JP2006161566A - Frequency bias control device for thermal electric power plant and method using the same - Google Patents

Frequency bias control device for thermal electric power plant and method using the same Download PDF

Info

Publication number
JP2006161566A
JP2006161566A JP2004349743A JP2004349743A JP2006161566A JP 2006161566 A JP2006161566 A JP 2006161566A JP 2004349743 A JP2004349743 A JP 2004349743A JP 2004349743 A JP2004349743 A JP 2004349743A JP 2006161566 A JP2006161566 A JP 2006161566A
Authority
JP
Japan
Prior art keywords
signal
frequency
output setting
frequency compensation
setting correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004349743A
Other languages
Japanese (ja)
Other versions
JP4518320B2 (en
Inventor
Tadao Uenaka
忠男 植中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2004349743A priority Critical patent/JP4518320B2/en
Publication of JP2006161566A publication Critical patent/JP2006161566A/en
Application granted granted Critical
Publication of JP4518320B2 publication Critical patent/JP4518320B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To maintain plant stability and exert allowable maximum frequency fluctuation suppressing effect regardless of a state of load operation, by multiplying an output setting correction amount 33 by proper upper and lower limits cooperated with a frequency compensation amount 31. <P>SOLUTION: The frequency bias control device suppressing the frequency deviation in a thermal electric power plant comprises a control circuit, in addition to a frequency compensation circuit correcting a load request signal (MWD) 22 depending on frequency deviation. The control circuit has an output setting correction function generating an output setting correction signal depending on the frequency deviation and adding the signal to the MWD 22 to acquire a control target value of a power generation control, and a means for multiplying the output setting correction signal 33 by upper and lower limit values. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、火力発電プラントにおいて周波数が変動した場合に周波数変動を抑制する周波数補償制御に係わり、(特にユニットマスタの制御目標である負荷要求信号(以下MWDということがある)22の補正とは別に、タービンマスタの制御目標である発電機出力の目標値を補正して、各々の補正量をプラント能力に応じて制限できることから、)積極的に周波数補償動作をさせるのに好適な火力発電プラントの制御装置に関する。   The present invention relates to frequency compensation control that suppresses frequency fluctuation when the frequency fluctuates in a thermal power plant, and in particular, correction of a load request signal (hereinafter sometimes referred to as MWD) 22 that is a control target of a unit master. In addition, since the target value of the generator output, which is the control target of the turbine master, can be corrected and the amount of each correction can be limited according to the plant capacity, a thermal power plant suitable for active frequency compensation operation) It relates to the control device.

従来の火力発電プラントの構成を図3に示す。
ここに示す火力発電プラントは、ボイラ1と、ボイラ1で発生した蒸気エネルギを運動エネルギ(回転トルク)に変換する蒸気タービン2(以下、単にタービンということがある)と、タービン2と同軸で回転し、運動エネルギを電気エネルギに変換する発電機3と、ボイラ1からタービン2に流入する蒸気量を調節して発電機3で発電する発電量7を調節するタービン加減弁4と、発電量7を含め火力プラント全体を制御するプラント制御装置(以下APCということがある)6と、タービンの回転数を補正する調速機能の各要素13〜19及び関連計測機器として発電量検出器8,周波数検出器10,タービン回転数検出器12を含んで構成されている。
The configuration of a conventional thermal power plant is shown in FIG.
The thermal power plant shown here is a boiler 1, a steam turbine 2 that converts steam energy generated in the boiler 1 into kinetic energy (rotational torque) (hereinafter sometimes simply referred to as a turbine), and rotates coaxially with the turbine 2. A generator 3 that converts kinetic energy into electrical energy, a turbine control valve 4 that adjusts the amount of power 7 generated by the generator 3 by adjusting the amount of steam flowing from the boiler 1 into the turbine 2, and the amount of power generated 7 A plant control device (hereinafter also referred to as APC) 6 that controls the entire thermal power plant including the power generator, each of the elements 13 to 19 of the speed control function for correcting the rotational speed of the turbine, and a power generation amount detector 8 as a related measuring device, a frequency The detector 10 and the turbine rotational speed detector 12 are included.

従来の火力発電プラントのプラント制御装置の周波数バイアス制御を図10に示す。
送電系統の周波数は、送電系統の需給バランスにより変動する。即ち需要量に対して発電量が多いと周波数は上昇し、反対に発電量が少ないと周波数は低下する。一般に火力発電プラントにはガバナフリー運転と呼ばれている周波数の変動を抑制する運転モード機能があり、これは発電量不足のために周波数が低下すると発電量を増補正し、発電量過多のため周波数が上昇すると発電量を減補正することで、需給バランスを改善し周波数の変動を抑制する運転モードである。
FIG. 10 shows frequency bias control of a conventional plant control apparatus for a thermal power plant.
The frequency of the power transmission system varies depending on the supply and demand balance of the power transmission system. That is, the frequency increases when the amount of power generation is larger than the demand amount, and conversely, the frequency decreases when the amount of power generation is small. In general, thermal power plants have an operation mode function that suppresses frequency fluctuations, which is called governor-free operation. This is because the power generation amount is increased and corrected when the frequency decreases due to insufficient power generation amount. This is an operation mode that improves the supply and demand balance and suppresses fluctuations in the frequency by correcting the power generation amount to decrease when the frequency increases.

従来の火力発電プラントにおいて、系統周波数の変動の影響を受けて発電機の周波数が変動(発電機回転数も同じ変動と考えてよい)した場合の火力発電プラントの周波数補償動作を以下に説明する。   In the conventional thermal power plant, the frequency compensation operation of the thermal power plant when the frequency of the generator fluctuates due to the fluctuation of the system frequency (the generator rotation speed may be considered the same fluctuation) will be described below. .

本発明には発電量7を発電量目標値であるMWD22に一致させる制御(以下発電機出力制御又は単に出力制御と呼ぶ)が大きく係わってくるため、まず、出力制御機能から説明する。   Since the present invention largely involves control (hereinafter referred to as “generator output control” or simply “output control”) that matches the power generation amount 7 with the power generation target value MWD22, the output control function will be described first.

動作説明を分かり易くするためにトランジェントな動きは省略する。また本発明では、発電量7と発電量検出値9と発電機出力信号43を同一として扱って差し支えないため、同一のものとして扱う。   In order to make the explanation of the operation easy to understand, the transient movement is omitted. In the present invention, the power generation amount 7, the power generation amount detection value 9, and the generator output signal 43 may be handled as the same, and therefore are treated as the same.

出力制御回路の構成と機能を図10で説明する。出力指令21がプラント制御の基本信号であり、これに周波数補償信号31が加算されてMWD22となりプラントの負荷状態が設定される。MWD22は、ボイラ1についての給水量、燃料量、空気量といったボイラ入力の基本信号であり、且つ発電機出力の目標信号であり、蒸気発生側であるボイラ1と蒸気消費側であるタービン2や発電機3の共通基本信号となる。   The configuration and function of the output control circuit will be described with reference to FIG. The output command 21 is a basic signal for plant control, and the frequency compensation signal 31 is added to the basic signal to form the MWD 22 to set the load state of the plant. The MWD 22 is a boiler input basic signal such as a water supply amount, a fuel amount, and an air amount for the boiler 1 and a generator output target signal. The boiler 1 on the steam generation side and the turbine 2 on the steam consumption side This is a common basic signal for the generator 3.

MWD22と発電機出力信号43(同信号値を発電機出力43と呼ぶ)に差があると、発電機出力偏差信号44(同信号値を発電機出力偏差44と呼ぶ)に差信号が生じ、発電機出力信号43がMWD22に一致する(=発電機出力偏差44が0になる)までPI制御器46により負荷指令45を増減制御する。   When there is a difference between the MWD 22 and the generator output signal 43 (the same signal value is called the generator output 43), a difference signal is generated in the generator output deviation signal 44 (the same signal value is called the generator output deviation 44), The PI controller 46 increases or decreases the load command 45 until the generator output signal 43 matches the MWD 22 (= the generator output deviation 44 becomes 0).

図3に示すように、負荷指令45はタービンの回転数補正信号17が加算されてタービン加減弁開度指令18となり、タービン加減弁4の開度はサーボ19によりタービン加減弁開度指令18に調節される。タービン加減弁4の開度が増減するとボイラ1からタービン2に流れる蒸気量5が変化し、蒸気量5の増減に応じて電気エネルギへの変換量が変わり発電量7が変わる。これが出力制御の基本である。   As shown in FIG. 3, the load command 45 is added with the turbine speed correction signal 17 to become the turbine control valve opening command 18, and the opening of the turbine control valve 4 is changed to the turbine control valve opening command 18 by the servo 19. Adjusted. When the opening of the turbine control valve 4 increases or decreases, the amount of steam 5 flowing from the boiler 1 to the turbine 2 changes, and according to the increase or decrease of the amount of steam 5, the amount of conversion to electrical energy changes and the power generation amount 7 changes. This is the basis of output control.

具体的数値を仮定して以下説明する。単純化するため初期状態として出力指令21、MWD22、負荷指令45、タービン加減弁開度指令18及びタービン加減弁4の開度が全て70%と仮定する。ここで発電機出力43が70%一定に調節されたとき、プラントは出力が一定で安定した運転状態に移行する。   This will be described below assuming specific numerical values. For the sake of simplicity, it is assumed that the output command 21, MWD 22, load command 45, turbine control valve opening command 18 and turbine control valve 4 are all 70% as initial states. Here, when the generator output 43 is adjusted to a constant 70%, the plant shifts to a stable operating state with a constant output.

例えば発電量7(=発電機出力43)がMWD22より1%低い69%の初期状態を仮定する。発電機出力偏差44は70%−69%=+1%となり、負荷指令45の値はPI制御器46により70%から増加し始める。ここではタービン回転数補正信号17=0としてタービン加減弁開度指令18は負荷指令45と同値となり、タービン加減弁4の開度はサーボ19により負荷指令45の値に合わせて70%から増加(開き操作)し始める。タービン加減弁4の開き操作により、ボイラ1からタービン2へ供給される蒸気5の蒸気流量が増加し、発電量7が69%から増加し始める。例えば負荷指令45が70%→71%に増加し、タービン加減弁4も70%→71%に開いた時、発電機出力43が69%→70%に増加したとすると、このとき発電機出力偏差44が0になって制御動作が止まり、この状態で安定する。   For example, assume an initial state in which the power generation amount 7 (= generator output 43) is 69% lower than the MWD 22 by 1%. The generator output deviation 44 becomes 70% −69% = + 1%, and the value of the load command 45 starts to increase from 70% by the PI controller 46. Here, when the turbine speed correction signal 17 = 0, the turbine control valve opening command 18 has the same value as the load command 45, and the opening of the turbine control valve 4 is increased from 70% according to the value of the load command 45 by the servo 19 ( Start opening). By opening the turbine control valve 4, the steam flow rate of the steam 5 supplied from the boiler 1 to the turbine 2 increases, and the power generation amount 7 starts to increase from 69%. For example, when the load command 45 increases from 70% to 71% and the turbine control valve 4 opens from 70% to 71%, if the generator output 43 increases from 69% to 70%, then the generator output is The deviation 44 becomes 0, the control operation stops, and the state is stabilized in this state.

反対に前記初期状態で発電機出力信号43がMWD22より1%高い71%だったと仮定すると、発電機出力偏差44は70%−71%=−1%であり、負荷指令45はPI制御器46により70%から減少方向に制御される。負荷指令45が70%→69%に減少し、タービン加減弁4も70%→69%に絞られた時、発電機出力43が71%→70%に減少したとすると、このとき発電機出力偏差44が0になり制御動作が止まり、この状態で安定する。   On the other hand, assuming that the generator output signal 43 is 71% which is 1% higher than the MWD 22 in the initial state, the generator output deviation 44 is 70% -71% =-1%, and the load command 45 is the PI controller 46. Is controlled in a decreasing direction from 70%. When the load command 45 is reduced from 70% to 69% and the turbine control valve 4 is also reduced from 70% to 69%, the generator output 43 is reduced from 71% to 70%. The deviation 44 becomes 0, the control operation stops, and the state is stabilized in this state.

次に周波数変動が生じたときの従来技術の挙動を機能別に順次説明する。
まずケース1として、周波数補正機能は図3に示すタービンの調速機能のみとし、図10に示す周波数補償信号31がなく、従ってMWD22は周波数偏差にて補正されない場合を考える。
Next, the behavior of the prior art when frequency fluctuations occur will be described sequentially by function.
First, as a case 1, let us consider a case where the frequency correction function is only the speed control function of the turbine shown in FIG. 3 and there is no frequency compensation signal 31 shown in FIG. 10, and therefore the MWD 22 is not corrected by the frequency deviation.

系統周波数が変動するとタービン2の回転数と発電機3の回転数および発電機周波数が影響を受ける。タービン回転数が変動するとタービン回転数検出器12で検出した回転数信号13が変動し、基準回転数信号14との間に差が生じて回転数偏差信号15(同信号値を回転数偏差15と呼ぶことがある)が生じる。調定率関数16は回転数偏差15に比例した回転数補正信号17(同信号値を回転数補正量17と呼ぶことがある)を出力し、負荷指令45に加算されてタービン加減弁開度指令18が補正されてタービン加減弁4の開度が調節され、発電量7が制御される。出力制御のPI制御器46が比例積分制御機能を持つのに対し、調定率関数16は比例制御機能のみである。   When the system frequency varies, the rotational speed of the turbine 2, the rotational speed of the generator 3, and the generator frequency are affected. When the turbine rotational speed fluctuates, the rotational speed signal 13 detected by the turbine rotational speed detector 12 fluctuates, and a difference from the reference rotational speed signal 14 is generated, resulting in a rotational speed deviation signal 15 (the same signal value as the rotational speed deviation 15). May be called). The settling rate function 16 outputs a rotation speed correction signal 17 (the signal value may be referred to as a rotation speed correction amount 17) proportional to the rotation speed deviation 15, and is added to the load command 45 to be a turbine adjustment valve opening command. 18 is corrected, the opening degree of the turbine control valve 4 is adjusted, and the power generation amount 7 is controlled. The output control PI controller 46 has a proportional-integral control function, whereas the settling rate function 16 has only a proportional control function.

出力制御と同様に具体的数値を仮定して説明する。出力指令21、MWD22、発電機出力43、負荷指令45、タービン加減弁開度指令18及びタービン加減弁4の開度が、いずれも70%一定で安定している状態において、例えば50Hz地域において電力供給量過多のため周波数偏差が0Hzから+0.2Hzに上昇した場合の従来技術ケース1について説明する。   Similar to the output control, description will be made assuming specific numerical values. In a state where the output command 21, MWD 22, generator output 43, load command 45, turbine control valve opening command 18 and turbine control valve 4 are all 70% constant and stable, for example, power in a 50 Hz region The prior art case 1 in the case where the frequency deviation increases from 0 Hz to +0.2 Hz due to excessive supply amount will be described.

まず、タービン調速機能の動作としては、周波数が0.2Hz上昇(タービン基準回転数3000rpmとして回転数が12rpm上昇したことに相当)することにより、回転数信号13は3000→3012rpmに増加するため基準速度信号14の値3000rpmとの差である回転数偏差信号15に−12rpmが生じる。ここで調定率を4%(4%の周波数変動(50Hz×0.04=2Hz或は3000rpm×0.04=120rpmの変動で出力補正量が100%となる比率)と仮定すると、調定率関数16により
−12rpm÷(3000rpm×4/100)×100%=−10%
の値が回転数補正信号17として出力され、APC6より出力されている負荷指令45の値70%に加算されてタービン加減弁開度指令18は70%−10%=60%となる。
First, as the operation of the turbine speed control function, the frequency increases by 0.2 Hz (corresponding to the fact that the rotational speed increases by 12 rpm as the turbine standard rotational speed of 3000 rpm), so that the rotational speed signal 13 increases from 3000 to 3012 rpm. -12 rpm is generated in the rotational speed deviation signal 15 which is a difference from the value 3000 rpm of the reference speed signal 14. Assuming that the settling rate is 4% (4% frequency fluctuation (50 Hz × 0.04 = 2 Hz or 3000 rpm × 0.04 = 120 rpm, the ratio at which the output correction amount becomes 100%)) 16 −12 rpm ÷ (3000 rpm × 4/100) × 100% = − 10%
Is added as the rotational speed correction signal 17 and added to the value 70% of the load command 45 output from the APC 6, so that the turbine control valve opening command 18 becomes 70% -10% = 60%.

サーボ19はタービン加減弁開度指令18に従い、タービン加減弁4の開度を70%→60%に絞り操作し、タービン2に供給される蒸気量5が10%出力に相当する分だけ減少させ、発電量7は70%→60%に低下する結果、電力供給量過多の需給バランス状態において出力を10%低減することで需給バランスの改善に貢献し、+0.2Hz上昇している周波数を抑制する方向に作用する。   In accordance with the turbine control valve opening command 18, the servo 19 throttles the opening of the turbine control valve 4 from 70% to 60%, and reduces the amount of steam 5 supplied to the turbine 2 by an amount corresponding to 10% output. As a result, the power generation amount 7 decreases from 70% to 60%. As a result, the output is reduced by 10% in the supply and demand balance state where the power supply is excessive. It acts in the direction to do.

しかし、MWD22は周波数が変動しても70%の値は不変であり、発電量7が10%減少して60%になると、発電機出力偏差44が+10%となり、PI制御器46により負荷指令45は70%から増加し始める。具体的には負荷指令45が80%まで増加したとき、タービン加減弁開度指令18は負荷指令(80%)+タービン回転数補正量17(−10%)=70%となり、タービン加減弁4の開度はサーボ19にて元の70%に調節され発電量7も元の70%出力に戻って発電機出力偏差44が0になりプラントは安定し、周波数変動を抑制する効果がなくなる。   However, 70% of the MWD 22 does not change even if the frequency fluctuates. When the power generation amount 7 decreases by 10% to 60%, the generator output deviation 44 becomes + 10%, and the PI controller 46 controls the load command. 45 begins to increase from 70%. Specifically, when the load command 45 increases to 80%, the turbine control valve opening command 18 becomes load command (80%) + turbine speed correction amount 17 (−10%) = 70%, and the turbine control valve 4 Is adjusted to the original 70% by the servo 19, the power generation amount 7 also returns to the original 70% output, the generator output deviation 44 becomes 0, the plant is stabilized, and the effect of suppressing the frequency fluctuation is lost.

即ち、周波数変動が生じた場合、一時的にタービン2の調速機能によって周波数変動を抑制する方向に発電量7が調整されるが、発電量7が調整されると出力制御の出力目標値であるMWD22と差が生じるため、PI制御器46により元の発電量に引戻され、タービン調速機能による周波数変動抑制効果が相殺される。   That is, when the frequency fluctuation occurs, the power generation amount 7 is temporarily adjusted by the speed control function of the turbine 2 so as to suppress the frequency fluctuation. When the power generation amount 7 is adjusted, the output target value of the output control is adjusted. Since there is a difference from a certain MWD 22, the PI controller 46 pulls it back to the original power generation amount and cancels out the frequency fluctuation suppressing effect by the turbine speed control function.

次に従来技術のケース2として、前記の出力制御による周波数変動抑制効果の相殺作用を無くすため、周波数補償関数24(図10)を設けたケースを説明する。
出力はMWD22を目標に制御されるため、周波数が上昇した場合にはMWD22を減じる補正を行い、周波数が低下した場合にはMWD22を増加する補正を行うことで、前記従来技術のケース2のような出力制御による周波数変動抑制効果の相殺作用を無くすことができる。
Next, as case 2 of the prior art, a case will be described in which a frequency compensation function 24 (FIG. 10) is provided in order to eliminate the canceling action of the frequency fluctuation suppression effect by the output control.
Since the output is controlled with the MWD 22 as a target, when the frequency is increased, the MWD 22 is corrected to be decreased, and when the frequency is decreased, the MWD 22 is increased to be corrected, as in the case 2 of the conventional technique. It is possible to eliminate the canceling effect of the frequency fluctuation suppressing effect by the simple output control.

そこで周波数補償関数24により、周波数偏差に応じて周波数補償信号25を生成し、これを出力指令21に加算してMWD22とすることが考えられる。しかしMWD22が周波数偏差で変動すると、プラント全体の操作量、制御目標や状態量が周波数偏差の影響を直接受ける事になるため、プラントの安定性を確保するため、一般には回路上、以下の配慮がされている。   Therefore, it can be considered that the frequency compensation function 24 generates the frequency compensation signal 25 according to the frequency deviation and adds it to the output command 21 to obtain the MWD 22. However, if the MWD 22 fluctuates due to the frequency deviation, the operation amount, control target, and state quantity of the entire plant are directly affected by the frequency deviation. Therefore, in order to ensure the stability of the plant, the following considerations are generally taken on the circuit. Has been.

(1)プラント安定性を確保する目的のために、プラントの許容範囲を超える補償量について制限するが、そのために図10に示すように、周波数補償下限関数26及び周波数補償上限関数29を設ける。プラントが許容できる変動量はプラント負荷状態で変わるため、この上下限関数26、29は出力指令21を入力とする関数としている。
周波数補償信号25は下限関数26の出力信号27と高値選択されることで下限制限され、更にこの下限制限された周波数補償信号28を上限関数29の出力信号30と低値選択することで上下限制限された周波数補償信号31となる。この周波数補償信号31を出力指令21に加算してMWD22とする。
(1) For the purpose of ensuring the plant stability, the compensation amount exceeding the allowable range of the plant is limited. For this purpose, a frequency compensation lower limit function 26 and a frequency compensation upper limit function 29 are provided as shown in FIG. Since the amount of fluctuation that can be tolerated by the plant varies depending on the plant load state, the upper and lower limit functions 26 and 29 are functions that have the output command 21 as an input.
The lower limit of the frequency compensation signal 25 is selected by selecting a high value with the output signal 27 of the lower limit function 26, and the upper and lower limits of the frequency compensation signal 25 are further selected by selecting a lower value of the frequency compensation signal 28 with the lower limit limited as the output signal 30 of the upper limit function 29. The frequency compensation signal 31 is limited. The frequency compensation signal 31 is added to the output command 21 to obtain the MWD 22.

(2)周波数変動を抑制する重要性が高くなく、且つプラント安定上好ましくない、小さく周期の早い周波数変動に対しては、周波数補償信号25を0出力するよう周波数補償関数24の設定に不感帯を設ける。
図4の周波数補償量カーブに示すように周波数補償関数24の設定には不感帯があり、小さな周波数変動(変動周期の早いものが多い)では周波数補償信号25が出力されない設定にしてある。不感帯の幅は±0.1Hzから±0.2Hz程度が一般的であるが、更に周波数補償関数の不感帯とは別に不感帯以上の任意の周波数変動(例えば±0.25Hz)が生じてから、周波数補償信号31を出力指令21に加算するように切替器47のインターロックを設定することもある。
(2) The frequency compensation function 24 is set to a dead zone so that the frequency compensation signal 25 is output 0 for frequency fluctuations that are not highly important for suppressing frequency fluctuations and are not preferable in terms of plant stability and are small and have a fast cycle. Provide.
As shown in the frequency compensation amount curve of FIG. 4, there is a dead zone in the setting of the frequency compensation function 24, and the frequency compensation signal 25 is not set to be output when there is a small frequency fluctuation (there is often a fluctuation period is fast). The width of the dead band is generally about ± 0.1 Hz to ± 0.2 Hz, but the frequency after an arbitrary frequency fluctuation (for example, ± 0.25 Hz) beyond the dead band is generated separately from the dead band of the frequency compensation function. The interlock of the switch 47 may be set so that the compensation signal 31 is added to the output command 21.

(3)周波数補償信号31が急変すると応答速度の遅い火力プラントが対応できない状態が考えられるため、プラントの安定を維持する目的で周波数補償回路にLAGや変化率制限器を設ける。 (3) If the frequency compensation signal 31 changes suddenly, a thermal power plant with a slow response speed cannot be considered. Therefore, a LAG or a change rate limiter is provided in the frequency compensation circuit for the purpose of maintaining the stability of the plant.

ところで、日本では±0.2Hzを超える周波数変動は希であり、通常の周波数変動は±0.15Hz以下である場合が多い。これに対して周波数補償量31には前記の通り不感帯が設定してあるので、周波数補償信号25が生じる割合は少なく、不感帯以上の周波数変動により周波数補償信号25が生じても、図4に示す通りタービン調速機能による補正量に比べて少ない補正量である。よってタービン調速機能による周波数変動抑制効果は出力制御にて相殺される割合が多い。   By the way, in Japan, frequency fluctuations exceeding ± 0.2 Hz are rare, and normal frequency fluctuations are often ± 0.15 Hz or less. On the other hand, since the dead zone is set in the frequency compensation amount 31 as described above, the frequency compensation signal 25 is generated at a low rate, and even if the frequency compensation signal 25 is produced due to frequency fluctuations beyond the dead zone, it is shown in FIG. The correction amount is smaller than the correction amount by the turbine speed control function. Therefore, the frequency fluctuation suppression effect by the turbine speed control function is largely canceled by the output control.

そこで従来技術のケース3として、タービンの調速機能により補正された発電機出力を発電機出力制御の出力目標値とするため、図11に示すようにタービン回転数補正信号17と周波数補償信号31との差に相当する補正量を周波数偏差に応じて出力設定補正関数32で発生させ、その出力である出力設定補正信号33(同信号値を出力設定補正量33と呼ぶことがある)をMWD22に加算して新たに発電機出力設定信号42とする回路がある。   Therefore, as case 3 of the prior art, in order to set the generator output corrected by the speed adjusting function of the turbine as the output target value of the generator output control, the turbine rotation speed correction signal 17 and the frequency compensation signal 31 as shown in FIG. The output setting correction function 32 generates a correction amount corresponding to the difference between the output setting correction function 32 and the output setting correction signal 33 (the signal value may be referred to as the output setting correction amount 33) as the output. There is a circuit that is newly added to the generator output setting signal 42.

ケース2では発電機出力43はMWD22を目標として出力制御されていたが、ケース3では発電機出力43は発電機出力設定信号42を目標として制御されることになる。   In case 2, the generator output 43 is output controlled with the MWD 22 as a target, but in case 3, the generator output 43 is controlled with the generator output setting signal 42 as a target.

ここで出力設定補正関数32の設定は、図5及び図6の特性に示す通り、
周波数補償量31+出力設定補正量33=回転数補正量17
とすることにある。これによりタービンの調速機能によって得られた周波数変動を抑制する効果が、出力制御で相殺されるか、減じられることが無くなるか、又は少なくなる。
Here, the setting of the output setting correction function 32 is as shown in the characteristics of FIGS.
Frequency compensation amount 31 + output setting correction amount 33 = rotation speed correction amount 17
It is to do. As a result, the effect of suppressing the frequency fluctuation obtained by the speed control function of the turbine is canceled or reduced by the output control, or is reduced.

図5は通常周波数変動範囲に重点を置き、特に周波数補償関数24の不感帯に対して改善をする設定であり、周波数変動が大きい場合には出力設定補正関数32による補正はせず、プラント安定性に配慮した設定ということができ、主にこの設定が採用されている。図6は周波数変動全域で改善を図った設定で、周波数変動抑制を最重点に置いた設定である。   FIG. 5 is a setting that focuses on the normal frequency fluctuation range and particularly improves the dead band of the frequency compensation function 24. When the frequency fluctuation is large, correction by the output setting correction function 32 is not performed, and plant stability is achieved. This setting is mainly adopted. FIG. 6 shows a setting for improving the entire frequency fluctuation, and setting the highest priority on frequency fluctuation suppression.

図3に示す出力設定補正関数32を含む出力設定補正回路の特徴は、MWD22を直接補正しないことにある。MWD22はプラント全体の操作量や挙動に直接影響を与える信号であるのに対し、出力設定信号42が直接影響を与えるのは負荷指令45〜タービン加減弁4〜発電量7であり、特にプラント安定上重要な主機であるボイラ1に対しては、蒸気量5が変動した結果として影響が現れる事になるため、一般には直接MWD22を補正するよりプラント安定上有利と考えられている。   A feature of the output setting correction circuit including the output setting correction function 32 shown in FIG. 3 is that the MWD 22 is not directly corrected. The MWD 22 is a signal that directly affects the operation amount and behavior of the entire plant, whereas the output setting signal 42 directly affects the load command 45, the turbine regulator 4 to the power generation amount 7, and particularly the plant stability. The boiler 1, which is an important main machine, has an effect as a result of fluctuations in the amount of steam 5. Therefore, it is generally considered more advantageous in terms of plant stability than directly correcting the MWD 22.

前記ケース2とケース3の違いとなる出力設定補正関数32を含む出力設定補正回路の有無による制御動作の違いを、前記ケース1と同様に具体的数値を仮定して説明する。   The difference in control operation depending on the presence or absence of the output setting correction circuit including the output setting correction function 32, which is the difference between the case 2 and the case 3, will be described assuming specific numerical values as in the case 1.

周波数補償関数24は図4の通り不感帯を±0.15Hzとし、関数の傾きはタービン調速機能の傾きに合わせて調定率4%(2Hzの変動で出力が100%補正される傾き)とする。MWD22、負荷指令45、タービン加減弁4、発電機出力信号43は70%一定状態とする。周波数条件はケース1と同様に+0Hzから+0.2Hzに変動した場合を想定する。またトランジェントな挙動や微妙な応答時間ずれは考慮しないこととする。   As shown in FIG. 4, the frequency compensation function 24 has a dead band of ± 0.15 Hz, and the slope of the function is set to 4% (the slope at which the output is corrected by 100% with a fluctuation of 2 Hz) in accordance with the slope of the turbine speed control function. . The MWD 22, the load command 45, the turbine control valve 4, and the generator output signal 43 are set to a constant state of 70%. As in the case 1, the frequency condition is assumed to change from +0 Hz to +0.2 Hz. Also, transient behavior and subtle response time deviations are not considered.

まず図10に示す通り出力設定補正関数32を含む出力設定補正回路がないケース2の場合を以下に説明する。
この状態で周波数偏差が+0Hzから+0.2Hzに上昇すると、タービン回転数信号13は3000rpm→3012rpmに増加し、回転数偏差信号15は−12rpmとなり回転数補正信号17は、
−12rpm÷(3000rpm×4/100)×100%=−10%
が出力され、タービン加減弁開度指令18は70%−10%=60%になり、サーボ19によりタービン加減弁4の開度が70%→60%に絞られる。このため発電量7も70%→60%に減じる。ここまではケース1のタービン調速機能の動作と同じである。
First, a case 2 where there is no output setting correction circuit including the output setting correction function 32 as shown in FIG. 10 will be described below.
When the frequency deviation increases from +0 Hz to +0.2 Hz in this state, the turbine rotation speed signal 13 increases from 3000 rpm to 3012 rpm, the rotation speed deviation signal 15 becomes −12 rpm, and the rotation speed correction signal 17 is
−12 rpm ÷ (3000 rpm × 4/100) × 100% = − 10%
Is output, the turbine control valve opening command 18 becomes 70% -10% = 60%, and the servo 19 reduces the opening of the turbine control valve 4 from 70% to 60%. For this reason, the power generation amount 7 is also reduced from 70% to 60%. Up to this point, the operation is the same as the operation of the turbine speed control function in case 1.

一方、周波数補償関数24の出力は、不感帯+0.15Hz分を除いた+0.05Hz分の周波数変動に対する補償量となる。即ち、周波数補償信号25は
+0.05Hz÷(50Hz×4/100)×(−100%)=−2.5%
の値となる。ここでは周波数補償信号25の上下限制限は省略し、MWD22は70%−2.5%=67.5%となる。よって発電機出力偏差44は67.5%−60%=+7.5%となり、PI制御器46は発電量出力43がMWD22と同じ67.5%に増加するまで負荷指令45を増加させる。
On the other hand, the output of the frequency compensation function 24 is a compensation amount for the frequency fluctuation of +0.05 Hz excluding the dead band +0.15 Hz. That is, the frequency compensation signal 25 is +0.05 Hz / (50 Hz × 4/100) × (−100%) = − 2.5%
It becomes the value of. Here, the upper and lower limits of the frequency compensation signal 25 are omitted, and the MWD 22 is 70% −2.5% = 67.5%. Therefore, the generator output deviation 44 is 67.5% -60% = + 7.5%, and the PI controller 46 increases the load command 45 until the power generation output 43 increases to 67.5%, which is the same as the MWD 22.

結果として負荷指令45は70%→77.5%に、タービン加減弁開度指令18は70%→60%→67.5%、発電量7は70%→60%→67.5%に、それぞれ変動して発電量67.5%で安定する。このため本来タービン調速機能により発電量7が−10%されて周波数上昇の抑制に寄与するところ、出力制御による相殺作用のため発電量7は都合−2.5%されるに留まり、周波数変動抑制効果が1/4に低下した事になる。   As a result, the load command 45 is 70% → 77.5%, the turbine control valve opening command 18 is 70% → 60% → 67.5%, and the power generation amount 7 is 70% → 60% → 67.5%. It fluctuates and stabilizes at a power generation amount of 67.5%. For this reason, the power generation amount 7 is essentially -10% by the turbine speed control function and contributes to the suppression of the frequency rise. However, the power generation amount 7 is only -2.5% because of the canceling action by the output control. The suppression effect has been reduced to ¼.

次に図11の通り出力設定補正信号33を生成する前記出力設定補正回路があるケース3の場合で、出力設定補正関数32に図6の関数が採用されている場合について、同一条件で説明する。   Next, the case where the output setting correction circuit for generating the output setting correction signal 33 is provided as shown in FIG. 11 and the function of FIG. 6 is adopted as the output setting correction function 32 will be described under the same conditions. .

ケース3の場合は、ケース1,2の場合と同様に周波数変動量が+0Hzから+0.2Hzに上昇したとすると、タービン調速機能によりケース2の場合と同様に回転数補正量17は−10%となり、タービン加減弁開度指令18は70%−10%=60%になり、サーボ19によりタービン加減弁4の開度が70%→60%に絞られる。このため発電量7も70%→60%に減じる。また周波数補償回路もケース2同様に周波数補償量25は−2.5%となり、MWD22は70%−2.5%=67.5%となる。ここまではケース2と同じである。   In the case 3, if the frequency fluctuation amount increases from +0 Hz to +0.2 Hz as in the cases 1 and 2, the rotational speed correction amount 17 is −10 as in the case 2 due to the turbine speed control function. %, The turbine control valve opening command 18 becomes 70% -10% = 60%, and the servo 19 reduces the opening of the turbine control valve 4 from 70% to 60%. For this reason, the power generation amount 7 is also reduced from 70% to 60%. Similarly to the case 2, the frequency compensation amount 25 of the frequency compensation circuit is −2.5%, and the MWD 22 is 70% −2.5% = 67.5%. The process up to this point is the same as Case 2.

一方で出力設定補正関数32は+0.15Hz相当の補正量である、
+0.15Hz÷(50Hz×4/100)×(−100%)=−7.5%
を出力設定補正信号33として出力する。よって発電機出力設定信号44はMWD22(67.5%)+出力設定補正量33(−7.5%)=60%となり、回転数補正量17にて調節された発電機出力43と同値になる。
On the other hand, the output setting correction function 32 is a correction amount equivalent to +0.15 Hz.
+0.15 Hz ÷ (50 Hz × 4/100) × (−100%) = − 7.5%
Is output as the output setting correction signal 33. Therefore, the generator output setting signal 44 is MWD22 (67.5%) + output setting correction amount 33 (−7.5%) = 60%, which is the same value as the generator output 43 adjusted by the rotational speed correction amount 17. Become.

従って、発電機出力偏差信号44は0であり、PI制御器46は働かず、負荷指令45も変化しないことになり、MWD22は70%→67.5%、発電機出力設定信号42は70%→60%、負荷指令45は70%と変わらず、タービン加減弁開度指令18及びタービン加減弁4の開度は70%→60%、発電量7は70%→60%にそれぞれ変化し安定する。よってタービン調速機能によって得られた周波数変動抑制効果である発電量7の10%低減は、そのまま維持でき、相殺されることは無い。上述の通り、発電機出力偏差信号44を0に維持して負荷指令44を変動させず、タービン2の調速機能をそのまま生かすことがポイントである。   Therefore, the generator output deviation signal 44 is 0, the PI controller 46 does not work, and the load command 45 does not change. The MWD 22 is 70% → 67.5%, and the generator output setting signal 42 is 70%. → 60%, load command 45 remains 70%, turbine opening / closing valve opening command 18 and turbine opening / closing valve 4 opening change from 70% to 60%, and power generation amount 7 changes from 70% to 60% and stable. To do. Therefore, the 10% reduction of the power generation amount 7, which is the frequency fluctuation suppressing effect obtained by the turbine speed control function, can be maintained as it is and is not canceled out. As described above, the point is that the generator output deviation signal 44 is maintained at 0, the load command 44 is not changed, and the speed control function of the turbine 2 is utilized as it is.

別の見方をすれば、最終的に発電量7は発電機出力設定信号42に制御されるため、トランジェントな応答は別にして、最終的に周波数変動抑制効果は周波数補償量31と出力設定補正量33の合計補正量で決まると言える。   From another point of view, since the power generation amount 7 is finally controlled by the generator output setting signal 42, the frequency fluctuation suppression effect is finally the frequency compensation amount 31 and the output setting correction, apart from the transient response. It can be said that it is determined by the total correction amount of the amount 33.

また、特開平11−223105号公報に開示された発明は、周波数が一定範囲以上に変動した場合には、出力偏差である減算器(36)の出力△MWを制限回路(38)にてブロックし、出力を制御する比例・積分演算器(40)への入力△MW’を0とすることで、出力制御を一時的にやめてタービン調速機能による周波数制御機能を発揮させることができる。   Further, in the invention disclosed in Japanese Patent Application Laid-Open No. 11-223105, when the frequency fluctuates beyond a certain range, the output ΔMW of the subtracter (36), which is an output deviation, is blocked by the limiting circuit (38). Then, by setting the input ΔMW ′ to the proportional / integral calculator (40) for controlling the output to 0, the output control is temporarily stopped, and the frequency control function by the turbine speed control function can be exhibited.

従来技術のケース3の出力設定補正信号33を生成する出力設定補正回路も、特開平11−223105号公報に開示された発明も、PI制御器46又は比例・積分演算器40(特開平11−223105号公報)の入力信号を0にして、負荷指令45を変化させず、タービン調速機能による周波数変動抑制機能をそのまま発揮させるものであり、出力制御の制限方法や制限範囲は違うが同様の効果を狙ったものである。   The output setting correction circuit for generating the output setting correction signal 33 in case 3 of the prior art, the invention disclosed in Japanese Patent Laid-Open No. 11-223105, the PI controller 46 or the proportional / integral calculator 40 (Japanese Patent Laid-Open No. No. 223105) is set to 0, the load command 45 is not changed, and the frequency fluctuation suppression function by the turbine speed control function is exhibited as it is. It is aimed at effect.

しかし図11に示す場合には、出力設定補正量33を制限するものは出力設定補正関数32の設定のみであり、周波数偏差以外のパラメータで制限することはできない。   However, in the case shown in FIG. 11, the output setting correction amount 33 is limited only by the setting of the output setting correction function 32, and cannot be limited by parameters other than the frequency deviation.

また、特開平11−223105号公報に開示された発明についても、同様に周波数偏差以外のパラメータで制限することはできない。   Similarly, the invention disclosed in Japanese Patent Application Laid-Open No. 11-223105 cannot be limited by parameters other than the frequency deviation.

火力プラントは一般に高出力運転状態に比べて低出力運転状態の方がプラントの安定性が低く、外乱に弱いため、高負荷で最大の効果を発揮させ、且つ低負荷運転状態でプラントの安定性を確保する点で配慮がされていなかった。
特開平11−223105号公報 電気学会技術報告第869号「電力系統における常時及び緊急時の負荷周波数制御」P43〜45、電気学会、 2002年3月
Thermal power plants are generally less stable in low-power operation than in high-power operation, and are less susceptible to external disturbances. Therefore, the maximum effect is achieved at high loads, and plant stability in low-load operation. Consideration was not made in terms of ensuring.
JP-A-11-223105 IEEJ Technical Report No. 869 “Regular and Emergency Load Frequency Control in Power Systems” P43-45, IEEJ, March 2002

前記従来技術の出力設定補正関数32を含む出力設定補正回路は、特に周波数偏差が小さい場合に、タービン調速機能による発電量7の調整により周波数変動抑制効果を最大限発揮させるため、タービン回転数補正信号17で調節された発電量7と発電機出力設定値42が一致するよう出力設定補正信号33を生成する制御方式であるが、周波数補償に対して出力設定補正はプラント安定性への悪影響が少ないとの判断からか、又は補正量自体が小さい値でありプラント安定性へ重大な影響を及ぼす懸念がないとの判断からか、従来は特に出力設定補正信号33には制限回路を設けられていなかった。しかし実際には周波数補償信号より出力設定補正信号の方がプラント安定性への影響が大きい。   The output setting correction circuit including the output setting correction function 32 of the prior art, in particular, when the frequency deviation is small, makes it possible to maximize the frequency fluctuation suppression effect by adjusting the power generation amount 7 by the turbine speed control function. In this control method, the output setting correction signal 33 is generated so that the power generation amount 7 adjusted by the correction signal 17 and the generator output setting value 42 coincide with each other. However, the output setting correction has an adverse effect on the plant stability with respect to the frequency compensation. In the past, the output setting correction signal 33 is conventionally provided with a limiting circuit, for example, because it is determined that the amount of correction is small, or because it is determined that the correction amount itself is a small value and there is no concern of having a significant impact on plant stability. It wasn't. In practice, however, the output setting correction signal has a greater influence on the plant stability than the frequency compensation signal.

従って、高負荷運転状態で十分に補正を生かして最大限の効果を発揮させ、且つプラント安定性が悪くなる低負荷運転状態では補正量に制限を掛け、周波数変動抑制効果とプラント安定性の両立を図れる最適な制御を行うことができるように、十分な配慮がなされているとはいえなかった。   Therefore, the correction can be fully utilized in the high load operation state to achieve the maximum effect, and in the low load operation state where the plant stability is poor, the correction amount is limited to achieve both the frequency fluctuation suppression effect and the plant stability. Therefore, it cannot be said that sufficient consideration has been made so that optimum control can be performed.

プラントが許容できる出力設定補正量範囲の一例を図7に示す。一般的に低負荷ほど許容範囲が小さくなる。縦軸の合成出力補正制限量は、周波数補償と出力設定補正の合成補正量に対してプラントを安定に保つための上下限制限範囲を示す。具体例で説明する。出力設定補正関数32が図5或は図6の設定とすると、±0.15Hzの周波数変動が生じた場合には出力設定補正信号33の値は±7.5%となる。一方、図7に示す通り、出力指令21が75%以上であれば上下限制限範囲は±7.5%以上あり、許容範囲内となるが、出力指令21が75%未満のときは上下限制限範囲が±7.5%未満であり、出力設定補正量33は前記制限範囲を超えることになりプラントが不安定になる可能性がある。また前記制限範囲を超えないように、出力設定補正関数32の設定値を図7に示す上下限制限範囲の最低値±3%に合わせた場合、高負荷運転状態で最大10%の補正量が許容されるにも係わらず±3%の補正量に制限すれば、周波数変動を抑制する機能が十分発揮できない。   An example of the output setting correction amount range allowable by the plant is shown in FIG. Generally, the lower the load, the smaller the allowable range. The combined output correction limit amount on the vertical axis indicates the upper and lower limit limit ranges for keeping the plant stable with respect to the combined correction amount of frequency compensation and output setting correction. A specific example will be described. If the output setting correction function 32 is set as shown in FIG. 5 or FIG. 6, the value of the output setting correction signal 33 becomes ± 7.5% when a frequency variation of ± 0.15 Hz occurs. On the other hand, as shown in FIG. 7, if the output command 21 is 75% or more, the upper and lower limit range is ± 7.5% or more, which is within the allowable range, but if the output command 21 is less than 75%, the upper and lower limits The limit range is less than ± 7.5%, and the output setting correction amount 33 exceeds the limit range, and the plant may become unstable. Further, when the set value of the output setting correction function 32 is set to the minimum value ± 3% of the upper and lower limit limit range shown in FIG. 7 so as not to exceed the limit range, a maximum correction amount of 10% is obtained in the high load operation state. Despite being allowed, if the correction amount is limited to ± 3%, the function of suppressing the frequency fluctuation cannot be sufficiently exhibited.

本発明の課題は、出力設定補正量33に対して周波数補償量31と協調がとれた適切な上下限制限を掛けることにより、負荷運転状態に係わらず、プラント安定性の維持と許容される最大限の周波数変動抑制効果の発揮を両立させることにある。   The object of the present invention is to apply an appropriate upper / lower limit limit that is coordinated with the frequency compensation amount 31 to the output setting correction amount 33, thereby maintaining the plant stability and the maximum allowable value regardless of the load operation state. The purpose is to achieve both the effect of suppressing the frequency fluctuation.

前記本発明の課題を解決するため、周波数偏差に応じてMWD22を補正する周波数補償回路とは別に、周波数偏差に応じて出力設定補正信号33を生成し、MWD22に加算して発電量制御の制御目標値とする出力設定補正機能を持つ場合に、出力設定補正信号33についても周波数補償信号に掛ける上下限制限値とは異なる上下限制限値を掛ける手段を含み、一例として、周波数補償信号28と周波数補償下限信号27との差分から周波数補償下限裕度信号34を求める手段と、周波数補償信号31と周波数補償上限信号30との差分から周波数補償上限裕度信号37を求める手段と、下限裕度信号34,上限裕度信号37各々に係数を掛け合わせて出力設定補正下限信号35,同上限信号38とする手段と、出力設定補正信号33を前記上下限信号35,38にて制限する手段と、前記上下限信号35,38にて制限された出力設定補正信号39をMWD22と加算して発電機出力設定信号42とする手段を含む制御回路にて構成するか、
別の手段として、周波数補償下限信号27、同上限信号30とは別に、出力設定補正専用の上下限制限信号35,38を生成する手段と、出力設定補正信号33に対して前記上下限制限信号35,38にて上下限制限する手段と、上下限制限された出力設定補正信号39をMWD22と加算して発電機出力設定信号42とする手段を含む制御回路にて構成し、
更に、出力設定補正関数32の入力である周波数信号23又は出力設定補正信号33〜39の間にLAGを含ませる場合もある。
In order to solve the problem of the present invention, separately from the frequency compensation circuit that corrects the MWD 22 according to the frequency deviation, an output setting correction signal 33 is generated according to the frequency deviation and added to the MWD 22 to control the power generation amount control. In the case of having an output setting correction function serving as a target value, the output setting correction signal 33 also includes means for multiplying an upper / lower limit limit value different from the upper / lower limit limit value applied to the frequency compensation signal. Means for determining the frequency compensation lower limit tolerance signal 34 from the difference from the frequency compensation lower limit signal 27; means for determining the frequency compensation upper limit tolerance signal 37 from the difference between the frequency compensation signal 31 and the frequency compensation upper limit signal 30; A means for multiplying each of the signal 34 and the upper limit tolerance signal 37 by a coefficient to obtain an output setting correction lower limit signal 35 and an upper limit signal 38, and the output setting correction signal 33 A control circuit including means for limiting by upper and lower limit signals 35 and 38 and means for adding the output setting correction signal 39 limited by the upper and lower limit signals 35 and 38 to the MWD 22 to obtain a generator output setting signal 42. Or configure
As another means, apart from the frequency compensation lower limit signal 27 and the upper limit signal 30, a means for generating upper and lower limit restriction signals 35 and 38 dedicated for output setting correction, and the upper and lower limit restriction signal for the output setting correction signal 33. A control circuit including means for limiting upper and lower limits at 35 and 38, and means for adding the output setting correction signal 39 subjected to upper and lower limits to the MWD 22 to obtain a generator output setting signal 42;
Further, there may be a case where LAG is included between the frequency signal 23 or the output setting correction signals 33 to 39 which are inputs of the output setting correction function 32.

また、あらゆる周波数偏差に対して、周波数補償量31と出力設定補正量39の合計補正量が、少なくとも周波数補償上限制限値30及び下限制限値27の範囲内に入るように構成するか、
又は周波数補償信号31と出力設定補正信号39をインターロック回路や補正関数の設定により使い分けする場合を考慮して、周波数補償量上下限制限と出力設定補正量上下限制限を個別に設け、それぞれの機能においてプラントの安定性が確保できるように制御回路を構成し、
更に、場合によってはLAG40により出力設定補正信号39を遅らせて、発電機出力設定値42と回転数補正信号17による発電機出力43の変化の位相を合致させるように制御回路を構成する。
Further, for all frequency deviations, the total correction amount of the frequency compensation amount 31 and the output setting correction amount 39 is configured to fall within at least the range of the frequency compensation upper limit value 30 and the lower limit value 27.
Alternatively, in consideration of the case where the frequency compensation signal 31 and the output setting correction signal 39 are selectively used depending on the setting of the interlock circuit and the correction function, the frequency compensation amount upper and lower limit limitation and the output setting correction amount upper and lower limit limitation are individually provided, Configure the control circuit to ensure plant stability in function,
Further, in some cases, the control circuit is configured so that the output setting correction signal 39 is delayed by the LAG 40 and the phase of the change in the generator output 43 by the generator output setting value 42 and the rotation speed correction signal 17 is matched.

このように制御装置を構成することにより、周波数偏差が生じたとき周波数補償量31と出力設定補正量39を、それぞれプラントの安定性を確保し且つ最大の効果を発揮できるように最適な設定とすることが可能である。   By configuring the control device in this way, when the frequency deviation occurs, the frequency compensation amount 31 and the output setting correction amount 39 are set to the optimum settings so that the stability of the plant can be ensured and the maximum effect can be exhibited. Is possible.

請求項1記載の発明は、ボイラ1と、ボイラ1で生成された蒸気5の熱的エネルギを電気エネルギに変換する蒸気タービン2と、該蒸気タービン2と同軸の発電機3と、ボイラ1から蒸気タービン2へ供給する蒸気5の流量を調整するタービン加減弁4と、ボイラ1の運転及び蒸気タービン加減弁4の操作をそれぞれ制御するプラント制御装置6と、プラント制御装置6から出力される負荷指令信号45にタービン回転数補正信号17を加えてタービン加減弁4を調節するタービン調速機能部とを備えた火力発電プラントに用いられる周波数バイアス制御装置において、プラント制御装置6は、発電量の出力指令信号21の入力があると、送電系統の設定した周波数と出力周波数信号23との間に生じる周波数偏差に応じた周波数補償信号25をプラントが許容できる補正範囲に制限して周波数補償信号31を得て、該周波数補償信号31を前記出力指令信号21に加えて負荷要求信号22を生成する周波数補正回路と、前記周波数偏差に応じた発電量の出力設定補正信号33を生成し、得られた出力設定補正信号33もプラントが許容できる補正範囲に制限して出力設定補正信号39を得て、該出力設定補正信号39を前記負荷要求信号22に加算して発電量制御の制御目標値とする出力設定補正回路と、得られた周波数補償信号31と出力設定補正信号39を負荷要求信号22に加算して発電機出力設定信号42とし、これに発電機出力信号43を加えてフィードバック制御により得られた負荷指令信号45を前記タービン加減弁4に出力する負荷指令回路とを備えた火力発電プラントの周波数バイアス制御装置である。   The invention described in claim 1 includes a boiler 1, a steam turbine 2 that converts thermal energy of steam 5 generated in the boiler 1 into electric energy, a generator 3 coaxial with the steam turbine 2, and the boiler 1. A turbine control valve 4 that adjusts the flow rate of steam 5 supplied to the steam turbine 2, a plant control device 6 that controls the operation of the boiler 1 and the operation of the steam turbine control valve 4, and a load that is output from the plant control device 6 In a frequency bias control device used in a thermal power plant having a turbine speed control function unit that adjusts the turbine control valve 4 by adding the turbine rotation speed correction signal 17 to the command signal 45, the plant control device 6 When the output command signal 21 is input, the frequency compensation signal 2 corresponding to the frequency deviation generated between the set frequency of the power transmission system and the output frequency signal 23. Is limited to a correction range acceptable by the plant, a frequency compensation signal 31 is obtained, and the frequency compensation signal 31 is added to the output command signal 21 to generate the load request signal 22, and according to the frequency deviation An output setting correction signal 33 of the generated power amount is generated, and the obtained output setting correction signal 33 is also limited to a correction range allowable by the plant to obtain an output setting correction signal 39, and the output setting correction signal 39 is set to the load. An output setting correction circuit that is added to the request signal 22 to obtain a control target value for power generation amount control, and the obtained frequency compensation signal 31 and output setting correction signal 39 are added to the load request signal 22 to generate a generator output setting signal 42. And a load command circuit for adding a generator output signal 43 to the turbine control valve 4 to output a load command signal 45 obtained by feedback control. It is the frequency bias control unit runt.

請求項2記載の発明は、プラント制御装置6の周波数補正回路は、プラントが許容できる負荷要求指令22の許容変動量に基づき設定される周波数補償下限関数26と周波数補償上限関数29により出力指令信号21の周波数補償下限信号27と周波数補償上限信号30をそれぞれ得て、該上下限信号27,30をもとに前記周波数補償信号25を制限した周波数補償信号31を得る構成とし、プラント制御装置6の出力設定補正回路は、前記目標値周波数補償下限信号27と周波数補償上限信号30に対する該周波数補償信号31の上下限裕度を演算して周波数補償量下限余裕信号34と周波数補償量上限余裕信号37をそれぞれ得て、該周波数補償量上下限余裕信号37,34にそれぞれ所定の係数K1、K2を掛け合わせた信号をそれぞれ出力設定補正下限信号35と出力設定補正上限信号38とし、得られた出力設定補正上下限信号38,35により前記周波数偏差に応じた発電量の出力設定補正信号33に対して制限を加えて出力設定補正信号39とする構成とする請求項1記載の火力発電プラントの周波数バイアス制御装置である。   According to the second aspect of the present invention, the frequency correction circuit of the plant control device 6 outputs the output command signal by the frequency compensation lower limit function 26 and the frequency compensation upper limit function 29 set based on the allowable variation amount of the load request command 22 that the plant can accept. The frequency compensation lower limit signal 27 and the frequency compensation upper limit signal 30 of 21 are obtained respectively, and the frequency compensation signal 31 in which the frequency compensation signal 25 is limited based on the upper and lower limit signals 27 and 30 is obtained. The output setting correction circuit calculates the upper and lower tolerances of the frequency compensation signal 31 with respect to the target value frequency compensation lower limit signal 27 and the frequency compensation upper limit signal 30 to calculate the frequency compensation amount lower limit margin signal 34 and the frequency compensation amount upper limit margin signal. 37, respectively, and signals obtained by multiplying the frequency compensation amount upper and lower limit margin signals 37 and 34 by predetermined coefficients K1 and K2, respectively. The output setting correction lower limit signal 35 and the output setting correction upper limit signal 38 are used, and the output setting correction upper / lower limit signals 38 and 35 are used to limit the output setting correction signal 33 of the power generation amount according to the frequency deviation. The frequency bias control device for a thermal power plant according to claim 1, wherein the output setting correction signal (39) is used.

請求項3記載の発明は、プラント制御装置6の周波数補正回路は、プラントが許容できる負荷要求指令22の変動量に基づき設定される周波数補償下限関数26と周波数補償上限関数29によりそれぞれ目標値周波数補償下限信号27と周波数補償上限信号30を得て、前記周波数補償信号25を前記上下限信号30,27をもとに制限した周波数補償信号31を得る構成とし、プラント制御装置6の出力設定補正回路は、出力指令21に基づき設定される出力設定補正下限関数50と出力設定補正上限関数53によりそれぞれ出力設定補正下限信号35と出力設定補正上限信号38を得て、該出力設定補正上下限信号38,35により前記周波数偏差に応じた出力設定補正信号33に対して制限を加えて出力設定補正信号39とする構成とした請求項1記載の火力発電プラントの周波数バイアス制御装置である。   According to a third aspect of the present invention, the frequency correction circuit of the plant control device 6 is configured so that the frequency compensation lower limit function 26 and the frequency compensation upper limit function 29 set based on the fluctuation amount of the load request command 22 that the plant can tolerate are respectively set to the target value frequency. The compensation lower limit signal 27 and the frequency compensation upper limit signal 30 are obtained, and the frequency compensation signal 31 obtained by limiting the frequency compensation signal 25 based on the upper and lower limit signals 30 and 27 is obtained. The circuit obtains an output setting correction lower limit signal 35 and an output setting correction upper limit signal 38 by an output setting correction lower limit function 50 and an output setting correction upper limit function 53 set based on the output command 21, respectively, and outputs the output setting correction upper and lower limit signal 38. A configuration in which the output setting correction signal 33 according to the frequency deviation is limited by 38 and 35 to form an output setting correction signal 39; And a frequency bias control device for a thermal power plant of claim 1, wherein.

請求項4記載の発明は、プラント制御装置6の出力設定補正回路には、周波数信号23、出力設定補正信号33及び出力設定補正信号39の少なくともいずれかに遅れ要素40を加える請求項2又は3記載の火力発電プラントの周波数バイアス制御装置である。   The invention according to claim 4 adds a delay element 40 to at least one of the frequency signal 23, the output setting correction signal 33, and the output setting correction signal 39 in the output setting correction circuit of the plant control device 6. It is a frequency bias control apparatus of the described thermal power plant.

請求項5記載の発明は、プラント制御装置6は、周波数補償上限制限値30と周波数補償下限制限値27と周波数補償信号(=周波数補償量)31と出力設定補正信号(=出力設定補正量)39との間に以下(1)式と(2)式の関係となる制御動作をすることで、周波数補償信号31と出力設定補正信号39の両補正が加わった状態でプラント運転を行う発電量7の制御を行う請求項2記載の火力発電プラントの周波数バイアス制御装置である。
(1) [周波数補償上限制限値30]
≧[周波数補償量31]+[出力設定補正量39]/K1
(2) [周波数補償量下限制限値27]
≦[周波数補償量31]+[出力設定補正量39]/K2
但し、0≦K1≦2、0≦K2≦2
According to the fifth aspect of the invention, the plant control device 6 is configured such that the frequency compensation upper limit value 30, the frequency compensation lower limit value 27, the frequency compensation signal (= frequency compensation amount) 31, and the output setting correction signal (= output setting correction amount). The amount of power generation for performing plant operation in a state where both corrections of the frequency compensation signal 31 and the output setting correction signal 39 are applied by performing a control operation having the relationship of the following expressions (1) and (2) between 7. The frequency bias control device for a thermal power plant according to claim 2, wherein the control of 7 is performed.
(1) [Frequency compensation upper limit 30]
≧ [frequency compensation amount 31] + [output setting correction amount 39] / K1
(2) [Frequency compensation lower limit value 27]
≦ [frequency compensation amount 31] + [output setting correction amount 39] / K2
However, 0 ≦ K1 ≦ 2, 0 ≦ K2 ≦ 2.

請求項6記載の発明は、周波数補正回路により得られる周波数補償信号31と出力設定補正回路により得られる出力設定補正信号39を、それぞれ別々に使い分けるか又は両方使用する請求項3記載の火力発電プラントの周波数バイアス制御装置の運用方法である。   The invention according to claim 6 is the thermal power plant according to claim 3, wherein the frequency compensation signal 31 obtained by the frequency correction circuit and the output setting correction signal 39 obtained by the output setting correction circuit are used separately or both. This is a method of operating the frequency bias control apparatus.

請求項7記載の発明は、周波数変動が生じた場合に、タービン加減弁4の動作に対する発電量7の遅れをLAG40にて補償し、発電機出力設定値42と発電機出力信号43の位相を合致させることで制御上の外乱を防ぎ、安定したプラント制御を行う請求項4に記載の火力発電プラントの周波数バイアス制御装置の運用方法である。   In the seventh aspect of the invention, when frequency fluctuation occurs, the LAG 40 compensates for the delay of the power generation amount 7 with respect to the operation of the turbine control valve 4, and the phase of the generator output set value 42 and the generator output signal 43 is adjusted. The operation method of the frequency bias control device for a thermal power plant according to claim 4, wherein control disturbance is prevented by matching and stable plant control is performed.

請求項1記載の発明によれば、周波数補償に対して出力設定補正をすることにより、高負荷運転状態で十分に補正を生かして最大限の効果を発揮させ、且つプラント安定性が悪くなる低負荷運転状態では補正量に制限を掛け、周波数変動抑制効果とプラント安定性の両立を図れる最適な制御を行うことができるようになる。また、言い換えると、請求項1記載の発明によれば、全負荷帯でプラント安定性を確保した上で、最大の周波数変動抑制効果を得ることができるので、系統周波数の安定に最大限寄与できる。   According to the first aspect of the present invention, by correcting the output setting for the frequency compensation, the correction is sufficiently performed in a high-load operation state so that the maximum effect is exhibited and the plant stability is deteriorated. In the load operation state, the correction amount is limited, and optimal control that can achieve both the effect of suppressing the frequency fluctuation and the stability of the plant can be performed. In other words, according to the first aspect of the invention, since the maximum frequency fluctuation suppressing effect can be obtained while ensuring the plant stability in the entire load range, the maximum contribution to the stability of the system frequency can be achieved. .

請求項2、5記載の発明によれば、請求項1記載の発明の効果に加えて、周波数補償と出力設定補正の合計補正量を回路上管理しているので、広範囲に亘って周波数補償と出力設定補正が可能である。   According to the second and fifth aspects of the invention, in addition to the effect of the first aspect of the invention, the total correction amount of the frequency compensation and the output setting correction is managed on the circuit. Output setting correction is possible.

請求項3、6記載の発明によれば、請求項1記載の発明の効果に加えて、周波数補償と出力設定補正の合計補正量を回路上管理していないので、出力設定補正関数32の設定に関しては、周波数補償の不感帯を出力設定補正で補完するような棲み分けを考慮した設定(図5参照)に適している。   According to the third and sixth aspects of the invention, in addition to the effect of the first aspect of the invention, since the total correction amount of the frequency compensation and the output setting correction is not managed on the circuit, the setting of the output setting correction function 32 is performed. Is suitable for a setting (see FIG. 5) that takes into account the segregation such that the frequency compensation dead band is complemented by the output setting correction.

請求項4、7記載の発明によれば、請求項2、3記載の発明の効果に加えて、高圧タービン2の他に再熱器を利用する中低圧タービンを用いる場合などには、タービン加減弁4の操作と発電量7の時間差に相当するLAG40を出力設定補正回路に挿入すると余分なトランジェント動作を抑制することができる。   According to the inventions of claims 4 and 7, in addition to the effects of the inventions of claims 2 and 3, in addition to the high-pressure turbine 2, when using an intermediate-low pressure turbine using a reheater, the turbine adjustment When the LAG 40 corresponding to the time difference between the operation of the valve 4 and the power generation amount 7 is inserted into the output setting correction circuit, an excessive transient operation can be suppressed.

以下、本発明の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図3は従来技術の項で説明した通り本発明の対象である火力発電プラントの構成図であり、図1は図3の火力発電プラントに適用される本発明の一実施形態を示す前記プラントの周波数バイアス制御装置の制御回路図である。   FIG. 3 is a configuration diagram of a thermal power plant that is the subject of the present invention as described in the section of the prior art, and FIG. 1 is a diagram of the plant showing an embodiment of the present invention applied to the thermal power plant of FIG. It is a control circuit diagram of a frequency bias control device.

図1に示す制御回路は、従来技術である図11の制御回路に加えて、発電機出力43と発電機出力設定値42の位相調整を行なうLAG40と、周波数補償下限信号27と下限制限された周波数補償信号28との減算を行う減算器62と、減算器62の出力信号(周波数補償下限裕度)34に出力指令21を変換関数63で変換した変換信号41(0≦K1≦2)を掛ける乗算器64と、乗算器64の出力信号35と出力設定補正信号33の高値選択をする下限制限器65と、周波数補償上限信号30と上下限制限された周波数補償信号31との減算を行う減算器66と、減算器66の出力信号(周波数補償上限裕度)37に前記変換信号41(図1ではK1=K2として、共通の変換信号41を用いている)を掛ける乗算器68と、乗算器68の出力信号38と出力設定補正信号36の低値選択をする上限制限器69と、周波数補償量裕度から出力設定補正上下限制限値に変換する変換関数63とその出力信号である変換信号41を含んで構成されている。そして、前記LAG40で位相調整された発電機出力43の出力周波数信号23は出力設定補正関数32で補正されて得られた出力設定補正信号33は下限制限器65で下限が設定された出力設定補正信号36となり、この出力設定補正信号36は上限制限器69で上限が設定された出力設定補正信号39となり、負荷要求信号(MWD)22に合算される。   The control circuit shown in FIG. 1 is limited to the lower limit of the LAG 40 for adjusting the phase of the generator output 43 and the generator output set value 42, the frequency compensation lower limit signal 27, in addition to the control circuit of FIG. A subtractor 62 that performs subtraction with the frequency compensation signal 28, and a conversion signal 41 (0 ≦ K1 ≦ 2) obtained by converting the output command 21 into the output signal (frequency compensation lower limit tolerance) 34 of the subtractor 62 by the conversion function 63. Multiplying the multiplier 64, the lower limit limiter 65 for selecting the high value of the output signal 35 and the output setting correction signal 33 of the multiplier 64, the frequency compensation upper limit signal 30 and the upper and lower limit limited frequency compensation signal 31 are performed. A subtractor 66; and a multiplier 68 that multiplies the output signal (frequency compensation upper limit margin) 37 of the subtractor 66 by the conversion signal 41 (K1 = K2 in FIG. 1 and the common conversion signal 41 is used); Multiplier 8 is an upper limit limiter 69 for selecting a low value of the output signal 38 and the output setting correction signal 36, a conversion function 63 for converting the frequency compensation amount margin into an output setting correction upper / lower limit value, and a conversion signal that is an output signal thereof. 41 is comprised. The output frequency signal 23 of the generator output 43 phase-adjusted by the LAG 40 is corrected by the output setting correction function 32. The output setting correction signal 33 obtained by the lower limit limiter 65 sets the lower limit. The output setting correction signal 36 becomes an output setting correction signal 39 whose upper limit is set by the upper limiter 69 and is added to the load request signal (MWD) 22.

本発明の制御回路及び制御信号の挙動について図1を用いて説明する。
従来技術のケース3で説明したと同じように具体的数値を仮定する。周波数補償関数24及び出力設定補正関数32は図6に示す設定とする。出力指令21〜発電量7まで70%で安定しているとして以下に説明する。
The behavior of the control circuit and the control signal of the present invention will be described with reference to FIG.
As described in case 3 of the prior art, specific numerical values are assumed. The frequency compensation function 24 and the output setting correction function 32 are set as shown in FIG. The following description will be made assuming that the output command 21 to the power generation amount 7 is stable at 70%.

火力発電プラントの運転中に周波数信号23が変動して周波数偏差が+0Hzから+0.2Hzになったとき、周波数補償信号25の値は図6に示す通り−2.5%となる。出力指令70%における周波数補償下限信号27と周波数補償上限信号30は図7に示す通り±7%である。よって周波数補償信号25は周波数補償下限制限器60と周波数補償上限制限器61で制限を受けることなく、−2.5%のまま周波数補償信号31として出力される。   When the frequency signal 23 fluctuates during operation of the thermal power plant and the frequency deviation changes from +0 Hz to +0.2 Hz, the value of the frequency compensation signal 25 becomes −2.5% as shown in FIG. The frequency compensation lower limit signal 27 and the frequency compensation upper limit signal 30 at the output command 70% are ± 7% as shown in FIG. Therefore, the frequency compensation signal 25 is output as the frequency compensation signal 31 with -2.5% without being limited by the frequency compensation lower limit limiter 60 and the frequency compensation upper limit limiter 61.

出力設定補正信号33は図6に示す通り−7.5%となる。ここで出力設定補正上下限動作は以下のように働く。周波数補償下限裕度34は、周波数補償下限値(−7%)−周波数補償信号28(−2.5%)=−4.5%となり、周波数補償上限裕度37は、周波数補償上限値(+7%)−周波数補償信号31(−2.5%)=+9.5%となる。ここでは0〜2の範囲の数値をとる変換関数63の出力信号41の実施例として、K1=1、K2=1とし、出力設定補正下限信号35は−4.5%、同上限信号38は+9.5%となる。   The output setting correction signal 33 is -7.5% as shown in FIG. Here, the output setting correction upper / lower limit operation works as follows. The frequency compensation lower limit margin 34 is the frequency compensation lower limit value (−7%) − the frequency compensation signal 28 (−2.5%) = − 4.5%, and the frequency compensation upper limit margin 37 is the frequency compensation upper limit margin ( +7%) − frequency compensation signal 31 (−2.5%) = + 9.5%. Here, as an example of the output signal 41 of the conversion function 63 taking a numerical value in the range of 0 to 2, K1 = 1, K2 = 1, the output setting correction lower limit signal 35 is −4.5%, and the upper limit signal 38 is + 9.5%.

K1、K2の値については、調定率関数16の特性と発電機出力設定信号42の特性を合わせるため「1」を基本とする。但し、後述の通り蒸気量5の圧力変動が大きい場合には1以下の数値に設定する場合がある。
一方、出力設定補正関数32が図5の特性の場合、小さな周波数変動範囲の動作のため圧力変動に余裕がある条件ではK1、K2を1〜2の範囲で設定し、より大きな効果を得ることもできる。
The values of K1 and K2 are basically “1” in order to match the characteristics of the settling rate function 16 and the characteristics of the generator output setting signal 42. However, if the pressure fluctuation of the steam amount 5 is large as will be described later, it may be set to a value of 1 or less.
On the other hand, when the output setting correction function 32 has the characteristics shown in FIG. 5, K1 and K2 are set in the range of 1 to 2 under conditions where there is a margin for pressure fluctuation because of the operation in the small frequency fluctuation range, and a greater effect can be obtained. You can also.

出力設定補正信号33(−7.5%)と出力設定補正下限信号35(−4.5%)は下限制限器65にて高値選択され、出力設定補正信号36として−4.5%に制限されて出力する。更にこの出力設定補正信号36(−4.5%)と出力設定補正上限信号38(+9.5%)は上限制限器69にて低値選択され、出力設定補正信号39として−4.5%を出力する。   The output setting correction signal 33 (−7.5%) and the output setting correction lower limit signal 35 (−4.5%) are selected at a high value by the lower limit limiter 65 and limited to −4.5% as the output setting correction signal 36. Output. Further, the output setting correction signal 36 (−4.5%) and the output setting correction upper limit signal 38 (+ 9.5%) are selected by the upper limiter 69 as a low value, and the output setting correction signal 39 is −4.5%. Is output.

上下限制限前の周波数補償信号25と出力設定補正信号33の合計補正量−2.5%+(−7.5%)=−10%に対し、上下限制限後の周波数補償信号31と出力設定補正信号39の合計補正量は−2.5%+(−4.5%)=−7%となり、合計補正量が周波数補償下限値27(−7%)に制限されたことになる。ちなみに従来技術ケース3では、出力設定補正信号に制限がないため、合計補正量は−10%となり周波数補償下限制限値を超過する。   The total compensation amount of the frequency compensation signal 25 before the upper / lower limit restriction and the output setting correction signal 33 −2.5% + (− 7.5%) = − 10%, and the frequency compensation signal 31 and the output after the upper / lower limit restriction The total correction amount of the setting correction signal 39 is −2.5% + (− 4.5%) = − 7%, and the total correction amount is limited to the frequency compensation lower limit value 27 (−7%). Incidentally, in the case of the prior art case 3, since the output setting correction signal is not limited, the total correction amount is -10% and exceeds the frequency compensation lower limit value.

出力制御については、MWD22が出力指令21(70%)+周波数補償量31(−2.5%)=67.5%になり、発電機出力設定値42はMWD22(67.5%)+出力設定補正量39(−4.5%)=63%になり、合計−7%補正されるのに対し、タービン2の調速機能による回転数補正信号17は、従来技術にて説明の通り+0.2Hzが−12rpm偏差に相当するため、
−12rpm÷(3000rpm×4/100)×100%=−10%
となる。
As for output control, MWD 22 is output command 21 (70%) + frequency compensation amount 31 (−2.5%) = 67.5%, and generator output set value 42 is MWD 22 (67.5%) + output. The set correction amount 39 (−4.5%) = 63%, and the total correction is −7%. On the other hand, the rotational speed correction signal 17 by the speed control function of the turbine 2 is +0 as described in the related art. .2Hz corresponds to -12rpm deviation,
−12 rpm ÷ (3000 rpm × 4/100) × 100% = − 10%
It becomes.

前記したとおり最終的に発電量7は発電機出力設定信号42に出力制御されるので、調速機能の周波数変動抑制効果で発電量7が−10%補正されるところ、出力指令70%にて運転中のプラントの安定性を確保するために出力制御にて発電量7の補正量は−7%に抑制される。   As described above, since the power generation amount 7 is finally controlled by the generator output setting signal 42, the power generation amount 7 is corrected by -10% by the frequency fluctuation suppression effect of the speed control function. In order to ensure the stability of the plant during operation, the correction amount of the power generation amount 7 is suppressed to −7% in the output control.

周波数変動条件を変えた例により説明する。
周波数11の変動が+0Hzから−0.3Hzになった場合、周波数補償信号25の値は図6に示す通り+7.5%となる。出力指令70%における周波数補償下限信号27と周波数補償上限信号30は図7に示す通り、±7%である。周波数補償信号25(+7.5%)と周波数補償下限信号27(−7%)は下限制限器60により高値選択され、周波数補償信号28として+7.5%を出力する。更に周波数補償信号28(+7.5%)と周波数補償上限信号30(+7%)は上限制限器61により低値選択され、周波数補償信号31として+7%に制限されて出力する。
An example in which the frequency variation condition is changed will be described.
When the fluctuation of the frequency 11 is changed from +0 Hz to −0.3 Hz, the value of the frequency compensation signal 25 is + 7.5% as shown in FIG. The frequency compensation lower limit signal 27 and the frequency compensation upper limit signal 30 at the output command 70% are ± 7% as shown in FIG. The frequency compensation signal 25 (+ 7.5%) and the frequency compensation lower limit signal 27 (−7%) are selected at a high value by the lower limit limiter 60, and + 7.5% is output as the frequency compensation signal 28. Further, the frequency compensation signal 28 (+ 7.5%) and the frequency compensation upper limit signal 30 (+ 7%) are selected by the upper limiter 61 to have a low value, and the frequency compensation signal 31 is limited to + 7% and output.

出力設定補正信号33は図6に示す通り、周波数補償信号25と同じ+7.5%が出力される。周波数補償下限裕度34は、減算器62により周波数補償下限信号27(−7%)−周波数補償信号28(+7.5%)=−14.5%となる。変換係数41は1なので出力設定補正下限信号35も−14.5%となる。また周波数補償上限裕度37は、減算器66により周波数補償上限信号30(+7%)−周波数補償信号31(+7%)=0%となり、出力設定補正上限信号38も同値の0%となる。   As shown in FIG. 6, the output setting correction signal 33 is the same as the frequency compensation signal 25, + 7.5% is output. The frequency compensation lower limit margin 34 becomes the frequency compensation lower limit signal 27 (−7%) − frequency compensation signal 28 (+7.5%) = − 14.5% by the subtractor 62. Since the conversion coefficient 41 is 1, the output setting correction lower limit signal 35 is also -14.5%. Further, the frequency compensation upper limit margin 37 is set to 0% by the subtractor 66, so that the frequency compensation upper limit signal 30 (+7%) − frequency compensation signal 31 (+7%) = 0%, and the output setting correction upper limit signal 38 also becomes 0% of the same value.

次に出力設定補正信号33(+7.5%)と出力設定補正下限信号35(−14.5%)は下限制限器65にて高値選択され、出力設定補正信号36として+7.5%を出力する。更にこの出力設定補正信号36(+7.5%)と出力設定補正上限信号38(+0%)は上限制限器69にて低値選択され、出力設定補正信号39として0%に制限されて出力する。上下限制限前の周波数補償信号25と出力設定補正信号33の合計補正量は+7.5%+7.5%=+15%に対し、上下限制限後の周波数補償信号31と出力設定補正信号39の合計補正量+7%+0%=+7%となり、合計補正量が周波数補償上限値+7%にて制限された事になる。この場合も従来技術ケース3では合計補正量が+7%+7.5%=14.5%となり制限値を大きく超過することになる。   Next, the output setting correction signal 33 (+ 7.5%) and the output setting correction lower limit signal 35 (-14.5%) are selected to a high value by the lower limit limiter 65, and + 7.5% is output as the output setting correction signal 36. To do. Further, the output setting correction signal 36 (+ 7.5%) and the output setting correction upper limit signal 38 (+ 0%) are selected by the upper limiter 69 as a low value, and output as an output setting correction signal 39 limited to 0%. . The total correction amount of the frequency compensation signal 25 before the upper / lower limit restriction and the output setting correction signal 33 is + 7.5% + 7.5% = + 15%, whereas the frequency compensation signal 31 after the upper / lower limit restriction and the output setting correction signal 39 The total correction amount + 7% + 0% = + 7%, and the total correction amount is limited by the frequency compensation upper limit value + 7%. Also in this case, in the case of the prior art case 3, the total correction amount is + 7% + 7.5% = 14.5%, which greatly exceeds the limit value.

出力制御については、MWD22は出力指令21(70%)+周波数補償信号31(+7%)=77%に、発電機出力設定信号42はMWD22(77%)+出力設定補正信号39(0%)=77%になり、合計+7%の補正であるのに対し、タービンの調速機能による回転数補正信号17は、−0.3Hzが+18rpm偏差に相当するため、
+18rpm÷(3000rpm×4/100)×100%=+15%
となる。調速機能の周波数変動抑制効果で発電量7が+15%補正されるところ、出力指令70%にて運転中のプラントの安定性を確保するため出力制御にて発電量7の補正量は+7%に抑制される。
Regarding output control, MWD 22 is output command 21 (70%) + frequency compensation signal 31 (+7%) = 77%, and generator output setting signal 42 is MWD 22 (77%) + output setting correction signal 39 (0%). = 77%, which is a correction of a total of + 7%, but the rotation speed correction signal 17 by the speed adjusting function of the turbine corresponds to a deviation of +18 rpm because −0.3 Hz corresponds to +18 rpm deviation.
+18 rpm / (3000 rpm × 4/100) × 100% = + 15%
It becomes. When the power generation amount 7 is corrected by + 15% due to the frequency fluctuation suppression effect of the speed control function, the power generation amount 7 correction amount is + 7% in the output control in order to ensure the stability of the plant in operation with the output command 70%. To be suppressed.

また、出力指令21が30%の低負荷運転状態について一例を説明する。
周波数23の変動が+0Hzから−0.1Hzになった場合、図6に示す通り周波数補償量25は不感帯の周波数変動範囲なので0%となる。図7より出力指令30%における周波数補償下限信号27は−0%、同上限信号30は+3%となる。周波数補償信号25(0%)と周波数補償下限信号27(0%)とは下限制限器60により高値選択され周波数補償信号28として0%が出力される。更に周波数補償信号28(0%)と周波数補償上限信号30(+3%)とは上限制限器61により低値選択され周波数補償信号31として0%が出力される。
An example of a low load operation state in which the output command 21 is 30% will be described.
When the variation of the frequency 23 is changed from +0 Hz to −0.1 Hz, the frequency compensation amount 25 is 0% because the frequency variation range of the dead zone is as shown in FIG. From FIG. 7, the frequency compensation lower limit signal 27 at the output command 30% is −0%, and the upper limit signal 30 is + 3%. The frequency compensation signal 25 (0%) and the frequency compensation lower limit signal 27 (0%) are selected at a high value by the lower limit limiter 60, and 0% is output as the frequency compensation signal 28. Further, the frequency compensation signal 28 (0%) and the frequency compensation upper limit signal 30 (+ 3%) are selected by the upper limiter 61 to have a low value, and 0% is output as the frequency compensation signal 31.

出力設定補正信号33は図6に示す通り+5%が出力される。周波数補償下限裕度34は、減算器62により周波数補償下限信号27(0%)−周波数補償信号28(0%)=0%が出力され、出力設定下限信号35も同値の0%となる。次に出力設定補正信号33(+5%)と出力設定補正下限信号35(0%)とは下限制限器65により高値選択され、出力設定補正信号36として+5%を出力する。また周波数補償上限裕度37は、減算器66により周波数補償上限信号30(+3%)−周波数補償信号31(0%)=+3%となり、出力設定上限信号38も同値の+3%となる。出力設定補正信号36(+5%)と出力設定補正上限信号38(+3%)は上限制限器69により低値選択され、出力設定補正信号39として+3%に制限され出力される。上下限制限前の周波数補償量25と出力設定補正量33の合計補正量0%+5%=+5%に対し、上下限制限後の周波数補償量31と出力設定補正量39は0%+3%=+3%となり、合計補正量が周波数補償上限値30の+3%にて制限された事になる。この条件でも従来技術ケース3では、合計補正量は0%+5%=5%となり制限値を超過することになる。   As the output setting correction signal 33, + 5% is output as shown in FIG. For the frequency compensation lower limit margin 34, the frequency compensation lower limit signal 27 (0%) − frequency compensation signal 28 (0%) = 0% is output by the subtractor 62, and the output setting lower limit signal 35 is also 0% of the same value. Next, the output setting correction signal 33 (+ 5%) and the output setting correction lower limit signal 35 (0%) are selected to a high value by the lower limit limiter 65, and + 5% is output as the output setting correction signal 36. Further, the frequency compensation upper limit margin 37 becomes the frequency compensation upper limit signal 30 (+3%) − frequency compensation signal 31 (0%) = + 3% by the subtractor 66, and the output setting upper limit signal 38 also becomes + 3% of the same value. The output setting correction signal 36 (+ 5%) and the output setting correction upper limit signal 38 (+ 3%) are selected by the upper limiter 69 as a low value, and are output as the output setting correction signal 39 limited to + 3%. The total compensation amount 0% + 5% = + 5% of the frequency compensation amount 25 before the upper / lower limit restriction and the output setting correction amount 33, whereas the frequency compensation amount 31 and the output setting correction amount 39 after the upper / lower limit restriction are 0% + 3% = Thus, the total correction amount is limited to + 3% of the frequency compensation upper limit 30. Even under this condition, in the case of the prior art case 3, the total correction amount is 0% + 5% = 5%, which exceeds the limit value.

出力制御については、MWD22=出力指令21(30%)+周波数補償信号31(0%)=30%で、発電機出力設定信号42=MWD22(30%)+出力設定補正信号39(+3%)=33%となり合計+3%の補正に対し、タービンの調速機能による回転数補正信号17は、−0.1Hzが+6rpm偏差に相当するため、
+6rpm÷(3000rpm×4/100)×100%=+5%
となる。調速機能の周波数変動抑制効果で発電量7が+5%補正されるところ、出力指令30%にて運転中のプラントの安定性を確保するため出力制御にて発電量7の補正量は+3%に抑制される。
For output control, MWD22 = output command 21 (30%) + frequency compensation signal 31 (0%) = 30%, generator output setting signal 42 = MWD22 (30%) + output setting correction signal 39 (+ 3%) = 33% and the correction of the total + 3%, the rotation speed correction signal 17 by the turbine speed control function is −0.1 Hz corresponding to +6 rpm deviation.
+6 rpm / (3000 rpm × 4/100) × 100% = + 5%
It becomes. When the power generation amount 7 is corrected by + 5% due to the frequency fluctuation suppression effect of the speed control function, the power generation amount 7 correction amount is + 3% in the output control to ensure the stability of the plant in operation with the output command 30%. To be suppressed.

ところで変換係数63は0〜1の値をとる。その理由は同じ補正量であっても周波数補償より出力設定補正の方がプラント状態量の変動が大きく安定性に悪影響を与える場合があり、元々周波数補償用に設定してある周波数補償上下限制限関数26,29を出力設定補正の上下限制限に適用するには若干減じて使用するのが適当な場合がある。   By the way, the conversion coefficient 63 takes a value of 0-1. The reason for this is that even if the correction amount is the same, the output setting correction may cause greater fluctuations in the plant state amount than the frequency compensation, which may adversely affect the stability. In order to apply the functions 26 and 29 to the upper and lower limits of the output setting correction, it may be appropriate to use the functions 26 and 29 slightly reduced.

周波数補償や出力設定補正がプラントへ与える影響として最も懸念されるのは、ボイラ1の蒸気圧力変動である。蒸気圧力はボイラ1の蒸気発生量とタービン加減弁4を通過する蒸気量5のバランスにより変動する。例えば安定状態においてタービン加減弁4を絞り蒸気量5が少なくなると、(ボイラ1の蒸発量)>(蒸気量5)となり、蒸気供給量が消費量を上回るためボイラ1の蒸気圧力は上昇する。このときにはボイラ1の蒸気圧力が戻るまで、図示はしていないがボイラ制御信号73を低減して給水量、燃料量を少なくする必要がある。タービン加減弁4を開いた場合は反対に圧力が低下するので、ボイラ1の給水量、燃料量を増加させて蒸発量を増やし、蒸気圧力を回復させ蒸気量5とバランスさせなければならない。   It is the steam pressure fluctuation of the boiler 1 that is most concerned as the effect of frequency compensation and output setting correction on the plant. The steam pressure varies depending on the balance between the steam generation amount of the boiler 1 and the steam amount 5 passing through the turbine control valve 4. For example, if the steam control valve 4 is throttled in the stable state and the steam amount 5 is reduced, (evaporation amount of the boiler 1)> (steam amount 5), and since the steam supply amount exceeds the consumption amount, the steam pressure of the boiler 1 increases. At this time, it is necessary to reduce the amount of water supply and the amount of fuel by reducing the boiler control signal 73 (not shown) until the steam pressure of the boiler 1 returns. When the turbine adjusting valve 4 is opened, the pressure is decreased, so the amount of water supplied to the boiler 1 and the amount of fuel must be increased to increase the amount of evaporation, the steam pressure must be recovered and balanced with the amount of steam 5.

ここで周波数補償と出力設定補正の蒸気圧力に対する挙動の違いを説明する。
周波数変動があって周波数補償量31による補正が生じた場合は、タービン回転数補正信号17によりタービン加減弁4が制御され、MWD22は周波数補償量31により相当量の補正がなされる。図1に示す通り、MWD22は発電機出力設定信号42とボイラ制御信号73を同時に同量補正する。従ってタービン加減弁4の制御(蒸気量5の調節)と、図示はしていないがボイラ制御信号73によるボイラ1の給水量、燃料供給量の制御(蒸発量の調節)が、同位相で操作されるため、ボイラ1の応答遅れはあるもののボイラ1の蒸発量と蒸気量5の差は相対的に少なく、よって圧力変動は比較的少ない。
Here, the difference in behavior of the frequency compensation and the output setting correction with respect to the steam pressure will be described.
When there is a frequency variation and correction by the frequency compensation amount 31 occurs, the turbine control valve 4 is controlled by the turbine speed correction signal 17, and the MWD 22 is corrected by a considerable amount by the frequency compensation amount 31. As shown in FIG. 1, the MWD 22 simultaneously corrects the generator output setting signal 42 and the boiler control signal 73 by the same amount. Accordingly, the control of the turbine control valve 4 (adjustment of the amount of steam 5) and the control of the water supply amount and fuel supply amount (adjustment of the evaporation amount) of the boiler 1 by the boiler control signal 73 (not shown) are operated in the same phase. Therefore, although there is a response delay of the boiler 1, the difference between the amount of evaporation of the boiler 1 and the amount of steam 5 is relatively small, and therefore the pressure fluctuation is relatively small.

一方、出力設定補正量39による補正が生じた場合には、タービン回転数補正信号17によりタービン加減弁4が制御され、発電機出力設定信号42は出力設定補正量39により相当量の補正がなされ発電量7は発電機出力設定信号42にバランスするものの、MWD22は変わらないためボイラ制御信号73は直接補正されない。そのため蒸気量5が調節されてもボイラ1の蒸発量が変わらないため蒸気量の需給バランスが崩れ、蒸気圧力が変動する。この蒸気圧力の変動を圧力偏差70として捉えて、PI制御器71でボイラマスタ信号72を増減し、蒸気圧力が元に戻るまでボイラ制御信号73を調節する。先にタービン加減弁4が制御(蒸気量5の調節)され、それにより蒸気量アンバランスが生じて蒸気圧力が変動した後、ボイラ1の給水量、燃料供給量が制御(蒸発量の調節)されるため操作に時間差が生じ、前記の周波数補償に比べてボイラ1の対応が遅く蒸気量の需給アンバランスが大きくなるので、圧力変動も相対的に大きくなる。   On the other hand, when correction by the output setting correction amount 39 occurs, the turbine control valve 4 is controlled by the turbine rotation speed correction signal 17, and the generator output setting signal 42 is corrected by a considerable amount by the output setting correction amount 39. Although the power generation amount 7 balances with the generator output setting signal 42, the boiler control signal 73 is not directly corrected because the MWD 22 does not change. Therefore, even if the amount of steam 5 is adjusted, the amount of evaporation of the boiler 1 does not change, so the supply and demand balance of the amount of steam is disrupted and the steam pressure fluctuates. The fluctuation of the steam pressure is regarded as the pressure deviation 70, the PI controller 71 increases or decreases the boiler master signal 72, and the boiler control signal 73 is adjusted until the steam pressure returns. First, the turbine control valve 4 is controlled (adjustment of the amount of steam 5). As a result, an unbalanced amount of steam occurs and the steam pressure fluctuates, and then the water supply amount and fuel supply amount of the boiler 1 are controlled (adjustment of evaporation amount) Therefore, a time difference occurs in the operation, and the response of the boiler 1 is slower than the frequency compensation described above, and the supply / demand imbalance of the steam amount becomes large, so that the pressure fluctuation becomes relatively large.

周波数補償量及び出力設定補正量と圧力変動量との関係について試験結果の一例を図8、図9に示す。図8は周波数補償量と圧力変動の関係を示し、図9は出力設定補正量と圧力変動の関係を示す。周波数補償量の圧力変動特性と出力設定補正量の圧力変動特性を比べると、周波数補償量による圧力変動は出力設定補正量による圧力変動の6割程度と少ない。上記の一実施形態のように周波数補償用に設定してある上下限関数26,29を出力設定補正量の上下限制限に利用する場合、通常周波数補償回路の効果と出力設定補正回路の効果を等価とするため、変換関数63は「1」に設定するが、出力設定補正量による圧力変動を周波数補償量による圧力変動と同等に抑制する必要がある場合には変換関数63は「0.6程度」に設定するのが適当である。   Examples of test results regarding the relationship between the frequency compensation amount, the output setting correction amount, and the pressure fluctuation amount are shown in FIGS. FIG. 8 shows the relationship between the frequency compensation amount and the pressure fluctuation, and FIG. 9 shows the relationship between the output setting correction amount and the pressure fluctuation. Comparing the pressure fluctuation characteristic of the frequency compensation amount and the pressure fluctuation characteristic of the output setting correction amount, the pressure fluctuation due to the frequency compensation amount is as small as about 60% of the pressure fluctuation due to the output setting correction amount. When the upper and lower limit functions 26 and 29 set for frequency compensation are used for the upper and lower limits of the output setting correction amount as in the above-described embodiment, the effects of the normal frequency compensation circuit and the output setting correction circuit are obtained. In order to make them equivalent, the conversion function 63 is set to “1”, but when it is necessary to suppress the pressure fluctuation due to the output setting correction amount to be equal to the pressure fluctuation due to the frequency compensation amount, the conversion function 63 is “0.6”. It is appropriate to set “degree”.

本実施例では、周波数補償下限裕度34は周波数補償下限信号27から周波数補償量28を減算して求めているが、例えば周波数補償下限裕度34は周波数補償下限信号27から周波数補償信号25を減算して「0」との低値選択をすることで同一の信号を得ることもできる。式で表すと、
周波数補償下限裕度34=周波数補償下限値27−周波数補償量28
=Min.{(周波数補償下限値27−周波数補償量25),0}
同様に周波数補償上限裕度37についても、下記は同一信号となる。
周波数補償上限裕度37=周波数補償上限値30−周波数補償量31
=Max.{(周波数補償上限値30−周波数補償量25),0}
これは周波数補償信号の上限下限裕度34,37を求める回路として、周波数補償信号25,28,31及び周波数補償上下限信号27,30の組み合わせで複数の計算方法が存在するということであり、図1の実施形態はその内の一例に過ぎない。
In this embodiment, the frequency compensation lower limit margin 34 is obtained by subtracting the frequency compensation amount 28 from the frequency compensation lower limit signal 27. For example, the frequency compensation lower limit margin 34 is obtained by subtracting the frequency compensation signal 25 from the frequency compensation lower limit signal 27. The same signal can be obtained by subtracting and selecting a low value of “0”. Expressed as a formula:
Frequency compensation lower limit margin 34 = frequency compensation lower limit value 27−frequency compensation amount 28
= Min. {(Frequency compensation lower limit value 27-frequency compensation amount 25), 0}
Similarly, for the frequency compensation upper limit margin 37, the following signals are the same.
Frequency compensation upper limit tolerance 37 = frequency compensation upper limit value 30−frequency compensation amount 31
= Max. {(Frequency compensation upper limit 30-frequency compensation amount 25), 0}
This means that there are a plurality of calculation methods by combining the frequency compensation signals 25, 28, 31 and the frequency compensation upper / lower limit signals 27, 30 as a circuit for obtaining the upper and lower limit tolerances 34, 37 of the frequency compensation signal. The embodiment of FIG. 1 is just one example.

また図3には示されていないが、一般の火力発電プラントには効率向上のため再熱器がある。タービン加減弁4の開度を調節すれば高圧タービン2に流入する蒸気量5が制御されて高圧タービン2の仕事率は遅れなく追従する。但しタービン加減弁4の開度調節により蒸気量5が制御されても、高圧タービン2から排出された蒸気が再熱器を経由して中低圧タービン(図示せず)へ流入までの容積効果により、中低圧タービンへ流入する蒸気量は下限弁4の開度調節に対してやや遅れる。中低圧タービンの出力は発電量の7割近くを占めるため、実際には発電量7はタービン加減弁4の開度調節より遅れることになる。従い周波数変動と同期して周波数補償信号31や出力設定補正信号39で発電機出力設定信号42を補正したのでは、実際の発電機出力43より先に補正が入り、タービン加減弁4の操作がオーバーアクションぎみになってしまう。そこでタービン加減弁4の操作と発電量7の時間差に相当するLAG40を出力設定補正回路に挿入すると余分なトランジェント動作を抑制することができる。周波数補償回路のLAGも同様の遅れ時間に設定するのがよい。   Although not shown in FIG. 3, a general thermal power plant has a reheater for improving efficiency. If the opening degree of the turbine control valve 4 is adjusted, the amount of steam 5 flowing into the high-pressure turbine 2 is controlled, and the power of the high-pressure turbine 2 follows without delay. However, even if the steam amount 5 is controlled by adjusting the opening degree of the turbine control valve 4, the volume effect until the steam discharged from the high pressure turbine 2 flows into the medium to low pressure turbine (not shown) via the reheater. The amount of steam flowing into the intermediate / low pressure turbine is slightly delayed with respect to the opening degree adjustment of the lower limit valve 4. Since the output of the medium / low pressure turbine occupies nearly 70% of the power generation amount, the power generation amount 7 actually lags behind the opening adjustment of the turbine control valve 4. Therefore, if the generator output setting signal 42 is corrected by the frequency compensation signal 31 or the output setting correction signal 39 in synchronization with the frequency fluctuation, the correction is made before the actual generator output 43, and the operation of the turbine control valve 4 is performed. It becomes over action. Therefore, if the LAG 40 corresponding to the time difference between the operation of the turbine control valve 4 and the power generation amount 7 is inserted into the output setting correction circuit, an excessive transient operation can be suppressed. The LAG of the frequency compensation circuit is preferably set to the same delay time.

本発明の他の実施形態を図2に示す。前記の図1に示す実施の形態では出力設定補正信号33に対する上下限制限値35,38を、周波数補償信号25の上下限裕度34,37から生成したのに対し、本実施形態の特徴は出力設定補正信号33に対する上下限制限値35,38を、出力指令21を入力とする関数にて個別に得ることにあり、周波数補償回路の裕度とは回路上の相関関係はない。   Another embodiment of the present invention is shown in FIG. In the embodiment shown in FIG. 1, the upper and lower limit values 35 and 38 for the output setting correction signal 33 are generated from the upper and lower limit margins 34 and 37 of the frequency compensation signal 25, whereas the feature of this embodiment is that The upper and lower limit values 35 and 38 for the output setting correction signal 33 are individually obtained by a function having the output command 21 as an input, and there is no correlation on the circuit with the tolerance of the frequency compensation circuit.

図2の回路構成は、まず出力指令21を入力とする出力設定補正下限関数50により出力設定補正下限信号35を生成し、同じ出力指令21を入力とする出力設定補正上限関数53により出力設定補正上限信号38を生成する。出力設定補正関数32から出力される出力設定補正信号33と出力設定補正下限信号35を下限制限器65にて高値選択して出力設定補正信号36を出力する。その出力設定補正信号36と出力設定補正上限信号38を上限制限器69にて低値選択して出力設定信号補正量39とし、MWD22に加算して発電機出力設定信号42とする。   In the circuit configuration of FIG. 2, first, an output setting correction lower limit signal 35 is generated by an output setting correction lower limit function 50 that receives an output command 21, and output setting correction is performed by an output setting correction upper limit function 53 that receives the same output command 21. An upper limit signal 38 is generated. The output setting correction signal 33 and the output setting correction lower limit signal 35 output from the output setting correction function 32 are selected to be high values by the lower limit limiter 65, and the output setting correction signal 36 is output. The output setting correction signal 36 and the output setting correction upper limit signal 38 are selected by the upper limiter 69 as a low value to obtain an output setting signal correction amount 39, which is added to the MWD 22 as a generator output setting signal 42.

動作は出力設定補正下限信号35、出力設定補正上限信号38の生成過程が異なるだけで、出力設定補正信号33に対する上下限制限値35,38の制限方法や出力制御の動作などは図1の実施形態と変わりない。   The operation is different only in the generation process of the output setting correction lower limit signal 35 and the output setting correction upper limit signal 38. The method of limiting the upper and lower limit limit values 35 and 38 with respect to the output setting correction signal 33, the operation of the output control, etc. are shown in FIG. It is the same as the form.

出力設定上下限関数50,53の設定値は、図1の実施形態の説明で述べたように、周波数補償上下限関数26,29の設定値と同じかあるいは若干小さい設定値にするのが良い。例えば図8,12に示すような圧力応答の比率差であれば、周波数補償上下限関数26,29の設定値の0.6〜1倍程度が適正範囲である。また、本実施形態では周波数補償と出力設定補正の合計補正量を回路上管理していないので、出力設定補正関数32の設定に関しては、図6に示すような両補正量が広い範囲に亘って混在する設定は好ましくなく、図5に示す周波数補償の不感帯を出力設定補正で補完し、及び/または出力指令21の範囲で分担分けするような棲み分けを考慮した設定が適当である。   As described in the description of the embodiment of FIG. 1, the setting values of the output setting upper and lower limit functions 50 and 53 are preferably set to be the same as or slightly smaller than the setting values of the frequency compensation upper and lower limit functions 26 and 29. . For example, in the case of the pressure response ratio difference as shown in FIGS. 8 and 12, the appropriate range is about 0.6 to 1 times the set value of the frequency compensation upper and lower limit functions 26 and 29. Further, in the present embodiment, the total correction amount of the frequency compensation and the output setting correction is not managed on the circuit, and therefore, regarding the setting of the output setting correction function 32, both the correction amounts as shown in FIG. Setting that mixes is not preferable, and it is appropriate to consider setting such that the frequency compensation dead band shown in FIG. 5 is complemented by output setting correction and / or divided within the range of the output command 21.

なお、LAG40の遅れ時間は、実施例1、2共に0〜20秒の間の適切な値に設定される。   The delay time of the LAG 40 is set to an appropriate value between 0 and 20 seconds in both the first and second embodiments.

本発明によれば、最大限ガバナフリー効果を高めることができ、低負荷でも安定したガバーナーフリーの周波数調整能力がある火力発電プラントとして利用可能性がある。   According to the present invention, the governor-free effect can be enhanced as much as possible, and it can be used as a thermal power plant having a stable governor-free frequency adjustment capability even at a low load.

本発明の実施形態の一例に関わる制御回路を示す図である。It is a figure which shows the control circuit in connection with an example of embodiment of this invention. 本発明の他の実施形態に関わる制御回路を示す図である。It is a figure which shows the control circuit in connection with other embodiment of this invention. 火力発電プラントの構成を示す図である。It is a figure which shows the structure of a thermal power plant. 周波数補償関数設定値の一例を示した図である。It is the figure which showed an example of the frequency compensation function setting value. 出力設定補正関数設定値の一例を示した図である。It is the figure which showed an example of the output setting correction function setting value. 出力設定補正関数設定値の他の例を示した図である。It is the figure which showed the other example of the output setting correction function setting value. 周波数補償上下限制限関数の一例を示した図である。It is the figure which showed an example of the frequency compensation upper-lower limit function. 周波数補償量と圧力変動の関係を示した図である。It is the figure which showed the relationship between a frequency compensation amount and a pressure fluctuation. 出力設定補正量と圧力変動の関係を示した図である。It is the figure which showed the relationship between an output setting correction amount and a pressure fluctuation. 従来例に関わる制御回路を示す図である。It is a figure which shows the control circuit in connection with a prior art example. 従来例に関わる制御回路を示す図である。It is a figure which shows the control circuit in connection with a prior art example.

符号の説明Explanation of symbols

1 ボイラ 32 出力設定補正関数
2 蒸気タービン 33 出力設定補正信号
3 発電機 34 周波数補償下限裕度
4 タービン加減弁 35 出力設定補正下限信号
5 蒸気量 36 出力設定補正信号
6 APC(プラント制御装置) 37 周波数補償上限裕度
7 発電量 38 出力設定補正上限信号
8 発電量検出器 39 出力設定補正信号
9 発電量信号 40 遅れ要素
10 周波数検出器 41 変換信号
11 周波数信号 42 発電機出力設定信号
12 タービン回転数検出器 43 発電機出力信号
13 回転数信号 44 発電機出力偏差信号
14 基準回転数信号 45 負荷指令
15 回転数偏差信号 46 PI制御器
16 調定率関数 47 切替器
17 回転数補正信号 50 出力設定補正下限関数
18 タービン加減弁指令 53 出力設定補正上限関数
19 タービン加減弁サーボ 60 下限制限器
20 出力目標値 61 上限制限器
21 出力指令 62 減算器
22 負荷要求信号(MWD) 63 変換関数
23 周波数信号 64 乗算器
24 周波数補償関数 65 下限制限器
25 周波数補償信号 66 減算器
26 周波数補償下限関数 68 乗算器
27 周波数補償下限信号 69 上限制限器
28 周波数補償信号 70 主蒸気圧力偏差
29 周波数補償上限関数 71 PI制御器
30 周波数補償上限信号 72 ボイラマスタ信号
31 周波数補償信号 73 ボイラ制御信号
1 Boiler 32 Output Setting Correction Function 2 Steam Turbine 33 Output Setting Correction Signal 3 Generator 34 Frequency Compensation Lower Limit Tolerance 4 Turbine Adjusting Valve 35 Output Setting Correction Lower Limit Signal 5 Steam Volume 36 Output Setting Correction Signal 6 APC (Plant Control Device) 37 Frequency compensation upper limit tolerance 7 Power generation amount 38 Output setting correction upper limit signal 8 Power generation amount detector 39 Output setting correction signal 9 Power generation amount signal 40 Delay element 10 Frequency detector 41 Conversion signal 11 Frequency signal 42 Generator output setting signal 12 Turbine rotation Number detector 43 Generator output signal 13 Rotational speed signal 44 Generator output deviation signal 14 Reference rotational speed signal 45 Load command 15 Rotational speed deviation signal 46 PI controller 16 Settling rate function 47 Switch 17 Rotational speed correction signal 50 Output setting Correction lower limit function 18 Turbine adjustment valve command 53 Output setting correction upper limit function 1 Turbine adjusting valve servo 60 Lower limit limiter 20 Output target value 61 Upper limit limiter 21 Output command 62 Subtractor 22 Load request signal (MWD) 63 Conversion function 23 Frequency signal 64 Multiplier 24 Frequency compensation function 65 Lower limit limiter 25 Frequency compensation signal 66 Subtractor 26 Frequency compensation lower limit function 68 Multiplier 27 Frequency compensation lower limit signal 69 Upper limit limiter 28 Frequency compensation signal 70 Main steam pressure deviation 29 Frequency compensation upper limit function 71 PI controller 30 Frequency compensation upper limit signal 72 Boiler master signal 31 Frequency compensation signal 73 Boiler control signal

Claims (7)

ボイラ1と、ボイラ1で生成された蒸気5の熱的エネルギを電気エネルギに変換する蒸気タービン2と、該蒸気タービン2と同軸の発電機3と、ボイラ1から蒸気タービン2へ供給する蒸気5の流量を調整するタービン加減弁4と、ボイラ1の運転及び蒸気タービン加減弁4の操作をそれぞれ制御するプラント制御装置6と、プラント制御装置6から出力される負荷指令信号45にタービン回転数補正信号17を加えてタービン加減弁4を調節するタービン調速機能部とを備えた火力発電プラントに用いられる周波数バイアス制御装置において、
プラント制御装置6は、
発電量の出力指令信号21の入力があると、送電系統の設定した周波数と出力周波数信号23との間に生じる周波数偏差に応じた周波数補償信号25をプラントが許容できる補正範囲に制限して周波数補償信号31を得て、該周波数補償信号31を前記出力指令信号21に加えて負荷要求信号22を生成する周波数補正回路と、
前記周波数偏差に応じた発電量の出力設定補正信号33を生成し、得られた出力設定補正信号33もプラントが許容できる補正範囲に制限して出力設定補正信号39を得て、該出力設定補正信号39を前記負荷要求信号22に加算して発電量制御の制御目標値とする出力設定補正回路と、
得られた周波数補償信号31と出力設定補正信号39を負荷要求信号22に加算して発電機出力設定信号42とし、これに発電機出力信号43を加えてフィードバック制御により得られた負荷指令信号45を前記タービン加減弁4に出力する負荷指令回路と
を備えたことを特徴とする火力発電プラントの周波数バイアス制御装置。
A boiler 1, a steam turbine 2 that converts thermal energy of steam 5 generated in the boiler 1 into electric energy, a generator 3 that is coaxial with the steam turbine 2, and steam 5 that is supplied from the boiler 1 to the steam turbine 2. Turbine adjusting valve 4 for adjusting the flow rate of the engine, plant controller 6 for controlling the operation of the boiler 1 and the operation of the steam turbine adjusting valve 4, respectively, and the turbine rotation speed correction to the load command signal 45 output from the plant controller 6 In a frequency bias control device used in a thermal power plant having a turbine speed regulation function unit that adjusts the turbine control valve 4 by adding a signal 17,
The plant control device 6
When the output command signal 21 of the power generation amount is input, the frequency compensation signal 25 corresponding to the frequency deviation generated between the frequency set by the power transmission system and the output frequency signal 23 is limited to a correction range that the plant can tolerate. A frequency correction circuit that obtains a compensation signal 31 and adds the frequency compensation signal 31 to the output command signal 21 to generate a load request signal 22;
An output setting correction signal 33 having a power generation amount corresponding to the frequency deviation is generated, and the obtained output setting correction signal 33 is also limited to a correction range acceptable by the plant to obtain an output setting correction signal 39. An output setting correction circuit that adds a signal 39 to the load request signal 22 to obtain a control target value for power generation amount control;
The obtained frequency compensation signal 31 and output setting correction signal 39 are added to the load request signal 22 to form a generator output setting signal 42, and a generator output signal 43 is added to this to generate a load command signal 45 obtained by feedback control. And a load command circuit for outputting to the turbine control valve 4 a frequency bias control device for a thermal power plant.
プラント制御装置6の周波数補正回路は、プラントが許容できる負荷要求指令22の許容変動量に基づき設定される周波数補償下限関数26と周波数補償上限関数29により出力指令信号21の周波数補償下限信号27と周波数補償上限信号30をそれぞれ得て、該上下限信号27,30をもとに前記周波数補償信号25を制限した周波数補償信号31を得る構成とし、
プラント制御装置6の出力設定補正回路は、前記目標値周波数補償下限信号27と周波数補償上限信号30に対する該周波数補償信号31の上下限裕度を演算して周波数補償量下限余裕信号34と周波数補償量上限余裕信号37をそれぞれ得て、該周波数補償量上下限余裕信号37,34にそれぞれ所定の係数K1、K2を掛け合わせた信号をそれぞれ出力設定補正下限信号35と出力設定補正上限信号38とし、得られた出力設定補正上下限信号38,35により前記周波数偏差に応じた発電量の出力設定補正信号33に対して制限を加えて出力設定補正信号39とする構成とする
ことを特徴とする請求項1記載の火力発電プラントの周波数バイアス制御装置。
The frequency correction circuit of the plant control apparatus 6 includes a frequency compensation lower limit function 26 set based on an allowable variation amount of the load request command 22 that can be accepted by the plant and a frequency compensation lower limit signal 27 of the output command signal 21 by a frequency compensation upper limit function 29. The frequency compensation upper limit signal 30 is obtained, and the frequency compensation signal 31 obtained by limiting the frequency compensation signal 25 based on the upper and lower limit signals 27 and 30 is obtained.
The output setting correction circuit of the plant control device 6 calculates the upper and lower limit tolerances of the frequency compensation signal 31 with respect to the target value frequency compensation lower limit signal 27 and the frequency compensation upper limit signal 30 to calculate the frequency compensation amount lower limit margin signal 34 and the frequency compensation. An amount upper limit margin signal 37 is obtained, and signals obtained by multiplying the frequency compensation amount upper and lower limit margin signals 37 and 34 by predetermined coefficients K1 and K2, respectively, are set as an output setting correction lower limit signal 35 and an output setting correction upper limit signal 38, respectively. The output setting correction upper / lower limit signals 38 and 35 are used to limit the power setting output setting correction signal 33 in accordance with the frequency deviation to obtain an output setting correction signal 39. The frequency bias control device for a thermal power plant according to claim 1.
プラント制御装置6の周波数補正回路は、プラントが許容できる負荷要求指令22の変動量に基づき設定される周波数補償下限関数26と周波数補償上限関数29によりそれぞれ目標値周波数補償下限信号27と周波数補償上限信号30を得て、前記周波数補償信号25を前記上下限信号30,27をもとに制限した周波数補償信号31を得る構成とし、
プラント制御装置6の出力設定補正回路は、出力指令21に基づき設定される出力設定補正下限関数50と出力設定補正上限関数53によりそれぞれ出力設定補正下限信号35と出力設定補正上限信号38を得て、該出力設定補正上下限信号38,35により前記周波数偏差に応じた出力設定補正信号33に対して制限を加えて出力設定補正信号39とする構成としたことを特徴とする請求項1記載の火力発電プラントの周波数バイアス制御装置。
The frequency correction circuit of the plant control device 6 includes a target frequency compensation lower limit signal 27 and a frequency compensation upper limit by a frequency compensation lower limit function 26 and a frequency compensation upper limit function 29 which are set based on the variation amount of the load request command 22 that the plant can accept. A signal 30 is obtained, and a frequency compensation signal 31 obtained by limiting the frequency compensation signal 25 based on the upper and lower limit signals 30 and 27 is obtained.
The output setting correction circuit of the plant control device 6 obtains the output setting correction lower limit signal 35 and the output setting correction upper limit signal 38 by the output setting correction lower limit function 50 and the output setting correction upper limit function 53 set based on the output command 21, respectively. The output setting correction signal 33 according to claim 1, wherein the output setting correction upper and lower limit signals 38 and 35 are used to limit the output setting correction signal 33 according to the frequency deviation to form an output setting correction signal 39. Frequency bias control device for thermal power plant.
プラント制御装置6の出力設定補正回路には、周波数信号23、出力設定補正信号33及び出力設定補正信号39の少なくともいずれかに遅れ要素40を加えることを特徴とする請求項2又は3記載の火力発電プラントの周波数バイアス制御装置。   The thermal power according to claim 2 or 3, wherein a delay element 40 is added to at least one of the frequency signal 23, the output setting correction signal 33, and the output setting correction signal 39 in the output setting correction circuit of the plant control device 6. Power plant frequency bias controller. プラント制御装置6は、周波数補償上限制限値30と周波数補償下限制限値27と周波数補償信号(=周波数補償量)31と出力設定補正信号(=出力設定補正量)39との間に以下(1)式と(2)式の関係となる制御動作をすることで、周波数補償信号31と出力設定補正信号39の両補正が加わった状態でプラント運転を行う発電量7の制御を行うことを特徴とする請求項2記載の火力発電プラントの周波数バイアス制御装置。
(1) [周波数補償上限制限値30]
≧[周波数補償量31]+[出力設定補正量39]/K1
(2) [周波数補償量下限制限値27]
≦[周波数補償量31]+[出力設定補正量39]/K2
但し、0≦K1≦2、0≦K2≦2
The plant control device 6 has the following (1) between the frequency compensation upper limit value 30, the frequency compensation lower limit value 27, the frequency compensation signal (= frequency compensation amount) 31, and the output setting correction signal (= output setting correction amount) 39. ) And (2) are controlled to control the power generation amount 7 for plant operation with both the frequency compensation signal 31 and the output setting correction signal 39 being corrected. The frequency bias control device for a thermal power plant according to claim 2.
(1) [Frequency compensation upper limit 30]
≧ [frequency compensation amount 31] + [output setting correction amount 39] / K1
(2) [Frequency compensation lower limit value 27]
≦ [frequency compensation amount 31] + [output setting correction amount 39] / K2
However, 0 ≦ K1 ≦ 2, 0 ≦ K2 ≦ 2.
周波数補正回路により得られる周波数補償信号31と出力設定補正回路により得られる出力設定補正信号39を、それぞれ別々に使い分けるか又は両方使用することを特徴とする請求項3記載の火力発電プラントの周波数バイアス制御装置の運用方法。   4. The frequency bias of a thermal power plant according to claim 3, wherein the frequency compensation signal 31 obtained by the frequency correction circuit and the output setting correction signal 39 obtained by the output setting correction circuit are used separately or both. How to operate the control device. 周波数変動が生じた場合に、タービン加減弁4の動作に対する発電量7の遅れをLAG40にて補償し、発電機出力設定値42と発電機出力信号43の位相を合致させることで制御上の外乱を防ぎ、安定したプラント制御を行うことを特徴とした請求項4に記載の火力発電プラントの周波数バイアス制御装置の運用方法。   When frequency fluctuation occurs, the delay of the power generation amount 7 with respect to the operation of the turbine control valve 4 is compensated by the LAG 40, and the phase of the generator output set value 42 and the generator output signal 43 is matched so that the control disturbance The operation method of the frequency bias control apparatus for a thermal power plant according to claim 4, wherein the plant is prevented and stable plant control is performed.
JP2004349743A 2004-12-02 2004-12-02 Frequency bias control device for thermal power plant and its operation method Expired - Fee Related JP4518320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004349743A JP4518320B2 (en) 2004-12-02 2004-12-02 Frequency bias control device for thermal power plant and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004349743A JP4518320B2 (en) 2004-12-02 2004-12-02 Frequency bias control device for thermal power plant and its operation method

Publications (2)

Publication Number Publication Date
JP2006161566A true JP2006161566A (en) 2006-06-22
JP4518320B2 JP4518320B2 (en) 2010-08-04

Family

ID=36663883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004349743A Expired - Fee Related JP4518320B2 (en) 2004-12-02 2004-12-02 Frequency bias control device for thermal power plant and its operation method

Country Status (1)

Country Link
JP (1) JP4518320B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075529A (en) * 2006-09-21 2008-04-03 Tokyo Electric Power Co Inc:The Device and method for stabilizing system frequency
JP2021113510A (en) * 2020-01-17 2021-08-05 三菱パワー株式会社 Steam turbine control device and steam turbine power generation equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362003A (en) * 1976-11-17 1978-06-03 Hitachi Ltd Load limiter automatic follower for variable pressure operating plant
JPS5551902A (en) * 1978-10-12 1980-04-16 Toshiba Corp Automatic tracking device for load limiter
JPS62271906A (en) * 1987-02-20 1987-11-26 Hitachi Ltd Control device for turbine
JPH0734805A (en) * 1993-07-23 1995-02-03 Toshiba Corp Control device of turbine power generating plant
JPH11223105A (en) * 1998-02-05 1999-08-17 Hitachi Ltd Automatic plant control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362003A (en) * 1976-11-17 1978-06-03 Hitachi Ltd Load limiter automatic follower for variable pressure operating plant
JPS5551902A (en) * 1978-10-12 1980-04-16 Toshiba Corp Automatic tracking device for load limiter
JPS62271906A (en) * 1987-02-20 1987-11-26 Hitachi Ltd Control device for turbine
JPH0734805A (en) * 1993-07-23 1995-02-03 Toshiba Corp Control device of turbine power generating plant
JPH11223105A (en) * 1998-02-05 1999-08-17 Hitachi Ltd Automatic plant control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075529A (en) * 2006-09-21 2008-04-03 Tokyo Electric Power Co Inc:The Device and method for stabilizing system frequency
JP4656029B2 (en) * 2006-09-21 2011-03-23 東京電力株式会社 System frequency stabilization apparatus and method
JP2021113510A (en) * 2020-01-17 2021-08-05 三菱パワー株式会社 Steam turbine control device and steam turbine power generation equipment
JP7328155B2 (en) 2020-01-17 2023-08-16 三菱重工業株式会社 Steam turbine controller and steam turbine generator

Also Published As

Publication number Publication date
JP4518320B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
US7982325B2 (en) Wind power installation and method of operating it
JP5030384B2 (en) Drum water level control method and apparatus for drum type boiler
JP4733503B2 (en) Control system
JP5108644B2 (en) Boiler control device and boiler control method
JP6139311B2 (en) Control valve control method and control device, and power plant using these
JP4518320B2 (en) Frequency bias control device for thermal power plant and its operation method
JP2003239763A (en) Governor-free control method and control device of gas turbine generation equipment
JP4603992B2 (en) Power consumption control device
JP4929029B2 (en) Gas turbine control method and gas turbine power generator
JP4656029B2 (en) System frequency stabilization apparatus and method
JP5595221B2 (en) Gas turbine control device, gas turbine, and gas turbine control method
JP2001082701A (en) Boiler/turbine generator control system
JP4533690B2 (en) Governor for hydroelectric power generation, speed control device for hydroelectric power generation including the governor, and hydroelectric power plant
JPH11223302A (en) Automatic control device and method of power generating plant
JP5534357B2 (en) Turbine controller
JP6424639B2 (en) Stand-alone operation device of small hydropower variable speed power generation system
CN111472852B (en) Intermediate point enthalpy value frequency modulation based logical optimization method for generator set
JP2012159024A (en) Method for controlling water level of steam turbine condenser
WO2022145276A1 (en) Control device and control method
JP2005155349A (en) Boiler control method following up load variation
WO2021020207A1 (en) Power plant control device, power plant, and power plant control method
JP2022177905A (en) Current control type inverter and control method for the same
JPH11223105A (en) Automatic plant control device
CN113809736A (en) Automatic power generation control method based on adaptive proportional-derivative control
KR20120139376A (en) An apparatus controlling extraction steam of a top heater to improve speed regulation rate of power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4518320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees