the turbine 13. Then, the generator output MW is controlled to become the output command value MWr.

この場合、ボイラ11やタービン制御装置17自体が持つ追従性の遅れから、図2の発電機出力MWに示すように、発電機出力MWは出力指令値MWrに対して遅れて追従し、時点t2で最終目標値(MW0+ΔMW)となる。なお、曲線MW’は周波数調整用負荷指令信号AFCrに補正を加えない場合の発電機出力であり、この場合には時点t3で最終目標値(MW0+ΔMW)となり、かなり遅れることになる。   In this case, as shown in the generator output MW in FIG. 2, the generator output MW follows with a delay with respect to the output command value MWr from the delay in followability of the boiler 11 and the turbine control device 17 itself, and the time t2 The final target value (MW0 + ΔMW) is obtained. The curve MW ′ is the generator output when no correction is made to the frequency adjustment load command signal AFCr. In this case, the final target value (MW0 + ΔMW) is reached at time t3, which is considerably delayed.

ここで、発電機出力MWの本来の出力指令値は、負荷指令信号DPCと周波数調整用負荷指令信号AFCrとを加算した値(DPC+AFCr)であり、発電機出力MWがこの本来の出力指令値(DPC+AFCr)に沿って変化することが望ましい。出力指令値MWrをこの本来の出力指令値(DPC+AFCr)とした場合には、発電機出力は曲線MW’となる。   Here, the original output command value of the generator output MW is a value (DPC + AFCr) obtained by adding the load command signal DPC and the frequency adjustment load command signal AFCr, and the generator output MW is the original output command value ( It is desirable to change along (DPC + AFCr). When the output command value MWr is the original output command value (DPC + AFCr), the generator output is a curve MW ′.

一方、本発明の実施の形態のように、周波数調整用負荷指令信号AFCrに補正を加えて補正周波数調整用負荷指令信号AFCaとし、出力指令値MWrを(DPC+AFCa)とする。そして、発電機出力MWを本来の出力指令値(DPC+AFCr)に沿って変化させるようにする。従って、補正周波数調整用負荷指令信号AFCaは、実際の発電機出力MWが本来の出力指令値(DPC+AFCr)に沿って変化するように、周波数調整用負荷指令信号AFCrの絶対値を大きくするように補正する。   On the other hand, as in the embodiment of the present invention, correction is made to the frequency adjustment load command signal AFCr to obtain a corrected frequency adjustment load command signal AFCa, and the output command value MWr is set to (DPC + AFCa). Then, the generator output MW is changed along the original output command value (DPC + AFCr). Accordingly, the correction frequency adjustment load command signal AFCa is set so that the absolute value of the frequency adjustment load command signal AFCr is increased so that the actual generator output MW changes along the original output command value (DPC + AFCr). to correct.

この場合、発電機出力MWが本来の出力指令値(DPC+AFCr)を超えないようにする。また、微分回路及び比例回路を用いて周波数調整用負荷指令信号AFCrに補正を加える場合には、発電機出力MWが本来の出力指令値(DPC+AFCr)を超えないように、リミッターの設定値を設定することになる。これにより、発電機出力MWは従来の曲線MW’に対し、斜線部分だけ発電機出力を早期に出力できる。つまり、追従遅れを少なくして自動周波数制御信号AFC通りに発電機出力MWを制御できる。以上の説明では、火力発電所に適用した場合について説明したが、ガバナ機構を持つタービン発電設備に対して適用することも可能である。   In this case, the generator output MW is prevented from exceeding the original output command value (DPC + AFCr). In addition, when correcting the frequency adjustment load command signal AFCr using a differentiation circuit and a proportional circuit, set the limiter setting value so that the generator output MW does not exceed the original output command value (DPC + AFCr). Will do. As a result, the generator output MW can output the generator output at an early stage only in the shaded portion with respect to the conventional curve MW ′. That is, the generator output MW can be controlled according to the automatic frequency control signal AFC with less follow-up delay. In the above description, the case where the present invention is applied to a thermal power plant has been described, but the present invention can also be applied to a turbine power generation facility having a governor mechanism.

本発明の実施の形態によれば、発電機の出力指令値を大きな指令値に補正するので、実際の発電機出力の出力指令値への追従性が良くなる。また、発電機出力の追従性が向上することから周波数変動が少なくなり、その結果として、自動周波数制御信号による周波数の修正量が小さくなる。従って、発電機による発電機出力の変動も小さくなり、発電所にとって外乱である自動周波数制御信号AFCによる修正動作が小さく安定する。これにより、発電所の燃費が向上し、COを低減できるとともにNOx及びばい煙排出量の変動も軽減でき、各操作端の動作も安定するので長寿命化が図れる。 According to the embodiment of the present invention, since the output command value of the generator is corrected to a large command value, the followability of the actual generator output to the output command value is improved. Further, since the follow-up performance of the generator output is improved, the frequency fluctuation is reduced, and as a result, the frequency correction amount by the automatic frequency control signal is reduced. Therefore, the fluctuation of the generator output by the generator is also reduced, and the correction operation by the automatic frequency control signal AFC, which is a disturbance for the power plant, is small and stable. As a result, the fuel efficiency of the power plant is improved, CO 2 can be reduced, fluctuations in NOx and soot emissions can be reduced, and the operation at each operation end is stabilized, thereby extending the life.

本発明の実施の形態に係わる系統周波数安定化装置の構成図。The lineblock diagram of the system frequency stabilization device concerning an embodiment of the invention. 本発明の実施の形態に係わる系統周波数安定化装置の各部の信号波形図。The signal waveform diagram of each part of the system frequency stabilization apparatus concerning embodiment of this invention.

符号の説明Explanation of symbols

11…ボイラ、12…蒸気加減弁、13…蒸気タービン、14…発電機、15…プラント統括制御装置、16…ボイラ制御装置、17…タービン制御装置、18…主蒸気圧力制御系、19…主蒸気流量制御系、20…周波数調整用負荷指令演算部、21…補正演算部、22…加算器、23…ボイラマスタ、24…タービンマスタ、25…減算器、26…減算器、27…加算器 DESCRIPTION OF SYMBOLS 11 ... Boiler, 12 ... Steam control valve, 13 ... Steam turbine, 14 ... Generator, 15 ... Plant control device, 16 ... Boiler control device, 17 ... Turbine control device, 18 ... Main steam pressure control system, 19 ... Main Steam flow control system, 20 ... load command calculation unit for frequency adjustment, 21 ... correction calculation unit, 22 ... adder, 23 ... boiler master, 24 ... turbine master, 25 ... subtractor, 26 ... subtractor, 27 ... adder

Claims (4)

給電指令装置からの負荷指令信号及び自動周波数制御信号に基づいて発電所の発電機の出力指令値を演算しその出力指令値に見合った蒸気を蒸気発生器が発生するように前記蒸気発生器を制御するプラント統括制御装置と、前記発電所の発電機出力が前記プラント統括制御装置からの出力指令値になるように蒸気加減弁を制御し系統周波数を定格周波数の所定範囲内に制御するタービン制御装置とを備えた系統周波数安定化装置において、前記プラント統括制御装置は、前記自動周波数制御信号に基づいて周波数調整用負荷指令信号を演算する周波数調整用負荷指令演算部と、前記周波数調整用負荷指令信号による発電機出力の変動量に応じた補正信号を演算する補正演算部と、前記補正演算部で得られた補正信号を前記周波数調整用負荷指令信号に加算して補正周波数調整用負荷指令信号を得る加算器と、前記加算器で得られた補正周波数調整用負荷指令信号を前記負荷指令信号に加算して発電機の出力指令値として出力する加算器とを備えたことを特徴とする系統周波数安定化装置。   Based on the load command signal and the automatic frequency control signal from the power supply command device, the output command value of the generator of the power plant is calculated, and the steam generator is generated so that the steam generator generates steam corresponding to the output command value. A plant control unit for controlling the turbine, and a turbine control for controlling the steam control valve so that the generator output of the power plant becomes an output command value from the plant control unit and controlling the system frequency within a predetermined range of the rated frequency In the system frequency stabilization device, the plant overall control device includes: a frequency adjustment load command calculation unit that calculates a frequency adjustment load command signal based on the automatic frequency control signal; and the frequency adjustment load. A correction calculation unit that calculates a correction signal according to the amount of fluctuation of the generator output due to the command signal, and the correction signal obtained by the correction calculation unit An adder for adding a correction frequency adjustment load command signal by adding to the signal, and adding the correction frequency adjustment load command signal obtained by the adder to the load command signal and outputting the output command value as a generator A system frequency stabilizing device comprising an adder. 前記補正演算部は、前記周波数調整用負荷指令信号の変動量を微分する微分回路と、前記周波数調整用負荷指令信号に所定のゲインを乗算する比例回路と、微分回路及び比例回路の加算出力が所定の制限値を逸脱しないように制限を加えるリミッターとを備えたことを特徴とする請求項1に記載の系統周波数安定化装置。   The correction calculation unit includes: a differentiation circuit that differentiates the amount of fluctuation of the frequency adjustment load command signal; a proportional circuit that multiplies the frequency adjustment load command signal by a predetermined gain; and an addition output of the differentiation circuit and the proportional circuit. The system frequency stabilizing device according to claim 1, further comprising a limiter that applies a limit so as not to deviate from a predetermined limit value. 給電指令装置からの負荷指令信号及び自動周波数制御信号に基づいて発電所の発電機の出力指令値を演算し、前記発電所の発電機出力が演算した出力指令値になるように蒸気加減弁を制御し、系統周波数を定格周波数の所定範囲内に制御する系統周波数安定化方法において、前記給電指令装置からの自動周波数制御信号に基づいて周波数調整用負荷指令信号を演算し、前記周波数調整用負荷指令信号による発電機出力の変動量に応じた補正信号を演算し、この補正信号を前記周波数調整用負荷指令信号に加算して補正周波数調整用負荷指令信号を演算し、演算した補正周波数調整用負荷指令信号を前記負荷指令信号に加算して発電機の出力指令値として出力することを特徴とする系統周波数安定化方法。   Based on the load command signal and the automatic frequency control signal from the power supply command device, the output command value of the power plant generator is calculated, and the steam control valve is adjusted so that the power plant output of the power plant becomes the calculated output command value. In a system frequency stabilization method for controlling and controlling a system frequency within a predetermined range of a rated frequency, a frequency adjustment load command signal is calculated based on an automatic frequency control signal from the power supply command device, and the frequency adjustment load is calculated. A correction signal corresponding to the fluctuation amount of the generator output due to the command signal is calculated, the correction signal is added to the frequency adjustment load command signal to calculate a correction frequency adjustment load command signal, and the calculated correction frequency adjustment A system frequency stabilization method, comprising: adding a load command signal to the load command signal and outputting the output command value as a generator output command value. 前記周波数調整用負荷指令信号による発電機出力の変動量に応じた補正信号は、前記周波数調整用負荷指令信号の変動量を微分し、前記周波数調整用負荷指令信号の変動量に所定のゲインを乗算して比例値を求め、微分値及び比例値が所定の制限値を逸脱しないように制限を加えて求めることを特徴とする請求項3に記載の系統周波数安定化方法。   The correction signal according to the fluctuation amount of the generator output by the frequency adjustment load command signal is obtained by differentiating the fluctuation amount of the frequency adjustment load command signal and adding a predetermined gain to the fluctuation amount of the frequency adjustment load command signal. 4. The system frequency stabilization method according to claim 3, wherein a proportional value is obtained by multiplication, and the differential value and the proportional value are obtained by adding a limit so as not to deviate from a predetermined limit value.
JP2006255201A 2006-09-21 2006-09-21 System frequency stabilization apparatus and method Expired - Fee Related JP4656029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006255201A JP4656029B2 (en) 2006-09-21 2006-09-21 System frequency stabilization apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006255201A JP4656029B2 (en) 2006-09-21 2006-09-21 System frequency stabilization apparatus and method

Publications (2)

Publication Number Publication Date
JP2008075529A true JP2008075529A (en) 2008-04-03
JP4656029B2 JP4656029B2 (en) 2011-03-23

Family

ID=39347861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255201A Expired - Fee Related JP4656029B2 (en) 2006-09-21 2006-09-21 System frequency stabilization apparatus and method

Country Status (1)

Country Link
JP (1) JP4656029B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100968796B1 (en) * 2008-10-31 2010-07-08 한국전력공사 Control method for fast and stable load control by compensating turbine and boiler response delays in power plants
KR101093032B1 (en) 2009-10-30 2011-12-13 한국전력공사 Controlling method for fast and linear load control by using compensating models and optimization for turbine and boiler response delays in power plants
JP2013048541A (en) * 2011-07-12 2013-03-07 General Electric Co <Ge> Systems and devices for controlling power generation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234099A (en) * 1988-03-15 1989-09-19 Hitachi Ltd Method and device for automatic control of power plant
JP2006161566A (en) * 2004-12-02 2006-06-22 Babcock Hitachi Kk Frequency bias control device for thermal electric power plant and method using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234099A (en) * 1988-03-15 1989-09-19 Hitachi Ltd Method and device for automatic control of power plant
JP2006161566A (en) * 2004-12-02 2006-06-22 Babcock Hitachi Kk Frequency bias control device for thermal electric power plant and method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100968796B1 (en) * 2008-10-31 2010-07-08 한국전력공사 Control method for fast and stable load control by compensating turbine and boiler response delays in power plants
KR101093032B1 (en) 2009-10-30 2011-12-13 한국전력공사 Controlling method for fast and linear load control by using compensating models and optimization for turbine and boiler response delays in power plants
JP2013048541A (en) * 2011-07-12 2013-03-07 General Electric Co <Ge> Systems and devices for controlling power generation

Also Published As

Publication number Publication date
JP4656029B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
US7982325B2 (en) Wind power installation and method of operating it
US10480488B2 (en) Wind turbine with a speed regulator and a generator regulator
JP5108644B2 (en) Boiler control device and boiler control method
JP2007071144A (en) Fuel flow controller, electric power generation system and fuel flow control method
KR101841316B1 (en) Method for controlling a short-term increase in power of a steam turbine
CN103791482A (en) Thermal power generating unit hearth pressure segmentation control method
CN111520700B (en) Differential calculation method based on real-time correction of boiler main steam pressure regulation deviation
KR100968796B1 (en) Control method for fast and stable load control by compensating turbine and boiler response delays in power plants
JP4656029B2 (en) System frequency stabilization apparatus and method
KR101093032B1 (en) Controlling method for fast and linear load control by using compensating models and optimization for turbine and boiler response delays in power plants
KR20190034813A (en) Integrated Coal Gasification Heat Duty Auto Control System
JP2006046874A (en) Drum level control system
JP4929029B2 (en) Gas turbine control method and gas turbine power generator
JP2017194312A (en) Output control apparatus and method for nuclear power plant
JP2008164264A (en) Flow control apparatus
JP5595221B2 (en) Gas turbine control device, gas turbine, and gas turbine control method
JP2001295607A (en) Method and device for controlling load of thermal power plant
JP7303696B2 (en) POWER PLANT CONTROL DEVICE, POWER PLANT, AND POWER PLANT CONTROL METHOD
JP5534357B2 (en) Turbine controller
JP2014156976A (en) Boiler system
JP4518320B2 (en) Frequency bias control device for thermal power plant and its operation method
KR102273982B1 (en) Gas turbine control device and gas turbine and gas turbine control method
CN114200823B (en) Primary frequency modulation control method and device for inertial-power-free synchronous unit
JP5039398B2 (en) Boiler automatic controller
WO2022145276A1 (en) Control device and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees