WO2021020207A1 - Power plant control device, power plant, and power plant control method - Google Patents

Power plant control device, power plant, and power plant control method Download PDF

Info

Publication number
WO2021020207A1
WO2021020207A1 PCT/JP2020/028090 JP2020028090W WO2021020207A1 WO 2021020207 A1 WO2021020207 A1 WO 2021020207A1 JP 2020028090 W JP2020028090 W JP 2020028090W WO 2021020207 A1 WO2021020207 A1 WO 2021020207A1
Authority
WO
WIPO (PCT)
Prior art keywords
condensate
control
power plant
valve
steam
Prior art date
Application number
PCT/JP2020/028090
Other languages
French (fr)
Japanese (ja)
Inventor
和宏 堂本
孝裕 竹友
道男 佐々木
尚 三田
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020227001608A priority Critical patent/KR20220019829A/en
Publication of WO2021020207A1 publication Critical patent/WO2021020207A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/20Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/38Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of turbine type

Definitions

  • Patent Document 1 discloses a circulation type boiler system that can be used in a thermal power plant, a conventional power plant, and the like.
  • Patent Document 1 when the load demand increases, the turbine bleeding valve and the deaerator water level adjusting valve of the steam generator such as a boiler are narrowed down to a certain opening, so that the generator output can be reduced to a relatively short time. It is disclosed that it will increase in. As a result, it is possible to improve the responsiveness without increasing the strength of the turbine as compared with the case where the increase in the load requirement is dealt with only by increasing the fuel input amount to the steam generator.
  • Patent Document 1 the turbine bleeding valve of the steam generator and the water level adjusting valve of the deaerator are narrowed down to a certain opening degree to cope with an increase in load demand.
  • such narrowing down of the turbine bleeding valve and the deaerator water level adjusting valve causes the generator output to increase sharply, so that the generator output may become excessive with respect to fluctuations in load requirements (that is, the generator output is temporarily increased). There is a risk that the load command value will be exceeded).
  • At least one aspect of the present disclosure has been made in view of the above circumstances, and when the load demand increases, the output of the power plant can be followed with good responsiveness and within an appropriate range with respect to the load command value. It is an object of the present invention to provide a control device for a power plant, a power plant, and a method for controlling the power plant.
  • the control device of the power plant is used to solve the above problems.
  • a steam generator configured to generate steam and A turbine configured to be driveable using the steam
  • a condenser configured to generate condensate by condensing the steam that has finished its work in the turbine
  • a condensate control valve configured to be able to adjust the amount of condensate supplied to the steam generator
  • a heater configured to heat the condensate using the bleed air from the turbine
  • An bleed valve configured to adjust the flow rate of the bleed air
  • It is a control device of a power plant equipped with When the load command value for the power plant increases, the condensate throttle control that narrows the opening degree of the condensate control valve and the load increase control that increases the load of the steam generator are performed.
  • the opening degrees of the condensing control valve and the bleeding valve are controlled by an opening degree change rate set based on the change rate of the load command value.
  • the power plant control method is to solve the above problems.
  • a steam generator configured to generate steam and A turbine configured to be driveable using the steam
  • a condenser configured to generate condensate by condensing the steam that has finished its work in the turbine
  • a condensate control valve configured to be able to adjust the amount of condensate supplied to the steam generator
  • a heater configured to heat the condensate using the bleed air from the turbine
  • An bleed valve configured to adjust the flow rate of the bleed air
  • FIG. 1 is an overall configuration diagram of a power plant 1 according to one aspect of the present disclosure.
  • the power plant 1 includes a steam generator 2 configured to be capable of generating steam.
  • the steam generator 2 is a device capable of generating steam by applying heat to the water supply.
  • the steam generator 2 is a boiler device capable of generating steam from water supply using, for example, the amount of heat generated by burning fuel. More specifically, the boiler device is a conventional boiler capable of generating steam by crushing coal with a pulverized coal machine (not shown) and burning it in a fireplace.
  • the boiler device may be a drum type boiler or a once-through type boiler.
  • the steam generated by the steam generator 2 is supplied to the turbine 6 via the steam supply path 4.
  • the turbine 6 is rotationally driven by high-temperature and high-pressure steam generated by the steam generator 2.
  • the turbine 6 includes a high-pressure turbine 6a arranged on the upstream side and two low-pressure turbines 6b1 and 6b2 arranged on the downstream side.
  • the high-pressure turbine 6a and the two low-pressure turbines 6b1 and 6b2 are connected in series with each other.
  • the two low pressure turbines 6b1 and 6b2 are connected in parallel with each other.
  • the steam generated by the steam generator 2 first drives the high-pressure turbine 6a on the upstream side, and then drives the low-pressure turbines 6b1 and 6b2 on the downstream side.
  • each turbine 6 driven by steam is input to the generator 5 connected to the output shaft 3 of the turbine 6.
  • the kinetic energy input from the turbine 6 is converted into electrical energy.
  • the electric energy generated by the generator 5 is supplied to an electric power system (not shown) via a predetermined path, for example.
  • FIG. 1 illustrates a case where only the output shafts 3 of the low-pressure turbines 6b1 and 6b2 of the turbine 6 are connected to the generator 5, only the output shaft of the high-pressure turbine 6a of the turbine 6 generates power. It may be connected to the machine 5, or may be coaxially connected to the generator 5 with the output shaft of the high-pressure turbine 6a and the output shafts of the low-pressure turbines 6b1 and 6b2 as a common shaft.
  • the steam supply path 4 connecting the steam generator 2 and the turbine 6 is provided with a steam valve 8 (main steam valve) for adjusting the flow rate of steam supplied from the steam generator 2 to the turbine 6.
  • the opening degree of the steam valve 8 can be controlled by a control signal from the control device 100 described later.
  • the steam that has finished work in the turbine 6 is supplied to the condenser 10 arranged on the downstream side.
  • the condenser 10 is configured to be capable of generating condenser by condensing the steam discharged from the turbine 6. Specifically, the condenser 10 condenses steam by exchanging heat with the cooling water to generate condensed water.
  • the condensate generated by the condenser 10 is stored in the first condensate tank 12 of the condenser 10.
  • the second condensate tank 16 is connected to the first condensate tank 12 via the condensate discharge line 14.
  • the condensate generated by the condensate 10 is stored in the first condensate tank 12.
  • An appropriate reference storage level for condensate is set in the first condensate tank 12, and when the condensate storage level exceeds the standard storage level, the condensate is stored in the first condensate tank 12. Is sent to the second condensate tank 16 via the condensate discharge line 14, so that the condensate level of the first condensate tank 12 is properly maintained.
  • the condensate discharge line 14 is provided with a condensate discharge valve 27 configured so that the flow rate of the condensate flowing through the condensate discharge line 14 can be adjusted.
  • the condensate generated by the condenser 10 is returned to the steam generator 2 via the condensate line 22.
  • the condensate line 22 is provided with a condensate control valve 23 for adjusting the flow rate of the condensate flowing through the condensate line 22.
  • the opening degree of the condensate control valve 23 is controlled in order to properly maintain the condensate level in the condenser 10 on the upstream side, but in the condensate throttle control described later, the opening degree is positively adjusted. By squeezing, the flow rate of condensate flowing through the condensate line 22 can be reduced.
  • the condensate line 22 is provided with a plurality of heaters 24 and a deaerator 25.
  • the plurality of heaters 24 are provided in series along the condensate line 22, and are configured to be capable of raising the temperature by exchanging heat with the extracted air from the turbine 6 for the condensate flowing through the condensate line 22.
  • the bleed air from the turbine 6 is supplied to the plurality of heaters 24 and the deaerator 25, respectively, via the bleed air line 26 extending from the turbine 6.
  • the condensate flowing through the condensate line 22 is gradually heated by passing through the plurality of heaters 24 and then supplied to the steam generator 2.
  • the bleed air cooled by exchanging heat with the condensate in the plurality of heaters 24 joins the condensate line 22.
  • the bleed air line 26 is provided with an bleed valve 28 for adjusting the flow rate of the bleed air from the turbine 6.
  • the opening degree of the bleeding valve 28 is configured so that the opening degree can be adjusted based on a control signal from the control device 100 described later.
  • the opening degree of the bleed valve 28 is controlled so that, for example, bleed air corresponding to the flow rate of the condensate of the condensate line 22, which is the heat exchange target, is supplied to the heater 24.
  • the deaerator 25 is a device for removing dissolved oxygen, carbon dioxide, etc. contained in the condensate flowing through the condensate line 22.
  • the control device 100 is a control unit of the power plant 1, and has a hardware configuration including an electronic arithmetic unit such as a computer.
  • the control device 100 functions as a control device according to at least one aspect of the present invention by installing a program for executing the control method according to at least one aspect of the present invention in such a hardware configuration. It is configured to be possible.
  • the control device 100 is configured to be able to comprehensively control the power generation plant 1 by transmitting and receiving control signals to and from each component of the power generation plant 1. Such control of the power plant 1 is performed based on a load command value for the power plant 1 acquired by the control device 100 from the outside.
  • the load command value is a command value related to the load required for the power plant 1, and may be determined according to, for example, the supply and demand state in the power system, or may be determined manually by the operator of the power plant 1. Good.
  • FIG. 2 is a control flow diagram of the control device 100 of FIG.
  • the inside of the control device 100 is shown as a functional block diagram, and the control device 100 includes a steam valve control unit 110 and a steam generator control unit 120.
  • the steam valve control unit 110 is a functional block that outputs an opening command value of the steam valve 8 in response to an input signal
  • the steam generator control unit 120 is a control parameter of the steam generator 2 in response to an input signal. It is a functional block that outputs a water supply demand signal and a fuel demand signal.
  • the generator output L (output of the generator 5), the load command value Ld, the steam pressure set value Ps, and the steam pressure value P are input to the control device 100, respectively.
  • the generator output L can be acquired based on various sensors installed in the generator 5.
  • the load command value Ld is a command value input from the outside to the power plant 1 (for example, received from the central power supply command room according to the power supply / demand state of the power system).
  • the steam pressure set value Ps is a target value of the steam pressure generated by the steam generator 2, and is set by the control device 100.
  • the steam pressure value P can be obtained from a pressure sensor installed in the steam supply path 4.
  • the generator output L and the load command value Ld are input to the deviation calculator 102.
  • the deviation ⁇ L output from the deviation calculator 102 is input to the PI controller 106 via the switch 104.
  • the switch 104 is a switch that can select the first control route C1 or the second control route C2 based on whether or not the condensate throttle control is executed.
  • the first control route C1 is a control route selected at the time of normal control in which the condensate throttle control is not executed, and the deviation ⁇ L is directly input to the PI controller 106.
  • the second control route C2 is a control route selected when the condensate throttle control is executed, and the deviation ⁇ L is input to the PI controller 106 via the filter 108.
  • the filter 108 performs a predetermined filtering process on the deviation ⁇ L which is an input value.
  • FIG. 3 is an example of the characteristic function f of the filtering process applied by the filter 108 to the deviation ⁇ L.
  • the characteristic function f'corresponding to the case where the first control route C1 is selected is shown by a broken line for comparison (in the first control route C1, the deviation ⁇ L is directly input to the PI controller 106). Therefore, it is substantially equivalent to having a characteristic function f'which is a linear linear function with a slope of "1" and an intercept of "0").
  • the characteristic function f is set so that the output value is larger than the characteristic function f'in the negative region (that is, ⁇ L ⁇ 0). More specifically, as shown in FIG. 3, the characteristic function f has a linear characteristic with a slope of “1” in the positive region ( ⁇ L ⁇ 0) and the subthreshold region ( ⁇ L ⁇ L1) in the negative region. In the negative region ( ⁇ L1 ⁇ ⁇ L ⁇ 0) of the predetermined value ⁇ L1 or more, the slope is “0” and the dead band characteristic is obtained.
  • the PI controller 106 feedback-controls the opening degree of the steam valve 8 by outputting a steam valve opening command value corresponding to the deviation ⁇ L input to the PI controller 106.
  • the PI controller 106 outputs the steam valve opening command value corresponding to the deviation ⁇ L calculated by the deviation calculator 102.
  • the PI controller 106 outputs a steam valve command value corresponding to the deviation ⁇ L after the filtering process is performed by the filter 108.
  • the filter 108 as described above with reference to FIG.
  • the steam pressure set value Ps and the steam pressure value P are input to the deviation calculator 122.
  • the deviation ⁇ P output from the deviation calculator 122 is input to the PI controller 124.
  • the PI controller 124 outputs an output signal corresponding to the deviation ⁇ P.
  • the load command value Ld is added as a feedforward component by the adder 126 to the output signal output from the PI controller 124, so that the load followability of the steam generator 2 is improved.
  • Such a control signal of the steam generator 2 is output to the steam generator 2 to be controlled as a water supply demand signal Sw and a fuel demand signal Sf, which are control parameters of the steam generator 2.
  • the condensate throttle control is a control for increasing the output of the generator 5 by reducing the opening degree of the condensate control valve 23 and the bleed air valve 28.
  • FIG. 4 is a flowchart showing the generator output increase mechanism by the condensate throttle control for each process.
  • the opening of the condensate control valve 23 is reduced (step S100).
  • a throttle operation of the condensate control valve 23 may be manually performed by the operator, or the condensate control valve from the control device 100 detects a trigger signal for starting control by the control device 100. It may be carried out automatically by transmitting a control signal to 23.
  • step S101 When the opening degree of the condensate control valve 23 decreases, the flow rate of condensate flowing through the condensate line 22 located on the downstream side of the condensate control valve 23 decreases (step S101).
  • the opening degree of the bleeding valve 28 is controlled so as to correspond to the flow rate of the condensate flowing through the condensate line 22.
  • the flow rate required for heat exchange with condensate is introduced. Therefore, when the flow rate of the condensate in the condensate line 22 decreases as in step S101, the opening degree of the bleeding valve 28 is controlled to decrease accordingly (step S102).
  • the opening degree of the bleed valve 28 decreases, the bleed air supplied to the heater 24 decreases, so that the amount of steam flowing through the turbine 6 increases (step S103) and the generator output L increases (step S104).
  • the output of the generator 5 can be increased.
  • the effect of increasing the generator output by the condensate throttle control is not permanent, but is temporary for a limited period after the condensate throttle control is started. This is because the condensate flow rate is reduced by the condensate throttle control, so that the deaerator level in the deaerator 25 is lowered and the water supply to the steam generator 2 cannot be continued. As a result, the effect of increasing the generator output by the condensate throttle control decreases after a temporary period.
  • the load command value Ld when the load command value Ld increases, the load command value (for example, by manual operation by the operator of the power plant 1) is used to permanently increase the generator output L.
  • the throttle of the steam valve 8 is suppressed during the condensate throttle control, so that the generator output by the condenser throttle control It makes it easier to obtain an increase effect.
  • the deviation ⁇ L is set to be larger in the negative side region than in the first control route C1 by performing the filtering process by the filter 108. As a result, the steam valve 8 is less likely to be throttled when the condensate throttle control is executed, so that the effect of increasing the generator output can be easily obtained.
  • the spillover control is performed by adjusting the opening degree of the condensate control valve 23 as described above in the normal time when the condensate throttle control is not executed. That is, by adjusting the opening degree of the condensate control valve 23 to change the amount of condensate supplied to the condensate line 22, the level of condensate stored in the first condensate tank 12 is appropriately managed. ..
  • the condensate control valve 23 is throttled regardless of the condensate level of the first condensate tank 12 in order to increase the generator output L, so that the first condensate tank 12 and Spillover control is performed by adjusting the opening degree of the condensate discharge valve 27 provided between the second condensate tanks 16.
  • FIG. 5 is a control flow diagram relating to the condensate discharge valve 27 in the spillover control.
  • the condensate discharge valve opening command value corresponding to the deviation ⁇ F is output.
  • feedback control is performed so that the condensate level becomes the condensate level target value F * (that is, the deviation ⁇ F becomes zero).
  • the condensate level target value F * is set by the condensate level target value setting unit 134.
  • the return water level target value F * is set by adding the addition target value F * 2 to the normal target value F * 1 in the adder 136.
  • the switch 138 selects " ⁇ " as the addition target value F * 2.
  • the condensate level target value F * is set larger by ⁇ when the condensate throttle control is not implemented than when the condensate throttle control is implemented.
  • the opening degree of the condensate discharge valve 27 is fixed to be small (preferably set to the fully closed state), and the condensate discharge valve 27 is not involved in the spillover control. become.
  • is not added to the condensate level target value F *, so that the opening degree of the condensate discharge valve 27 becomes the condensate level target value F *. Feedback is controlled. As a result, even when the condensate control valve 23 is in a state of being throttled by the condensate throttle control, it is possible to perform spillover control by adjusting the opening degree of the condensate discharge valve 27.
  • FIG. 6 is a flowchart showing the load response control of the power plant 1 for each process
  • FIG. 7 is a timing chart showing the load command value Ld at the time of load response control and the output transition of the power plant 1 in association with each other.
  • FIG. 7 a case where the load command value Ld, which was in the first steady value L1 as an initial state, monotonically increases from time t1 to time t2 and fluctuates so as to increase to the second steady value L2. Let's take an example.
  • the control device 100 monitors the load command value Ld input to the power plant (step S200), and determines whether or not the load command value Ld has increased (step S201).
  • the determination in step S201 is performed based on, for example, whether or not the amount of change in the load command value Ld with respect to the first steady-state value L1 before the time t1 has reached the determination threshold value.
  • the rate of change of the load command value Ld the amount of change of the load command value Ld in a predetermined period
  • the load command value Ld increases. Is determined.
  • step S202 the condensate throttle control is executed (step S202).
  • the condensate throttle control is performed by reducing the opening degree of the condensate control valve 23 and the bleed air valve 28 as described above.
  • Such a throttle operation of the condensate control valve 23 may be manually performed by, for example, an operator, or is automatically performed by transmitting a control signal from the control device 100 to the condensate control valve 23 and the bleeding valve 28. It may be done as a target.
  • the condensate throttle control is performed in step S202, the output of the generator 5 temporarily increases as described above with reference to FIG.
  • the control device 100 performs load increase control of the steam generator 2 (step S203). Since the condensate throttle control is limited to a temporary increase in the output of the generator 5 as described above, the output increase effect of the condensate throttle control is reduced by performing the load increase control of the steam generator 2. It is possible to follow the increase of the load command value Ld.
  • step S203 is performed after step S202 is performed for the sake of formality
  • steps S202 and S203 may be performed at the same time. That is, the condensate throttle control and the load increase control may be performed at the same time.
  • the load increase control is less responsive than the condensate throttle control (because the initial action at the start of the change of the load command value Ld is slow)
  • step S203 is carried out after step S202 and that step S203 is carried out before step S202 as shown in FIG.
  • step S204 YES
  • step S205 YES
  • FIG. 7 as a comparative example, when only the condensate throttle control is performed from time t1 (first comparative example), and the load increase of the steam generator 2 is performed from time t1 without performing the condensate throttle control.
  • first comparative example when only the condensate throttle control is performed from time t1
  • second comparative example The case where only the control is performed.
  • the response is better than that in the second comparative example, and the output of the power plant 1 can be temporarily increased immediately after the time t1.
  • the effect of increasing the output by the condensate throttle control does not last forever.
  • the second comparative example only the load increase control is performed, and the responsiveness is low.
  • the steam generator 2 is a device such as a coal-fired boiler, there is a process of crushing coal with a pulverized coal machine, so there is a time lag until the crushed coal is input to the fireplace and reflected in the output. Is large and the responsiveness is poor.
  • this embodiment by combining the condensate throttle control and the load increase control when the load command value Ld increases, good responsiveness to a change in the load command value Ld can be obtained, and at the same time, good responsiveness can be obtained. It has been shown that the time required for the output of the power plant 1 to converge to the second steady-state value L2 is shortened.
  • the opening degrees of the condensate control valve 23 and the bleeding valve 28 are narrowed as described above, and the opening change rate at that time is the change rate of the load command value Ld acquired in step S200.
  • the amount of change in the generator output L due to the condensate throttle control depends on the rate of change in the opening degree of the condensate control valve 23 and the bleed air valve 28. Therefore, by controlling the rate of change in the opening degree of the condensate control valve 23 and the bleeding valve 28 when the condensate throttle control is executed, the amount of change in the generator output L becomes excessive, which deviates from the load command value Ld. It can be suppressed to be too much.
  • a power plant capable of following the output of the power plant with good responsiveness and within an appropriate range to the load command value when a load increase request is made. It is possible to provide a control device, a power plant, and a control method for the power plant.
  • the control device of the power plant is A steam generator configured to be able to generate steam (for example, the steam generator 2 of the above embodiment) and A turbine configured to be driveable using the steam (for example, the turbine 6 of the above embodiment) and A condenser (for example, the condenser 10 of the above embodiment) configured to be able to generate condensate by condensing the steam that has finished its work in the turbine.
  • a condensate control valve (for example, the condensate control valve 23 of the above embodiment) configured to be able to adjust the supply amount of the condensate to the steam generator.
  • a heater configured to heat the condensate using the bleed air from the turbine (for example, the heater 24 of the above embodiment) and An bleeding valve configured so that the flow rate of the bleeding air can be adjusted (for example, the bleeding valve 28 of the above embodiment) and (For example, the control device (for example, the control device 100 of the above embodiment) of the power plant (for example, the power plant 1 of the above embodiment).
  • the condensate throttle control that narrows the opening degree of the condensate control valve and the load increase control that increases the load of the steam generator are performed.
  • the opening degrees of the condensing control valve and the bleeding valve are controlled by an opening degree change rate set based on the change rate of the load command value.
  • the output of the power plant is increased by performing the condensate throttle control that narrows the opening of the condensate control valve in addition to the load increase control. It can be increased responsively. As a result, better responsiveness can be obtained as compared with the case where only the load increase control, which takes a relatively long time to respond, is performed. Further, by implementing the condensate throttle control and the load increase control, the output of the power plant can be increased until the target load is reached even when the change in the load command value is large. By performing the condensate throttle control and the load increase control in combination in this way, it is possible to follow the output of the power plant with good responsiveness to an increase in the load command value.
  • the opening degree of the condensate control valve and the bleeding valve is controlled based on the opening degree change rate set based on the change rate of the load command value.
  • the power plant further includes a steam valve (for example, the steam valve 8 of the above embodiment) for controlling the amount of steam supplied to the turbine.
  • a steam valve for example, the steam valve 8 of the above embodiment
  • it is configured to suppress a decrease in the opening command value for the steam valve due to the execution of the condensing throttle control (for example, in the above embodiment, the steam valve opening command value is set.
  • the deviation ⁇ L input to the output PI controller 106 is corrected by the filter 108).
  • the condensate throttle control when the condensate throttle control is performed, the decrease in the opening degree of the steam valve is suppressed.
  • the opening of the steam valve is reduced so as to reduce the generator output exceeding the target output, so that the generator output is reduced. Can be suppressed.
  • the effect of increasing the generator output by the condensate throttle control can be obtained more accurately.
  • a steam valve control unit (for example, the steam valve control unit 110 of the above embodiment) configured to be able to control the opening degree of the steam valve based on the deviation between the output of the generator and the load command value is provided.
  • the steam valve control unit is performing the condensate throttle control, the deviation is in the negative side region, and the opening degree of the steam valve with respect to the deviation is the non-execution of the condensate throttle. It is configured to be controlled to be larger than the inside (for example, in the above embodiment, the filter 108 has the characteristics shown in FIG. 3).
  • the opening degree of the steam valve is larger than that when the condensate throttle control is not carried out. It is controlled to be large. As a result, the decrease in the opening degree of the steam valve when the condensate throttle control is performed is suppressed, so that the effect of increasing the generator output by the condensate throttle control can be obtained more accurately.
  • the steam valve control unit sets the opening degree of the steam valve with respect to the deviation to the deviation in the negative region where the deviation is equal to or more than a predetermined value during the execution of the condensate throttle control.
  • the filter 108 is configured to be controlled so as to be constant (for example, in the above embodiment, the filter 108 has the characteristics shown in FIG. 3).
  • the opening degree of the steam valve is suppressed to be constant, so that the effect of increasing the generator output by the condensate throttle control can be obtained. It can be obtained more accurately.
  • the power plant A condensate discharge line configured to be able to discharge the condensate stored in the condensate (for example, the condensate discharge line 14 of the above embodiment) and A condensate discharge valve (for example, the condensate discharge valve 27 of the above embodiment) configured to be able to adjust the flow rate of the condensate in the condensate discharge line.
  • the opening degree of the condensate discharge valve is adjusted to control the level of the condensate in the condenser (for example, the condensate throttle in the above embodiment).
  • the condensate discharge valve 27 is controlled at the time of control to adjust the condensate level).
  • the condensate level can be appropriately managed by controlling the opening degree of the condensate discharge valve while controlling the condensate control valve by the condensate throttle control.
  • the output of the power plant can be followed with good responsiveness by simultaneously performing the condensate throttle control and the load increase control when the load command value fluctuates.
  • the output of the power plant can be responsively and suitably followed with respect to a relatively large fluctuation of the load command value in which the load command value increases by 5% or more.
  • the load command value is input to the power plant from the central power supply control room according to the supply and demand state of the power system.
  • the output of the power plant can be responsively and suitably followed according to the supply and demand state of the electric power system.
  • the steam generator is a coal-fired boiler that uses coal as fuel.
  • the power plant according to one aspect of the present disclosure is The control device according to any one of (1) to (9) above is provided.
  • the output of the power plant can be made to follow the increase of the load command value with good responsiveness. ..
  • the power plant control method is A steam generator configured to be able to generate steam (for example, the steam generator 2 of the above embodiment) and A turbine configured to be driveable using the steam (for example, the turbine 6 of the above embodiment) and A condenser (for example, the condensate control valve 23 of the above embodiment) configured to be able to generate condensate by condensing the steam that has finished work in the turbine.
  • a condensate control valve (for example, the condensate control valve 23 of the above embodiment) configured to be able to adjust the supply amount of the condensate to the steam generator.
  • a heater configured to heat the condensate using the bleed air from the turbine (for example, the heater 24 of the above embodiment) and An bleeding valve configured so that the flow rate of the bleeding air can be adjusted (for example, the bleeding valve 28 of the above embodiment) and A control method for a power plant (for example, the power plant 1 of the above embodiment).
  • the condensate throttle control that narrows the opening degree of the condensate control valve and the load increase control that increases the load of the steam generator are performed.
  • the opening degrees of the condensate control valve and the bleeding valve are controlled by the opening degree change rate set based on the change rate of the load command value.
  • the output of the power plant is increased by performing the condensate throttle control that narrows the opening degree of the condensate control valve in addition to the load increase control. It can be increased responsively. As a result, better responsiveness can be obtained as compared with the case where only the load increase control, which takes a relatively long time to respond, is performed. Further, by implementing the condensate throttle control and the load increase control, the output of the power plant can be increased until the target load is reached even when the change in the load command value is large. By performing the condensate throttle control and the load increase control in combination in this way, it is possible to follow the output of the power plant with good responsiveness to an increase in the load command value.
  • the opening degree of the condensate control valve and the bleeding valve is controlled based on the opening degree change rate set based on the change rate of the load command value.

Abstract

The present invention relates to a control device of a power plant which is provided with a steam generator, a turbine, a condenser, a condensate control valve, a heater and a bleed valve. When increasing the load command value to the power plant, the control device performs condensate throttle control, for throttling the opening degree of the condensate control valve, and load increase control, for increasing the load of the steam generator. In the condensate throttle control, the opening degree of the bleed air valve and the condensate control valve is controlled with an opening change rate set on the basis of the rate of change of the load command value.

Description

発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法Power plant control device, power plant, and power plant control method
 本開示は、発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法に関する。 This disclosure relates to a power plant control device, a power plant, and a power plant control method.
 電力系統には、電力需要に応じた電力の安定供給が要求される。近年、環境意識の高まりに伴って再生エネルギの導入が進んでいるが、再生エネルギは気象条件の影響を受けて変動しやすいことから、従来の発電プラント(例えば火力発電プラントやコンベンショナル発電プラントなど)が付加調整力を向上することで、電力の安定供給の役割を果たすことが期待されている。例えば特許文献1には、火力発電プラントやコンベンショナル発電プラントなどに利用可能な循環式ボイラシステムが開示されている。 The electric power system is required to have a stable supply of electric power according to the electric power demand. In recent years, the introduction of regenerative energy has progressed with increasing environmental awareness, but since regenerative energy is easily affected by weather conditions, conventional power plants (for example, thermal power plants and conventional power plants) Is expected to play a role in the stable supply of electric power by improving the additional adjustment power. For example, Patent Document 1 discloses a circulation type boiler system that can be used in a thermal power plant, a conventional power plant, and the like.
 再生エネルギの導入が進んだ電力系統では、例えば太陽光発電の出力が低下し、且つ、電力需要が増加する夕方の時間帯のような条件下において、他の発電プラントに対する負荷要求が大きく増加することがある。そのため他の発電プラントでは、このような負荷要求増加に対応すべく、プラント出力を追従させることが求められる。発電プラントでは負荷指令値を受けてから出力に反映させるまでに少なからずタイムラグが生じてしまう。例えば、石炭を燃料とする石炭焚きボイラでは、石炭を微粉炭機で粉砕するプロセスがある為、粉砕された石炭が火炉へ投入されるまでの負荷変化初期は、負荷増加要求に対して実出力が遅れてしまう。 In an electric power system in which the introduction of regenerative energy is advanced, the load demand on other power plants increases significantly under conditions such as the evening time when the output of photovoltaic power generation decreases and the electric power demand increases. Sometimes. Therefore, in other power plants, it is required to follow the plant output in order to cope with such an increase in load demand. In a power plant, there is a considerable time lag between receiving a load command value and reflecting it in the output. For example, in a coal-fired boiler that uses coal as fuel, there is a process of crushing coal with a pulverized coal machine, so the actual output is in response to the load increase request at the initial stage of load change until the crushed coal is put into the fireplace. Will be delayed.
 これに対して特許文献1では、負荷要求の増大時に、ボイラなどの蒸気発生器のタービン抽気弁及び脱気器水位調整弁を一定開度まで絞り込むことで、発電機出力を比較的に短時間で増加することが開示されている。これにより、負荷要求増大に対して蒸気発生器に対する燃料投入量の増加だけで対応する場合に比べて、タービンの強度を上げることなく、応答性の向上が可能とされている。 On the other hand, in Patent Document 1, when the load demand increases, the turbine bleeding valve and the deaerator water level adjusting valve of the steam generator such as a boiler are narrowed down to a certain opening, so that the generator output can be reduced to a relatively short time. It is disclosed that it will increase in. As a result, it is possible to improve the responsiveness without increasing the strength of the turbine as compared with the case where the increase in the load requirement is dealt with only by increasing the fuel input amount to the steam generator.
特開2013-53531号公報Japanese Unexamined Patent Publication No. 2013-53531
 上記特許文献1では、蒸気発生器のタービン抽気弁及び脱気器水位調整弁を一定開度まで絞り込むことで、負荷要求の増大に対応している。しかしながら、このようなタービン抽気弁及び脱気器水位調整弁の絞り込みは発電機出力を急激に増加させるため、負荷要求の変動に対して過剰になってしまうおそれがある(すなわち発電機出力が一時的に負荷指令値を超えてしまうおそれがある)。 In Patent Document 1, the turbine bleeding valve of the steam generator and the water level adjusting valve of the deaerator are narrowed down to a certain opening degree to cope with an increase in load demand. However, such narrowing down of the turbine bleeding valve and the deaerator water level adjusting valve causes the generator output to increase sharply, so that the generator output may become excessive with respect to fluctuations in load requirements (that is, the generator output is temporarily increased). There is a risk that the load command value will be exceeded).
 本開示の少なくとも一態様は上述の事情に鑑みなされたものであり、負荷要求増加時に、発電プラントの出力を、良好な応答性で、且つ、負荷指令値に対して適切な範囲で追従可能な発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法を提供することを目的とする。 At least one aspect of the present disclosure has been made in view of the above circumstances, and when the load demand increases, the output of the power plant can be followed with good responsiveness and within an appropriate range with respect to the load command value. It is an object of the present invention to provide a control device for a power plant, a power plant, and a method for controlling the power plant.
 本開示の一態様に係る発電プラントの制御装置は上記課題を解決するために、
 蒸気を生成可能に構成された蒸気発生器と、
 前記蒸気を用いて駆動可能に構成されたタービンと、
 前記タービンで仕事を終えた前記蒸気を凝縮することにより復水を生成可能に構成された復水器と、
 前記復水の前記蒸気発生器に対する供給量を調整可能に構成された復水調節弁と、
 前記タービンからの抽気を用いて前記復水を加熱可能に構成された加熱器と、
 前記抽気の流量を調整可能に構成された抽気弁と、
を備える発電プラントの制御装置であって、
 前記発電プラントに対する負荷指令値の増加時、前記復水調節弁の開度を絞る復水絞り制御と、前記蒸気発生器の負荷を増加させる負荷増加制御とを実施するように構成され、
 前記復水絞り制御では、前記負荷指令値の変化率に基づいて設定される開度変化率で前記復水調節弁及び前記抽気弁の開度が制御されるように構成される。
The control device of the power plant according to one aspect of the present disclosure is used to solve the above problems.
A steam generator configured to generate steam and
A turbine configured to be driveable using the steam,
A condenser configured to generate condensate by condensing the steam that has finished its work in the turbine, and
A condensate control valve configured to be able to adjust the amount of condensate supplied to the steam generator,
A heater configured to heat the condensate using the bleed air from the turbine, and
An bleed valve configured to adjust the flow rate of the bleed air,
It is a control device of a power plant equipped with
When the load command value for the power plant increases, the condensate throttle control that narrows the opening degree of the condensate control valve and the load increase control that increases the load of the steam generator are performed.
In the condensate throttle control, the opening degrees of the condensing control valve and the bleeding valve are controlled by an opening degree change rate set based on the change rate of the load command value.
 本開示の一態様に係る発電プラントの制御方法は上記課題を解決するために、
 蒸気を生成可能に構成された蒸気発生器と、
 前記蒸気を用いて駆動可能に構成されたタービンと、
 前記タービンで仕事を終えた前記蒸気を凝縮することにより復水を生成可能に構成された復水器と、
 前記復水の前記蒸気発生器に対する供給量を調整可能に構成された復水調節弁と、
 前記タービンからの抽気を用いて前記復水を加熱可能に構成された加熱器と、
 前記抽気の流量を調整可能に構成された抽気弁と、
を備える発電プラントの制御方法であって、
 前記発電プラントに対する負荷指令値の増加時、前記復水調節弁の開度を絞る復水絞り制御と、前記蒸気発生器の負荷を増加させる負荷増加制御とを実施し、
 前記復水絞り制御では、前記負荷指令値の変化率に基づいて設定される開度変化率で前記復水調節弁及び前記抽気弁の開度が制御される。
The power plant control method according to one aspect of the present disclosure is to solve the above problems.
A steam generator configured to generate steam and
A turbine configured to be driveable using the steam,
A condenser configured to generate condensate by condensing the steam that has finished its work in the turbine, and
A condensate control valve configured to be able to adjust the amount of condensate supplied to the steam generator,
A heater configured to heat the condensate using the bleed air from the turbine, and
An bleed valve configured to adjust the flow rate of the bleed air,
It is a control method of a power plant equipped with
When the load command value for the power plant increases, the condensate throttle control that narrows the opening degree of the condensate control valve and the load increase control that increases the load of the steam generator are performed.
In the condensate throttle control, the opening degrees of the condensate control valve and the bleeding valve are controlled by the opening degree change rate set based on the change rate of the load command value.
 本開示の少なくとも一態様によれば、負荷増加要求時に、発電プラントの出力を、良好な応答性で、且つ、負荷指令値に対して適切な範囲で追従可能な発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法を提供できる。 According to at least one aspect of the present disclosure, a power plant control device and a power plant capable of following the output of the power plant with good responsiveness and within an appropriate range to the load command value when a load increase request is made. , And a method of controlling a power plant can be provided.
本開示の一態様に係る発電プラントの全体構成図である。It is an overall block diagram of the power plant which concerns on one aspect of this disclosure. 図1の制御装置の制御フロー図である。It is a control flow diagram of the control device of FIG. フィルタが偏差に対して適用するフィルタリング処理の特性関数の一例である。This is an example of the characteristic function of the filtering process that the filter applies to the deviation. 復水絞り制御による発電機出力増加メカニズムを工程毎に示すフローチャートである。It is a flowchart which shows the generator output increase mechanism by a condensate throttle control for each process. スピルオーバー制御における復水排出弁に関する制御フロー図である。It is a control flow diagram about a condensate discharge valve in spillover control. 発電プラントの負荷応答制御を工程毎に示すフローチャートである。It is a flowchart which shows the load response control of a power plant for each process. 負荷応答制御時における負荷指令値と発電プラントの出力推移とを関連付けて示すタイミングチャートである。This is a timing chart showing the load command value at the time of load response control and the output transition of the power plant in association with each other.
 以下、図面を参照して本発明のいくつかの実施形態について説明する。ただし、本発明の範囲は以下の実施形態に限定されるものではない。以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、本発明の範囲をそれにのみ限定する趣旨ではなく、単なる説明例に過ぎない。 Hereinafter, some embodiments of the present invention will be described with reference to the drawings. However, the scope of the present invention is not limited to the following embodiments. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the following embodiments are not intended to limit the scope of the present invention to that alone, but are merely explanatory examples.
<発電プラントの構成>
 図1は本開示の一態様に係る発電プラント1の全体構成図である。発電プラント1は、蒸気を生成可能に構成された蒸気発生器2を備える。蒸気発生器2は、給水に対して熱量を付与することにより蒸気を生成可能な装置である。蒸気発生器2は、例えば燃料を燃焼させることで発生させた熱量を用いて給水から蒸気を生成可能なボイラ装置である。より具体的には、ボイラ装置は、石炭を微粉炭機(不図示)で粉砕して火炉で燃焼することで蒸気を生成可能なコンベンショナルボイラである。ボイラ装置はドラム式ボイラであってもよいし、貫流式ボイラであってもよい。
<Structure of power plant>
FIG. 1 is an overall configuration diagram of a power plant 1 according to one aspect of the present disclosure. The power plant 1 includes a steam generator 2 configured to be capable of generating steam. The steam generator 2 is a device capable of generating steam by applying heat to the water supply. The steam generator 2 is a boiler device capable of generating steam from water supply using, for example, the amount of heat generated by burning fuel. More specifically, the boiler device is a conventional boiler capable of generating steam by crushing coal with a pulverized coal machine (not shown) and burning it in a fireplace. The boiler device may be a drum type boiler or a once-through type boiler.
 蒸気発生器2で生成された蒸気は、蒸気供給路4を介してタービン6に供給される。タービン6は蒸気発生器2で生成された高温高圧の蒸気によって回転駆動される。図1では、タービン6は、上流側に配置された高圧タービン6aと、下流側に配置された2つの低圧タービン6b1、6b2と、を含む。高圧タービン6aと2つの低圧タービン6b1、6b2とは互いに直列に接続される。2つの低圧タービン6b1、6b2は互いに並列に接続される。蒸気発生器2で生成された蒸気は、まず上流側にある高圧タービン6aを駆動し、その後、下流側にある低圧タービン6b1、6b2を駆動する。 The steam generated by the steam generator 2 is supplied to the turbine 6 via the steam supply path 4. The turbine 6 is rotationally driven by high-temperature and high-pressure steam generated by the steam generator 2. In FIG. 1, the turbine 6 includes a high-pressure turbine 6a arranged on the upstream side and two low-pressure turbines 6b1 and 6b2 arranged on the downstream side. The high-pressure turbine 6a and the two low-pressure turbines 6b1 and 6b2 are connected in series with each other. The two low pressure turbines 6b1 and 6b2 are connected in parallel with each other. The steam generated by the steam generator 2 first drives the high-pressure turbine 6a on the upstream side, and then drives the low-pressure turbines 6b1 and 6b2 on the downstream side.
 蒸気によって駆動された各タービン6の回転エネルギは、タービン6の出力軸3に連結された発電機5に入力される。発電機5では、タービン6から入力される運動エネルギが電気エネルギに変換される。発電機5で発生された電気エネルギは、例えば所定の経路を介して電力系統(不図示)に供給される。 The rotational energy of each turbine 6 driven by steam is input to the generator 5 connected to the output shaft 3 of the turbine 6. In the generator 5, the kinetic energy input from the turbine 6 is converted into electrical energy. The electric energy generated by the generator 5 is supplied to an electric power system (not shown) via a predetermined path, for example.
 尚、図1では発電機5にはタービン6のうち低圧タービン6b1,6b2の出力軸3のみが接続されている場合を例示しているが、タービン6のうち高圧タービン6aの出力軸のみが発電機5に接続されていてもよいし、高圧タービン6aの出力軸と低圧タービン6b1、6b2の出力軸とを共通の軸として発電機5に同軸接続されていてもよい。 Although FIG. 1 illustrates a case where only the output shafts 3 of the low-pressure turbines 6b1 and 6b2 of the turbine 6 are connected to the generator 5, only the output shaft of the high-pressure turbine 6a of the turbine 6 generates power. It may be connected to the machine 5, or may be coaxially connected to the generator 5 with the output shaft of the high-pressure turbine 6a and the output shafts of the low-pressure turbines 6b1 and 6b2 as a common shaft.
 蒸気発生器2及びタービン6を接続する蒸気供給路4には、蒸気発生器2からタービン6に供給される蒸気の流量を調整するための蒸気弁8(主蒸気弁)が設けられる。蒸気弁8の開度は、後述の制御装置100からの制御信号によって制御可能である。 The steam supply path 4 connecting the steam generator 2 and the turbine 6 is provided with a steam valve 8 (main steam valve) for adjusting the flow rate of steam supplied from the steam generator 2 to the turbine 6. The opening degree of the steam valve 8 can be controlled by a control signal from the control device 100 described later.
 タービン6で仕事を終えた蒸気は、下流側に配置された復水器10に供給される。復水器10は、タービン6から排出された蒸気を凝縮することにより復水を生成可能に構成される。具体的には、復水器10は、冷却水と熱交換することにより、蒸気を凝縮し、復水を生成する。復水器10で生成された復水は、復水器10が有する第1復水タンク12に貯留される。 The steam that has finished work in the turbine 6 is supplied to the condenser 10 arranged on the downstream side. The condenser 10 is configured to be capable of generating condenser by condensing the steam discharged from the turbine 6. Specifically, the condenser 10 condenses steam by exchanging heat with the cooling water to generate condensed water. The condensate generated by the condenser 10 is stored in the first condensate tank 12 of the condenser 10.
 第1復水タンク12には、復水排出ライン14を介して第2復水タンク16が接続される。復水器10で生成された復水は第1復水タンク12に貯留される。第1復水タンク12には適正な復水の基準貯留レベルが設定されており、復水の貯留レベルが基準貯留レベルを超えた場合には、第1復水タンク12に貯留される復水の一部が復水排出ライン14を介して第2復水タンク16に送られることで、第1復水タンク12の復水レベルが適正に維持されるように構成される。復水排出ライン14には、復水排出ライン14を流れる復水の流量を調整可能に構成された復水排出弁27が設けられる。 The second condensate tank 16 is connected to the first condensate tank 12 via the condensate discharge line 14. The condensate generated by the condensate 10 is stored in the first condensate tank 12. An appropriate reference storage level for condensate is set in the first condensate tank 12, and when the condensate storage level exceeds the standard storage level, the condensate is stored in the first condensate tank 12. Is sent to the second condensate tank 16 via the condensate discharge line 14, so that the condensate level of the first condensate tank 12 is properly maintained. The condensate discharge line 14 is provided with a condensate discharge valve 27 configured so that the flow rate of the condensate flowing through the condensate discharge line 14 can be adjusted.
 復水器10で生成された復水は、復水ライン22を介して蒸気発生器2に戻される。復水ライン22には、復水ライン22を流れる復水の流量を調整するための復水調節弁23が設けられる。復水調節弁23は、通常時には上流側にある復水器10における復水レベルを適切に維持するために開度を制御されるが、後述する復水絞り制御では、積極的に開度を絞ることで、復水ライン22を流れる復水の流量を減少可能に構成されている。 The condensate generated by the condenser 10 is returned to the steam generator 2 via the condensate line 22. The condensate line 22 is provided with a condensate control valve 23 for adjusting the flow rate of the condensate flowing through the condensate line 22. Normally, the opening degree of the condensate control valve 23 is controlled in order to properly maintain the condensate level in the condenser 10 on the upstream side, but in the condensate throttle control described later, the opening degree is positively adjusted. By squeezing, the flow rate of condensate flowing through the condensate line 22 can be reduced.
 また復水ライン22には、複数の加熱器24と、脱気器25とが設けられる。複数の加熱器24は、復水ライン22に沿って直列的に設けられており、復水ライン22を流れる復水をタービン6からの抽気と熱交換することにより昇温可能に構成される。タービン6からの抽気は、タービン6から延びる抽気ライン26を介して複数の加熱器24及び脱気器25にそれぞれ供給される。復水ライン22を流れる復水は、複数の加熱器24を通過することによって次第に加熱された後、蒸気発生器2に供給される。一方で、複数の加熱器24で復水と熱交換することで冷却された抽気は、復水ライン22に合流する。 Further, the condensate line 22 is provided with a plurality of heaters 24 and a deaerator 25. The plurality of heaters 24 are provided in series along the condensate line 22, and are configured to be capable of raising the temperature by exchanging heat with the extracted air from the turbine 6 for the condensate flowing through the condensate line 22. The bleed air from the turbine 6 is supplied to the plurality of heaters 24 and the deaerator 25, respectively, via the bleed air line 26 extending from the turbine 6. The condensate flowing through the condensate line 22 is gradually heated by passing through the plurality of heaters 24 and then supplied to the steam generator 2. On the other hand, the bleed air cooled by exchanging heat with the condensate in the plurality of heaters 24 joins the condensate line 22.
 抽気ライン26には、タービン6からの抽気の流量を調整するための抽気弁28が設けられる。抽気弁28の開度は、後述する制御装置100からの制御信号に基づいて開度を調整可能に構成される。抽気弁28の開度は、例えば、熱交換対象である復水ライン22の復水の流量に対応する抽気が加熱器24に供給されるように制御される。 The bleed air line 26 is provided with an bleed valve 28 for adjusting the flow rate of the bleed air from the turbine 6. The opening degree of the bleeding valve 28 is configured so that the opening degree can be adjusted based on a control signal from the control device 100 described later. The opening degree of the bleed valve 28 is controlled so that, for example, bleed air corresponding to the flow rate of the condensate of the condensate line 22, which is the heat exchange target, is supplied to the heater 24.
 脱気器25は復水ライン22を流れる復水に含まれる溶存酸素や炭酸ガスなどを除去するための装置である。 The deaerator 25 is a device for removing dissolved oxygen, carbon dioxide, etc. contained in the condensate flowing through the condensate line 22.
 制御装置100は発電プラント1の制御ユニットであり、例えばコンピュータ等の電子演算装置からなるハードウェア構成を有する。制御装置100は、このようなハードウェア構成に対して、本開示の少なくとも一態様に係る制御方法を実行するためのプログラムがインストールされることで、本発明の少なくとも一態様に係る制御装置として機能可能に構成される。 The control device 100 is a control unit of the power plant 1, and has a hardware configuration including an electronic arithmetic unit such as a computer. The control device 100 functions as a control device according to at least one aspect of the present invention by installing a program for executing the control method according to at least one aspect of the present invention in such a hardware configuration. It is configured to be possible.
 制御装置100は、発電プラント1の各構成要素との間で制御信号を送受信することにより、発電プラント1を総合的に制御可能に構成される。このような発電プラント1の制御は、制御装置100が外部から取得する発電プラント1に対する負荷指令値に基づいて実施される。負荷指令値は、発電プラント1に要求される負荷に関する指令値であり、例えば電力系統における需給状態に応じて決定されてもよいし、発電プラント1のオペレータが手動設定することにより決定されてもよい。 The control device 100 is configured to be able to comprehensively control the power generation plant 1 by transmitting and receiving control signals to and from each component of the power generation plant 1. Such control of the power plant 1 is performed based on a load command value for the power plant 1 acquired by the control device 100 from the outside. The load command value is a command value related to the load required for the power plant 1, and may be determined according to, for example, the supply and demand state in the power system, or may be determined manually by the operator of the power plant 1. Good.
<発電プラントの制御>
 続いて上記構成を有する発電プラント1において制御装置100による具体的な制御内容について説明する。図2は図1の制御装置100の制御フロー図である。図2では制御装置100の内部が機能ブロック図として示されており、制御装置100は、蒸気弁制御部110と、蒸気発生器制御部120とを備える。蒸気弁制御部110は、入力信号に対応して蒸気弁8の開度指令値を出力する機能ブロックであり、蒸気発生器制御部120は、入力信号に対応して蒸気発生器2の制御パラメータである給水デマンド信号及び燃料デマンド信号を出力する機能ブロックである。
<Power plant control>
Subsequently, the specific control contents by the control device 100 in the power plant 1 having the above configuration will be described. FIG. 2 is a control flow diagram of the control device 100 of FIG. In FIG. 2, the inside of the control device 100 is shown as a functional block diagram, and the control device 100 includes a steam valve control unit 110 and a steam generator control unit 120. The steam valve control unit 110 is a functional block that outputs an opening command value of the steam valve 8 in response to an input signal, and the steam generator control unit 120 is a control parameter of the steam generator 2 in response to an input signal. It is a functional block that outputs a water supply demand signal and a fuel demand signal.
 制御装置100には、発電機出力L(発電機5の出力)、負荷指令値Ld、蒸気圧力設定値Ps及び蒸気圧力値Pがそれぞれ入力される。発電機出力Lは、発電機5に設置された各種センサに基づいて取得可能である。負荷指令値Ldは、発電プラント1に対して外部から入力される指令値である(例えば、電力系統の電力需給状態に応じて中央給電指令室から受信される)。蒸気圧力設定値Psは、蒸気発生器2で生成される蒸気圧力の目標値であり、制御装置100において設定される。蒸気圧力値Pは、蒸気供給路4に設置された圧力センサから取得可能である。 The generator output L (output of the generator 5), the load command value Ld, the steam pressure set value Ps, and the steam pressure value P are input to the control device 100, respectively. The generator output L can be acquired based on various sensors installed in the generator 5. The load command value Ld is a command value input from the outside to the power plant 1 (for example, received from the central power supply command room according to the power supply / demand state of the power system). The steam pressure set value Ps is a target value of the steam pressure generated by the steam generator 2, and is set by the control device 100. The steam pressure value P can be obtained from a pressure sensor installed in the steam supply path 4.
 蒸気弁制御部110では、まず発電機出力L及び負荷指令値Ldが偏差演算器102に入力される。偏差演算器102は、発電機出力L及び負荷指令値Ldの偏差ΔL(=Ld-L)を演算して出力する。偏差演算器102から出力された偏差ΔLは、スイッチ104を介してPI制御器106に入力される。スイッチ104は、復水絞り制御が実行されているか否かに基づいて、第1制御ルートC1又は第2制御ルートC2を選択可能な切替器である。第1制御ルートC1は復水絞り制御が実行されていない通常制御時に選択される制御ルートであり、偏差ΔLがそのままPI制御器106に入力される。一方の第2制御ルートC2は復水絞り制御の実行時に選択される制御ルートであり、偏差ΔLがフィルタ108を介してPI制御器106に入力される。 In the steam valve control unit 110, first, the generator output L and the load command value Ld are input to the deviation calculator 102. The deviation calculator 102 calculates and outputs the deviation ΔL (= Ld−L) of the generator output L and the load command value Ld. The deviation ΔL output from the deviation calculator 102 is input to the PI controller 106 via the switch 104. The switch 104 is a switch that can select the first control route C1 or the second control route C2 based on whether or not the condensate throttle control is executed. The first control route C1 is a control route selected at the time of normal control in which the condensate throttle control is not executed, and the deviation ΔL is directly input to the PI controller 106. On the other hand, the second control route C2 is a control route selected when the condensate throttle control is executed, and the deviation ΔL is input to the PI controller 106 via the filter 108.
 フィルタ108は、入力値である偏差ΔLに対して所定のフィルタリング処理を実施する。ここで図3はフィルタ108が偏差ΔLに対して適用するフィルタリング処理の特性関数fの一例である。尚、図3では、第1制御ルートC1が選択された場合に対応する特性関数f‘が比較用に破線で示されている(第1制御ルートC1では偏差ΔLがそのままPI制御器106に入力されるため、実質的に傾き「1」、切片「0」の一次線形関数である特性関数f’を有することと同等である)。 The filter 108 performs a predetermined filtering process on the deviation ΔL which is an input value. Here, FIG. 3 is an example of the characteristic function f of the filtering process applied by the filter 108 to the deviation ΔL. In FIG. 3, the characteristic function f'corresponding to the case where the first control route C1 is selected is shown by a broken line for comparison (in the first control route C1, the deviation ΔL is directly input to the PI controller 106). Therefore, it is substantially equivalent to having a characteristic function f'which is a linear linear function with a slope of "1" and an intercept of "0").
 特性関数fは負側領域(すなわちΔL<0)において特性関数f‘より出力値が大きくなるように設定される。より具体的には、図3に示すように、特性関数fは正側領域(ΔL≦0)及び負側領域の閾値未満領域(ΔL<ΔL1)では傾き「1」の線形特性を有するとともに、所定値ΔL1以上の負側領域(ΔL1≦ΔL<0)では傾き「0」でありデッドバンド特性を有する。 The characteristic function f is set so that the output value is larger than the characteristic function f'in the negative region (that is, ΔL <0). More specifically, as shown in FIG. 3, the characteristic function f has a linear characteristic with a slope of “1” in the positive region (ΔL ≦ 0) and the subthreshold region (ΔL <ΔL1) in the negative region. In the negative region (ΔL1 ≦ ΔL <0) of the predetermined value ΔL1 or more, the slope is “0” and the dead band characteristic is obtained.
 PI制御器106は、PI制御器106に入力される偏差ΔLに対応する蒸気弁開度指令値を出力することにより、蒸気弁8の開度をフィードバック制御する。スイッチ104によって第1制御ルートC1が選択されている場合には、PI制御器106は偏差演算器102で算出された偏差ΔLに対応する蒸気弁開度指令値を出力する。一方、スイッチ104によって第2制御ルートC2が選択されている場合には、PI制御器106は、フィルタ108によってフィルタリング処理が実施された後の偏差ΔLに対応する蒸気弁指令値が出力される。フィルタ108では、図3を参照して前述したように、発電機出力Lが負荷指令値Ldより大きな負側領域において偏差ΔLが通常時に比べて大きく出力されることで、蒸気弁8の絞り動作が抑制される。これは、詳しく後述するように、負荷指令値増加時に復水絞り制御が実行されることで偏差ΔLが負側領域になった際に、蒸気弁8の絞り動作が抑制されることを意味する。 The PI controller 106 feedback-controls the opening degree of the steam valve 8 by outputting a steam valve opening command value corresponding to the deviation ΔL input to the PI controller 106. When the first control route C1 is selected by the switch 104, the PI controller 106 outputs the steam valve opening command value corresponding to the deviation ΔL calculated by the deviation calculator 102. On the other hand, when the second control route C2 is selected by the switch 104, the PI controller 106 outputs a steam valve command value corresponding to the deviation ΔL after the filtering process is performed by the filter 108. In the filter 108, as described above with reference to FIG. 3, in the negative region where the generator output L is larger than the load command value Ld, the deviation ΔL is output larger than in the normal state, so that the steam valve 8 is throttled. Is suppressed. This means that the throttle operation of the steam valve 8 is suppressed when the deviation ΔL becomes the negative side region by executing the condensate throttle control when the load command value increases, as will be described in detail later. ..
 一方で蒸気発生器制御部120では、蒸気圧力設定値Ps及び蒸気圧力値Pが偏差演算器122に入力される。偏差演算器122は、蒸気圧力設定値Ps及び蒸気圧力値Pの偏差ΔP(=Ps-P)を出力する。偏差演算器122から出力される偏差ΔPは、PI制御器124に入力される。PI制御器124は、偏差ΔPに対応する出力信号を出力する。PI制御器124から出力された出力信号には、加算器126にて負荷指令値Ldがフィードフォワード成分として加算されることで、蒸気発生器2の負荷追従性が向上されている。このような蒸気発生器2の制御信号は、蒸気発生器2の制御パラメータである給水デマンド信号Sw及び燃料デマンド信号Sfとして制御対象である蒸気発生器2に対して出力される。 On the other hand, in the steam generator control unit 120, the steam pressure set value Ps and the steam pressure value P are input to the deviation calculator 122. The deviation calculator 122 outputs the steam pressure set value Ps and the deviation ΔP (= Ps−P) of the steam pressure value P. The deviation ΔP output from the deviation calculator 122 is input to the PI controller 124. The PI controller 124 outputs an output signal corresponding to the deviation ΔP. The load command value Ld is added as a feedforward component by the adder 126 to the output signal output from the PI controller 124, so that the load followability of the steam generator 2 is improved. Such a control signal of the steam generator 2 is output to the steam generator 2 to be controlled as a water supply demand signal Sw and a fuel demand signal Sf, which are control parameters of the steam generator 2.
<復水絞り制御>
 続いて上記構成を有する発電プラント1における復水絞り制御について説明する。復水絞り制御は、復水調節弁23及び抽気弁28の開度を減少させることで、発電機5の出力を増加させるための制御である。図4は復水絞り制御による発電機出力増加メカニズムを工程毎に示すフローチャートである。
<Condenser throttle control>
Subsequently, the condensate throttle control in the power plant 1 having the above configuration will be described. The condensate throttle control is a control for increasing the output of the generator 5 by reducing the opening degree of the condensate control valve 23 and the bleed air valve 28. FIG. 4 is a flowchart showing the generator output increase mechanism by the condensate throttle control for each process.
 復水絞り制御では、まず復水調節弁23の開度が減少するように操作される(ステップS100)。このような復水調節弁23の絞り動作は、オペレータによってマニュアル的に実施されてもよいし、制御開始のためのトリガ信号を制御装置100で検知することで、制御装置100から復水調節弁23に対して制御信号を送信することで自動的に実施されてもよい。 In the condensate throttle control, first, the opening of the condensate control valve 23 is reduced (step S100). Such a throttle operation of the condensate control valve 23 may be manually performed by the operator, or the condensate control valve from the control device 100 detects a trigger signal for starting control by the control device 100. It may be carried out automatically by transmitting a control signal to 23.
 復水調節弁23の開度が減少すると、復水調節弁23より下流側に位置する復水ライン22を流れる復水の流量が減少する(ステップS101)。ここで復水ライン22上に設けられた複数の加熱器24では、前述したように、復水ライン22を流れる復水の流量に対応するように抽気弁28の開度が制御されることにより、復水との熱交換に要する流量の抽気が導入される。そのためステップS101のように復水ライン22における復水の流量が減少すると、それに応じて抽気弁28の開度も減少するように制御される(ステップS102)。そして抽気弁28の開度が減少すると、加熱器24に供給される抽気が減少するため、タービン6を流れる蒸気量が増加し(ステップS103)、発電機出力Lが増加する(ステップS104)。 When the opening degree of the condensate control valve 23 decreases, the flow rate of condensate flowing through the condensate line 22 located on the downstream side of the condensate control valve 23 decreases (step S101). Here, in the plurality of heaters 24 provided on the condensate line 22, as described above, the opening degree of the bleeding valve 28 is controlled so as to correspond to the flow rate of the condensate flowing through the condensate line 22. , The flow rate required for heat exchange with condensate is introduced. Therefore, when the flow rate of the condensate in the condensate line 22 decreases as in step S101, the opening degree of the bleeding valve 28 is controlled to decrease accordingly (step S102). When the opening degree of the bleed valve 28 decreases, the bleed air supplied to the heater 24 decreases, so that the amount of steam flowing through the turbine 6 increases (step S103) and the generator output L increases (step S104).
 このように復水絞り制御を実行することによって、発電機5の出力を増加させることができる。ただし復水絞り制御による発電機出力増加効果は永続的なものではなく、復水絞り制御が開始されてから、ある限られた期間における一時的なものとなる。なぜならば、復水絞り制御によって復水流量が減少するために脱気器25における脱気器レベルが低下して蒸気発生器2への給水が継続できなくなるからである。その結果、復水絞り制御による発電機出力増加効果は一時的な期間を経過すると減少してしまう。 By executing the condensate throttle control in this way, the output of the generator 5 can be increased. However, the effect of increasing the generator output by the condensate throttle control is not permanent, but is temporary for a limited period after the condensate throttle control is started. This is because the condensate flow rate is reduced by the condensate throttle control, so that the deaerator level in the deaerator 25 is lowered and the water supply to the steam generator 2 cannot be continued. As a result, the effect of increasing the generator output by the condensate throttle control decreases after a temporary period.
 これに対して本開示の一態様では、負荷指令値Ldが増加した際には、発電機出力Lを永続的に増加させるために、(例えば発電プラント1のオペレータによる手動操作によって)負荷指令値Ldを増加させるとともに、復水絞り制御が実行された際に第2制御ルートC2を選択することにより、復水絞り時に蒸気弁8の絞りを抑制することで、復水絞り制御による発電機出力増加効果を得られやすくしている。第2制御ルートC2ではフィルタ108によるフィルタリング処理を行うことで、偏差ΔLが負側領域において第1制御ルートC1に比べて偏差ΔLが大きくなるように設定される。これにより、復水絞り制御の実行時に蒸気弁8が絞られにくくなるため、発電機出力増加効果が得られやすくなる。 On the other hand, in one aspect of the present disclosure, when the load command value Ld increases, the load command value (for example, by manual operation by the operator of the power plant 1) is used to permanently increase the generator output L. By increasing Ld and selecting the second control route C2 when the condensate throttle control is executed, the throttle of the steam valve 8 is suppressed during the condensate throttle control, so that the generator output by the condenser throttle control It makes it easier to obtain an increase effect. In the second control route C2, the deviation ΔL is set to be larger in the negative side region than in the first control route C1 by performing the filtering process by the filter 108. As a result, the steam valve 8 is less likely to be throttled when the condensate throttle control is executed, so that the effect of increasing the generator output can be easily obtained.
<スピルオーバー制御>
 続いて復水器10で生成された復水を、第1復水タンク12及び第2復水タンク16間でやりとりすることにより、第1復水タンク12における復水レベルを適切に維持するためのスピルオーバー制御について説明する。
<Spillover control>
Subsequently, the condensate generated by the condenser 10 is exchanged between the first condensate tank 12 and the second condensate tank 16 in order to appropriately maintain the condensate level in the first condensate tank 12. The spillover control of is described.
 スピルオーバー制御は、復水絞り制御が実行されていない通常時は、前述のように復水調節弁23の開度を調整することで行われる。つまり復水調節弁23の開度を調整することで復水ライン22への復水供給量を変化させることで、第1復水タンク12に貯留された復水のレベルが適切に管理される。一方で復水絞り制御の実行時には、復水調節弁23は発電機出力Lを増加させるために第1復水タンク12の復水レベルとは関係なく絞られるため、第1復水タンク12及び第2復水タンク16の間に設けられた復水排出弁27の開度を調整することにより、スピルオーバー制御が行われる。 The spillover control is performed by adjusting the opening degree of the condensate control valve 23 as described above in the normal time when the condensate throttle control is not executed. That is, by adjusting the opening degree of the condensate control valve 23 to change the amount of condensate supplied to the condensate line 22, the level of condensate stored in the first condensate tank 12 is appropriately managed. .. On the other hand, when the condensate throttle control is executed, the condensate control valve 23 is throttled regardless of the condensate level of the first condensate tank 12 in order to increase the generator output L, so that the first condensate tank 12 and Spillover control is performed by adjusting the opening degree of the condensate discharge valve 27 provided between the second condensate tanks 16.
 図5はスピルオーバー制御における復水排出弁27に関する制御フロー図である。スピルオーバー制御では、第1復水タンク12に設置された復水レベルセンサ(不図示)で検出された復水レベルFと、第1復水タンク12に対応する適切な復水レベル目標値F*とが偏差演算部130に入力されることで、偏差ΔFが算出される。偏差ΔFはPI制御器132に入力されることで、偏差ΔFに対応する復水排出弁開度指令値が出力される。これにより、復水レベルが復水レベル目標値F*になるように(すなわち偏差ΔFがゼロになるように)フィードバック制御が行われる。 FIG. 5 is a control flow diagram relating to the condensate discharge valve 27 in the spillover control. In the spillover control, the condensate level F detected by the condensate level sensor (not shown) installed in the first condensate tank 12 and the appropriate condensate level target value F * corresponding to the first condensate tank 12. Is input to the deviation calculation unit 130 to calculate the deviation ΔF. When the deviation ΔF is input to the PI controller 132, the condensate discharge valve opening command value corresponding to the deviation ΔF is output. As a result, feedback control is performed so that the condensate level becomes the condensate level target value F * (that is, the deviation ΔF becomes zero).
 ここで復水レベル目標値F*は、復水レベル目標値設定部134によって設定される。復水レベル目標値設定部134では、加算器136において通常目標値F*1に加算目標値F*2を加算することで復水レベル目標値F*が設定される。加算目標値F*2は、復水絞り制御が実行中であるか否かに基づいて「0」又は「α(ゼロより大きな数)」のいずれか一方が選択される。具体的には、復水絞り制御が実行中である場合にはスイッチ138が加算目標値F*2として「0」を選択する。この場合、復水レベル目標値F*は、F*1+F*2(=0)=F*1となる。一方で復水絞り制御が実行されていない通常時には、スイッチ138は加算目標値F*2として「α」を選択する。この場合、復水レベル目標値F*は、F*1+F*2=F*1+αとなる。 Here, the condensate level target value F * is set by the condensate level target value setting unit 134. In the return water level target value setting unit 134, the return water level target value F * is set by adding the addition target value F * 2 to the normal target value F * 1 in the adder 136. As the addition target value F * 2, either "0" or "α (a number larger than zero)" is selected based on whether or not the condensate throttle control is being executed. Specifically, when the condensate throttle control is being executed, the switch 138 selects "0" as the addition target value F * 2. In this case, the condensate level target value F * is F * 1 + F * 2 (= 0) = F * 1. On the other hand, in the normal time when the condensate throttle control is not executed, the switch 138 selects "α" as the addition target value F * 2. In this case, the condensate level target value F * is F * 1 + F * 2 = F * 1 + α.
 このように復水レベル目標値F*は、復水絞り制御が実施されていない場合には、復水絞り制御が実施されている場合に比べてαの分だけ大きく設定される。これにより復水絞り制御が実施されていない場合には、復水排出弁27の開度が小さく固定され(好ましくは全閉状態に設定され)、復水排出弁27はスピルオーバー制御に関わらないようになる。一方で、復水絞り制御が実施されている場合には、復水レベル目標値F*にαが加算されないため、復水排出弁27の開度が復水レベル目標値F*になるようにフィードバック制御される。これにより、復水調節弁23が復水絞り制御によって絞られた状態にある場合においても、復水排出弁27の開度を調整することによってスピルオーバー制御を実施することが可能となる。 In this way, the condensate level target value F * is set larger by α when the condensate throttle control is not implemented than when the condensate throttle control is implemented. As a result, when the condensate throttle control is not implemented, the opening degree of the condensate discharge valve 27 is fixed to be small (preferably set to the fully closed state), and the condensate discharge valve 27 is not involved in the spillover control. become. On the other hand, when the condensate throttle control is implemented, α is not added to the condensate level target value F *, so that the opening degree of the condensate discharge valve 27 becomes the condensate level target value F *. Feedback is controlled. As a result, even when the condensate control valve 23 is in a state of being throttled by the condensate throttle control, it is possible to perform spillover control by adjusting the opening degree of the condensate discharge valve 27.
<負荷応答制御>
 続いて発電プラント1に対する負荷指令値Ldが増加変動した場合における発電プラント1の負荷応答制御に関して具体的に説明する。図6は発電プラント1の負荷応答制御を工程毎に示すフローチャートであり、図7は負荷応答制御時における負荷指令値Ldと発電プラント1の出力推移とを関連付けて示すタイミングチャートである。ここでは図7に示すように、初期状態として第1定常値L1にあった負荷指令値Ldが時刻t1~時刻t2において単調増加して、第2定常値L2まで増加するように変動した場合を例に説明する。
<Load response control>
Subsequently, the load response control of the power plant 1 when the load command value Ld for the power plant 1 increases and fluctuates will be specifically described. FIG. 6 is a flowchart showing the load response control of the power plant 1 for each process, and FIG. 7 is a timing chart showing the load command value Ld at the time of load response control and the output transition of the power plant 1 in association with each other. Here, as shown in FIG. 7, a case where the load command value Ld, which was in the first steady value L1 as an initial state, monotonically increases from time t1 to time t2 and fluctuates so as to increase to the second steady value L2. Let's take an example.
 まず制御装置100は、発電プラントに入力される負荷指令値Ldを監視し(ステップS200)、負荷指令値Ldが増加したか否かを判定する(ステップS201)。ステップS201における判定は、例えば、時刻t1以前の第1定常値L1に対する負荷指令値Ldの変化量が判定用閾値に達したか否かに基づいて行われる。本開示の一態様では、例えば、制御装置100は、負荷指令値Ldの変化率(所定期間における負荷指令値Ldの変化量)が判定用閾値を超えた場合に、負荷指令値Ldが増加したと判定される。 First, the control device 100 monitors the load command value Ld input to the power plant (step S200), and determines whether or not the load command value Ld has increased (step S201). The determination in step S201 is performed based on, for example, whether or not the amount of change in the load command value Ld with respect to the first steady-state value L1 before the time t1 has reached the determination threshold value. In one aspect of the present disclosure, for example, in the control device 100, when the rate of change of the load command value Ld (the amount of change of the load command value Ld in a predetermined period) exceeds the determination threshold value, the load command value Ld increases. Is determined.
 負荷指令値Ldが増加したと判定された場合(ステップS201:YES)、復水絞り制御が実施される(ステップS202)。復水絞り制御は、前述したように復水調節弁23及び抽気弁28の開度を減少させることにより実施される。このような復水調節弁23の絞り動作は、例えばオペレータによってマニュアル的に行われてもよいし、制御装置100から制御信号を復水調節弁23及び抽気弁28に対して送信することにより自動的に行われてもよい。ステップS202で復水絞り制御が実施されると、図4を参照して前述したように、発電機5の出力が一時的に増加する。 When it is determined that the load command value Ld has increased (step S201: YES), the condensate throttle control is executed (step S202). The condensate throttle control is performed by reducing the opening degree of the condensate control valve 23 and the bleed air valve 28 as described above. Such a throttle operation of the condensate control valve 23 may be manually performed by, for example, an operator, or is automatically performed by transmitting a control signal from the control device 100 to the condensate control valve 23 and the bleeding valve 28. It may be done as a target. When the condensate throttle control is performed in step S202, the output of the generator 5 temporarily increases as described above with reference to FIG.
 続いて制御装置100は、蒸気発生器2の負荷増加制御を実施する(ステップS203)。復水絞り制御は前述のように一時的な発電機5の出力増加にとどまるため、蒸気発生器2の負荷増加制御を実施することで、復水絞り制御による出力増加効果が減少した後においても負荷指令値Ldの増加に追従することができる。 Subsequently, the control device 100 performs load increase control of the steam generator 2 (step S203). Since the condensate throttle control is limited to a temporary increase in the output of the generator 5 as described above, the output increase effect of the condensate throttle control is reduced by performing the load increase control of the steam generator 2. It is possible to follow the increase of the load command value Ld.
 尚、図6では形式上の都合からステップS202を実施した後に、ステップS203を実施するように記載されているが、ステップS202及びS203は同時に実施されてもよい。すなわち復水絞り制御及び負荷増加制御は同時に実施されてもよい。前述のように負荷増加制御は復水絞り制御より応答性が低いため(負荷指令値Ldの変化開始時の初動が遅いため)、これらを同時に実施することが好ましい。また当該思想の範囲において、図6に示すようにステップS202の後にステップS203を実施することや、ステップS202の前にステップS203を実施することは否定されない。 Although it is described in FIG. 6 that step S203 is performed after step S202 is performed for the sake of formality, steps S202 and S203 may be performed at the same time. That is, the condensate throttle control and the load increase control may be performed at the same time. As described above, since the load increase control is less responsive than the condensate throttle control (because the initial action at the start of the change of the load command value Ld is slow), it is preferable to carry out these at the same time. Further, within the scope of the idea, it is undeniable that step S203 is carried out after step S202 and that step S203 is carried out before step S202 as shown in FIG.
 このような復水絞り制御及び負荷増加制御は、負荷指令値Ldが第2定常値L2に到達するまで継続され(ステップS204:YES)、発電プラント1の出力が第2定常値L2に対して十分に収束した場合(ステップS205:YES)、終了する(END)。 Such condensate throttle control and load increase control are continued until the load command value Ld reaches the second steady value L2 (step S204: YES), and the output of the power plant 1 with respect to the second steady value L2. When the convergence is sufficient (step S205: YES), the process ends (END).
 ここで図7では、比較例として、時刻t1から復水絞り制御のみを実施した場合(第1比較例)、及び、復水絞り制御を実施せずに時刻t1から蒸気発生器2の負荷増加制御のみを実施した場合(第2比較例)が示されている。第1比較例では、復水絞り制御のみが実施されているため、第2比較例より応答性がよく、時刻t1の直後は発電プラント1の出力を一時的に増加できているが、このような復水絞り制御による出力増加効果は前述したように永続的には続かない。第2比較例では、負荷増加制御のみが実施されており、応答性が低くなっている。特に蒸気発生器2が石炭焚きボイラのような装置である場合には、石炭を微粉炭機で粉砕するプロセスがあるため、粉砕された石炭が火炉へ投入されて出力に反映されるまでのタイムラグが大きく、応答性が悪くなっている。これらの比較例に対して本態様では、負荷指令値Ldの増加時に復水絞り制御と負荷増加制御とを組み合わせることで、負荷指令値Ldの変化に対して良好な応答性が得られるとともに、発電プラント1の出力が第2定常値L2に収束するまでの時間が短くなることが示されている。 Here, in FIG. 7, as a comparative example, when only the condensate throttle control is performed from time t1 (first comparative example), and the load increase of the steam generator 2 is performed from time t1 without performing the condensate throttle control. The case where only the control is performed (second comparative example) is shown. In the first comparative example, since only the condensate throttle control is performed, the response is better than that in the second comparative example, and the output of the power plant 1 can be temporarily increased immediately after the time t1. As mentioned above, the effect of increasing the output by the condensate throttle control does not last forever. In the second comparative example, only the load increase control is performed, and the responsiveness is low. In particular, when the steam generator 2 is a device such as a coal-fired boiler, there is a process of crushing coal with a pulverized coal machine, so there is a time lag until the crushed coal is input to the fireplace and reflected in the output. Is large and the responsiveness is poor. In contrast to these comparative examples, in this embodiment, by combining the condensate throttle control and the load increase control when the load command value Ld increases, good responsiveness to a change in the load command value Ld can be obtained, and at the same time, good responsiveness can be obtained. It has been shown that the time required for the output of the power plant 1 to converge to the second steady-state value L2 is shortened.
 また復水絞り制御では前述のように復水調節弁23及び抽気弁28の開度が絞られるが、その際の開度変化率は、ステップS200で取得された負荷指令値Ldの変化率に基づいて設定される。復水絞り制御による発電機出力Lの変化量は、復水調節弁23及び抽気弁28の開度の変化率に依存する。そのため、復水絞り制御の実行時における復水調節弁23及び抽気弁28の開度変化率を制御することにより、発電機出力Lの変化量が過剰になることで負荷指令値Ldから乖離しすぎることを抑制できる。 Further, in the condensate throttle control, the opening degrees of the condensate control valve 23 and the bleeding valve 28 are narrowed as described above, and the opening change rate at that time is the change rate of the load command value Ld acquired in step S200. Set based on. The amount of change in the generator output L due to the condensate throttle control depends on the rate of change in the opening degree of the condensate control valve 23 and the bleed air valve 28. Therefore, by controlling the rate of change in the opening degree of the condensate control valve 23 and the bleeding valve 28 when the condensate throttle control is executed, the amount of change in the generator output L becomes excessive, which deviates from the load command value Ld. It can be suppressed to be too much.
 図7の第1比較例の復水絞り制御では、このように復水調節弁23及び抽気弁28の開度の変化率が任意に制御されているため、時刻t1の直後において発電機出力Lが急増し、負荷指令値Ldからの乖離量が大きくなっている。これに対して本形態では、復水調節弁23及び抽気弁28の開度の変化率を負荷指令値Ldの変化率に基づいて設定することで、第1比較例に比べて時刻t1の直後における発電機出力Lの増加が適度に抑制され、負荷指令値Ldからの乖離量が少なくなっている。これは、復水絞り制御による発電機出力Lが負荷指令値Ldの変化に対応するように調整できており、良好な追従性が得られていることを示している。 In the condensate throttle control of the first comparative example of FIG. 7, since the rate of change of the opening degree of the condensate control valve 23 and the bleeding valve 28 is arbitrarily controlled in this way, the generator output L is immediately after time t1. Has increased rapidly, and the amount of deviation from the load command value Ld has increased. On the other hand, in this embodiment, by setting the rate of change of the opening degree of the condensate control valve 23 and the bleeding valve 28 based on the rate of change of the load command value Ld, immediately after the time t1 as compared with the first comparative example. The increase in the generator output L in the above is appropriately suppressed, and the amount of deviation from the load command value Ld is small. This indicates that the generator output L by the condensate throttle control can be adjusted so as to correspond to the change of the load command value Ld, and good followability is obtained.
 以上説明したように本開示の少なくとも一態様によれば、負荷増加要求時に、発電プラントの出力を、良好な応答性で、且つ、負荷指令値に対して適切な範囲で追従可能な発電プラントの制御装置、発電プラント、及び、発電プラントの制御方法を提供できる。 As described above, according to at least one aspect of the present disclosure, a power plant capable of following the output of the power plant with good responsiveness and within an appropriate range to the load command value when a load increase request is made. It is possible to provide a control device, a power plant, and a control method for the power plant.
 その他、本開示の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態を適宜組み合わせてもよい。 In addition, it is possible to replace the components in the above-described embodiment with well-known components as appropriate without departing from the spirit of the present disclosure, and the above-described embodiments may be combined as appropriate.
 上記各実施形態に記載の内容は、例えば以下のように把握される。 The contents described in each of the above embodiments are grasped as follows, for example.
(1)本開示の一態様に係る発電プラントの制御装置は、
 蒸気を生成可能に構成された蒸気発生器(例えば上記実施形態の蒸気発生器2)と、
 前記蒸気を用いて駆動可能に構成されたタービン(例えば上記実施形態のタービン6)と、
 前記タービンで仕事を終えた前記蒸気を凝縮することにより復水を生成可能に構成された復水器(例えば上記実施形態の復水器10)と、
 前記復水の前記蒸気発生器に対する供給量を調整可能に構成された復水調節弁(例えば上記実施形態の復水調節弁23)と、
 前記タービンからの抽気を用いて前記復水を加熱可能に構成された加熱器(例えば上記実施形態の加熱器24)と、
 前記抽気の流量を調整可能に構成された抽気弁(例えば上記実施形態の抽気弁28)と、
を備える発電プラント(例えば上記実施形態の発電プラント1)の制御装置(例えば上記実施形態の制御装置100)であって、
 前記発電プラントに対する負荷指令値の増加時、前記復水調節弁の開度を絞る復水絞り制御と、前記蒸気発生器の負荷を増加させる負荷増加制御とを実施するように構成され、
 前記復水絞り制御では、前記負荷指令値の変化率に基づいて設定される開度変化率で前記復水調節弁及び前記抽気弁の開度が制御されるように構成される。
(1) The control device of the power plant according to one aspect of the present disclosure is
A steam generator configured to be able to generate steam (for example, the steam generator 2 of the above embodiment) and
A turbine configured to be driveable using the steam (for example, the turbine 6 of the above embodiment) and
A condenser (for example, the condenser 10 of the above embodiment) configured to be able to generate condensate by condensing the steam that has finished its work in the turbine.
A condensate control valve (for example, the condensate control valve 23 of the above embodiment) configured to be able to adjust the supply amount of the condensate to the steam generator.
A heater configured to heat the condensate using the bleed air from the turbine (for example, the heater 24 of the above embodiment) and
An bleeding valve configured so that the flow rate of the bleeding air can be adjusted (for example, the bleeding valve 28 of the above embodiment) and
(For example, the control device (for example, the control device 100 of the above embodiment) of the power plant (for example, the power plant 1 of the above embodiment).
When the load command value for the power plant increases, the condensate throttle control that narrows the opening degree of the condensate control valve and the load increase control that increases the load of the steam generator are performed.
In the condensate throttle control, the opening degrees of the condensing control valve and the bleeding valve are controlled by an opening degree change rate set based on the change rate of the load command value.
 上記(1)の態様によれば、発電プラントに対する負荷指令値の増加時、負荷増加制御に加えて復水調節弁の開度を絞る復水絞り制御を実施することで、発電プラントの出力を応答性よく増加させることができる。これにより、比較的応答に時間を要する負荷増加制御のみを実施する場合に比べて、良好な応答性が得られる。また復水絞り制御と負荷増加制御とを実施することで、負荷指令値の変化が大きな場合においても目標負荷に至るまで発電プラントの出力を増加させることができる。このように復水絞り制御と負荷増加制御とを組み合わせて実施することで、負荷指令値の増加に対して良好な応答性をもって発電プラントの出力を追従させることができる。
 また復水絞り制御では、復水調節弁及び抽気弁の開度は負荷指令値の変化率に基づいて設定される開度変化率に基づいて制御される。これにより、復水絞り制御による発電機出力が負荷指令値の変化に対応するように調整することができる。その結果、復水絞り制御が実施された際に発電機出力が負荷指令値を大きく超えて乖離することを抑制し、負荷指令値に対する良好な追従性が得られる。
According to the aspect (1) above, when the load command value for the power plant is increased, the output of the power plant is increased by performing the condensate throttle control that narrows the opening of the condensate control valve in addition to the load increase control. It can be increased responsively. As a result, better responsiveness can be obtained as compared with the case where only the load increase control, which takes a relatively long time to respond, is performed. Further, by implementing the condensate throttle control and the load increase control, the output of the power plant can be increased until the target load is reached even when the change in the load command value is large. By performing the condensate throttle control and the load increase control in combination in this way, it is possible to follow the output of the power plant with good responsiveness to an increase in the load command value.
Further, in the condensate throttle control, the opening degree of the condensate control valve and the bleeding valve is controlled based on the opening degree change rate set based on the change rate of the load command value. Thereby, the generator output by the condensate throttle control can be adjusted so as to correspond to the change of the load command value. As a result, when the condensate throttle control is performed, it is suppressed that the generator output greatly exceeds the load command value and deviates, and good followability to the load command value can be obtained.
(2)他の態様では上記(1)の態様において、
 前記発電プラントは、前記タービンへの蒸気供給量を制御するための蒸気弁(例えば上記実施形態の蒸気弁8)を更に備え、
 前記復水絞り制御の実行中、前記復水絞り制御の実行に起因した前記蒸気弁に対する開度指令値の減少を抑制するように構成される(例えば上記実施形態において蒸気弁開度指令値を出力するPI制御器106に入力される偏差ΔLがフィルタ108によって補正される)。
(2) In another aspect, in the above aspect (1),
The power plant further includes a steam valve (for example, the steam valve 8 of the above embodiment) for controlling the amount of steam supplied to the turbine.
During the execution of the condensate throttle control, it is configured to suppress a decrease in the opening command value for the steam valve due to the execution of the condensing throttle control (for example, in the above embodiment, the steam valve opening command value is set. The deviation ΔL input to the output PI controller 106 is corrected by the filter 108).
 上記(2)の態様によれば、復水絞り制御が実施された際に、蒸気弁の開度減少が抑制される。これにより、復水絞り制御によって発電機出力が一時的に増加した場合に、目標出力を超えた発電機出力を減少させるように蒸気弁の開度が減少することで、発電機出力が低下することを抑制できる。その結果、復水絞り制御による発電機出力増加効果をより的確に得ることができる。 According to the aspect (2) above, when the condensate throttle control is performed, the decrease in the opening degree of the steam valve is suppressed. As a result, when the generator output is temporarily increased by the condensate throttle control, the opening of the steam valve is reduced so as to reduce the generator output exceeding the target output, so that the generator output is reduced. Can be suppressed. As a result, the effect of increasing the generator output by the condensate throttle control can be obtained more accurately.
(3)他の態様では上記(1)の態様において、
 前記発電機の出力と前記負荷指令値との偏差に基づいて前記蒸気弁の開度を制御可能に構成された蒸気弁制御部(例えば上記実施形態の蒸気弁制御部110)を備え、
 前記蒸気弁制御部は、前記負荷指令値の増加時、前記復水絞り制御の実行中、前記偏差が負側領域において、前記偏差に対する前記蒸気弁の開度が、前記復水絞りの非実行中に比べて大きくなるように制御するように構成される(例えば上記実施形態においてフィルタ108が図3に示す特性を有する)。
(3) In another aspect, in the above aspect (1),
A steam valve control unit (for example, the steam valve control unit 110 of the above embodiment) configured to be able to control the opening degree of the steam valve based on the deviation between the output of the generator and the load command value is provided.
When the load command value is increased, the steam valve control unit is performing the condensate throttle control, the deviation is in the negative side region, and the opening degree of the steam valve with respect to the deviation is the non-execution of the condensate throttle. It is configured to be controlled to be larger than the inside (for example, in the above embodiment, the filter 108 has the characteristics shown in FIG. 3).
 上記(3)の態様によれば、復水絞り制御が実施されることで偏差が負側領域になった場合には、復水絞り制御が実施されていない時に比べて蒸気弁の開度が大きくなるように制御される。これにより、復水絞り制御の実施時における蒸気弁の開度減少が抑制されるので、復水絞り制御による発電機出力増加効果をより的確に得ることができる。 According to the aspect (3) above, when the deviation becomes a negative region due to the condensate throttle control being performed, the opening degree of the steam valve is larger than that when the condensate throttle control is not carried out. It is controlled to be large. As a result, the decrease in the opening degree of the steam valve when the condensate throttle control is performed is suppressed, so that the effect of increasing the generator output by the condensate throttle control can be obtained more accurately.
(4)他の態様では上記(3)の態様において、
 前記蒸気弁制御部は、前記負荷指令値の増加時、前記復水絞り制御の実行中、前記偏差が所定値以上の負側領域において、前記偏差に対する前記蒸気弁の開度が、前記偏差に対して一定になるように制御するように構成される(例えば上記実施形態においてフィルタ108が図3に示す特性を有する)。
(4) In another aspect, in the above aspect (3),
When the load command value is increased, the steam valve control unit sets the opening degree of the steam valve with respect to the deviation to the deviation in the negative region where the deviation is equal to or more than a predetermined value during the execution of the condensate throttle control. On the other hand, the filter 108 is configured to be controlled so as to be constant (for example, in the above embodiment, the filter 108 has the characteristics shown in FIG. 3).
 上記(4)の態様によれば、偏差が所定値以上の負側領域にある場合に蒸気弁の開度が一定になるように抑制されるため、復水絞り制御による発電機出力増加効果をより的確に得ることができる。 According to the aspect (4) above, when the deviation is in the negative region of a predetermined value or more, the opening degree of the steam valve is suppressed to be constant, so that the effect of increasing the generator output by the condensate throttle control can be obtained. It can be obtained more accurately.
(5)他の態様では上記(1)から(4)のいずれか一態様において、
 前記発電プラントは、
 前記復水器に貯留される前記復水を排出可能に構成された復水排出ライン(例えば上記実施形態の復水排出ライン14)と、
 前記復水排出ラインにおける前記復水の流量を調整可能に構成された復水排出弁(例えば上記実施形態の復水排出弁27)と、
を更に備え、
 前記復水絞り制御の実行中、前記復水排出弁の開度を調整することにより、前記復水器における前記復水のレベルを制御するように構成される(例えば上記実施形態において復水絞り制御時に復水排出弁27を制御して復水レベルを調整する)。
(5) In another aspect, in any one of the above (1) to (4),
The power plant
A condensate discharge line configured to be able to discharge the condensate stored in the condensate (for example, the condensate discharge line 14 of the above embodiment) and
A condensate discharge valve (for example, the condensate discharge valve 27 of the above embodiment) configured to be able to adjust the flow rate of the condensate in the condensate discharge line.
With more
During the execution of the condensate throttle control, the opening degree of the condensate discharge valve is adjusted to control the level of the condensate in the condenser (for example, the condensate throttle in the above embodiment). The condensate discharge valve 27 is controlled at the time of control to adjust the condensate level).
 上記(5)の態様によれば、復水絞り制御によって復水調節弁を絞り制御しつつ、復水排出弁の開度制御によって復水レベルを適切に管理できる。 According to the aspect (5) above, the condensate level can be appropriately managed by controlling the opening degree of the condensate discharge valve while controlling the condensate control valve by the condensate throttle control.
(6)他の態様では上記(1)から(5)のいずれか一態様において、
 前記復水絞り制御と前記負荷増加制御とは同時に実施される。
(6) In another aspect, in any one of the above (1) to (5),
The condensate throttle control and the load increase control are performed at the same time.
 上記(6)の態様によれば、負荷指令値の変動時に、復水絞り制御と負荷増加制御とを同時に実施することで、良好な応答性をもって発電プラントの出力を追従させることができる。 According to the aspect (6) above, the output of the power plant can be followed with good responsiveness by simultaneously performing the condensate throttle control and the load increase control when the load command value fluctuates.
(7)他の態様では上記(1)から(6)のいずれか一態様において、
 前記負荷指令値が5%以上増加した場合に、前記復水絞り制御を実行するように構成される。
(7) In another aspect, in any one of the above (1) to (6),
It is configured to execute the condensate throttle control when the load command value increases by 5% or more.
 上記(7)の態様によれば、負荷指令値が5%以上増加する比較的大きな負荷指令値の変動に対して、発電プラントの出力を応答性よく好適に追従させることができる。 According to the aspect (7) above, the output of the power plant can be responsively and suitably followed with respect to a relatively large fluctuation of the load command value in which the load command value increases by 5% or more.
(8)他の態様では上記(1)から(7)のいずれか一態様において、
 前記負荷指令値は、電力系統の需給状態に応じて中央給電司令室から前記発電プラントに入力される。
(8) In another aspect, in any one of the above (1) to (7),
The load command value is input to the power plant from the central power supply control room according to the supply and demand state of the power system.
 上記(8)の態様によれば、電力系統の需給状態に応じて、発電プラントの出力を応答性よく好適に追従させることができる。 According to the aspect (8) above, the output of the power plant can be responsively and suitably followed according to the supply and demand state of the electric power system.
(9)他の態様では上記(1)から(8)のいずれか一態様において、
 前記蒸気発生器は、石炭を燃料とする石炭焚きボイラである。
(9) In another aspect, in any one of the above (1) to (8),
The steam generator is a coal-fired boiler that uses coal as fuel.
 上記(9)の態様によれば、石炭を微粉炭機で粉砕するプロセスがあることにより、運転制御による負荷指令値への応答性が低い石炭焚きボイラを蒸気発生器として用いる発電プラントにおいても、復水絞り制御と負荷増加制御とを組み合わせて実施することで、負荷指令値の増加に対して良好な応答性をもって発電プラントの出力を追従させることができる。 According to the above aspect (9), even in a power plant using a coal-fired boiler as a steam generator, which has a low response to a load command value by operation control due to a process of crushing coal with a pulverized coal machine. By implementing the condensate throttle control and the load increase control in combination, it is possible to follow the output of the power plant with good responsiveness to the increase in the load command value.
(10)本開示の一態様に係る発電プラントは、
 上記(1)から(9)のいずれか一態様の制御装置を備える。
(10) The power plant according to one aspect of the present disclosure is
The control device according to any one of (1) to (9) above is provided.
 上記(10)の態様によれば、復水絞り制御と負荷増加制御とを組み合わせて実施することで、負荷指令値の増加に対して良好な応答性をもって発電プラントの出力を追従させることができる。 According to the aspect (10) above, by performing the condensate throttle control and the load increase control in combination, the output of the power plant can be made to follow the increase of the load command value with good responsiveness. ..
(11)本開示の一態様に係る発電プラントの制御方法は、
 蒸気を生成可能に構成された蒸気発生器(例えば上記実施形態の蒸気発生器2)と、
 前記蒸気を用いて駆動可能に構成されたタービン(例えば上記実施形態のタービン6)と、
 前記タービンで仕事を終えた前記蒸気を凝縮することにより復水を生成可能に構成された復水器(例えば上記実施形態の復水調節弁23)と、
 前記復水の前記蒸気発生器に対する供給量を調整可能に構成された復水調節弁(例えば上記実施形態の復水調節弁23)と、
 前記タービンからの抽気を用いて前記復水を加熱可能に構成された加熱器(例えば上記実施形態の加熱器24)と、
 前記抽気の流量を調整可能に構成された抽気弁(例えば上記実施形態の抽気弁28)と、
を備える発電プラント(例えば上記実施形態の発電プラント1)の制御方法であって、
 前記発電プラントに対する負荷指令値の増加時、前記復水調節弁の開度を絞る復水絞り制御と、前記蒸気発生器の負荷を増加させる負荷増加制御とを実施し、
 前記復水絞り制御では、前記負荷指令値の変化率に基づいて設定される開度変化率で前記復水調節弁及び前記抽気弁の開度が制御される。
(11) The power plant control method according to one aspect of the present disclosure is
A steam generator configured to be able to generate steam (for example, the steam generator 2 of the above embodiment) and
A turbine configured to be driveable using the steam (for example, the turbine 6 of the above embodiment) and
A condenser (for example, the condensate control valve 23 of the above embodiment) configured to be able to generate condensate by condensing the steam that has finished work in the turbine.
A condensate control valve (for example, the condensate control valve 23 of the above embodiment) configured to be able to adjust the supply amount of the condensate to the steam generator.
A heater configured to heat the condensate using the bleed air from the turbine (for example, the heater 24 of the above embodiment) and
An bleeding valve configured so that the flow rate of the bleeding air can be adjusted (for example, the bleeding valve 28 of the above embodiment) and
A control method for a power plant (for example, the power plant 1 of the above embodiment).
When the load command value for the power plant increases, the condensate throttle control that narrows the opening degree of the condensate control valve and the load increase control that increases the load of the steam generator are performed.
In the condensate throttle control, the opening degrees of the condensate control valve and the bleeding valve are controlled by the opening degree change rate set based on the change rate of the load command value.
 上記(11)の態様によれば、発電プラントに対する負荷指令値の増加時、負荷増加制御に加えて復水調節弁の開度を絞る復水絞り制御を実施することで、発電プラントの出力を応答性よく増加させることができる。これにより、比較的応答に時間を要する負荷増加制御のみを実施する場合に比べて、良好な応答性が得られる。また復水絞り制御と負荷増加制御とを実施することで、負荷指令値の変化が大きな場合においても目標負荷に至るまで発電プラントの出力を増加させることができる。このように復水絞り制御と負荷増加制御とを組み合わせて実施することで、負荷指令値の増加に対して良好な応答性をもって発電プラントの出力を追従させることができる。
 また復水絞り制御では、復水調節弁及び抽気弁の開度は負荷指令値の変化率に基づいて設定される開度変化率に基づいて制御される。これにより、復水絞り制御による発電機出力が負荷指令値の変化に対応するように調整することができる。その結果、復水絞り制御が実施された際に発電機出力が負荷指令値を大きく超えて乖離することを抑制し、負荷指令値に対する良好な追従性が得られる。
According to the aspect (11) above, when the load command value for the power plant is increased, the output of the power plant is increased by performing the condensate throttle control that narrows the opening degree of the condensate control valve in addition to the load increase control. It can be increased responsively. As a result, better responsiveness can be obtained as compared with the case where only the load increase control, which takes a relatively long time to respond, is performed. Further, by implementing the condensate throttle control and the load increase control, the output of the power plant can be increased until the target load is reached even when the change in the load command value is large. By performing the condensate throttle control and the load increase control in combination in this way, it is possible to follow the output of the power plant with good responsiveness to an increase in the load command value.
Further, in the condensate throttle control, the opening degree of the condensate control valve and the bleeding valve is controlled based on the opening degree change rate set based on the change rate of the load command value. Thereby, the generator output by the condensate throttle control can be adjusted so as to correspond to the change of the load command value. As a result, when the condensate throttle control is performed, it is suppressed that the generator output greatly exceeds the load command value and deviates, and good followability to the load command value can be obtained.
1 発電プラント
2 蒸気発生器
3 出力軸
4 蒸気供給路
5 発電機
6 タービン
8 蒸気弁
10 復水器
12 第1復水タンク
14 復水排出ライン
16 第2復水タンク
22 復水ライン
23 復水調節弁
24 加熱器
25 脱気器
26 抽気ライン
27 復水排出弁
28 抽気弁
100 制御装置
102 偏差演算器
104 スイッチ
106 PI制御器
108 フィルタ
110 蒸気弁制御部
120 蒸気発生器制御部
122 偏差演算器
124 PI制御器
126 加算器
130 偏差演算部
132 PI制御器
134 復水レベル目標値設定部
136 加算器
138 スイッチ
1 Power plant 2 Steam generator 3 Output shaft 4 Steam supply path 5 Generator 6 Turbine 8 Condenser 10 Condenser 12 1st condensate tank 14 Condensation discharge line 16 2nd condensate tank 22 Condensation line 23 Condensation Control valve 24 Heater 25 Deaerator 26 Condenser line 27 Condenser discharge valve 28 Extraction valve 100 Control device 102 Deviation calculator 104 Switch 106 PI controller 108 Filter 110 Steam valve control unit 120 Steam generator control unit 122 Deviation calculator 124 PI controller 126 adder 130 deviation calculation unit 132 PI controller 134 condensate level target value setting unit 136 adder 138 switch

Claims (11)

  1.  蒸気を生成可能に構成された蒸気発生器と、
     前記蒸気を用いて駆動可能に構成されたタービンに連結された発電機と、
     前記タービンで仕事を終えた前記蒸気を凝縮することにより復水を生成可能に構成された復水器と、
     前記復水の前記蒸気発生器に対する供給量を調整可能に構成された復水調節弁と、
     前記タービンからの抽気を用いて前記復水を加熱可能に構成された加熱器と、
     前記抽気の流量を調整可能に構成された抽気弁と、
    を備える発電プラントの制御装置であって、
     前記発電プラントに対する負荷指令値の増加時、前記復水調節弁の開度を絞る復水絞り制御と、前記蒸気発生器の負荷を増加させる負荷増加制御とを実施するように構成され、
     前記復水絞り制御では、前記負荷指令値の変化率に基づいて設定される開度変化率で前記復水調節弁及び前記抽気弁の開度が制御されるように構成された、発電プラントの制御装置。
    A steam generator configured to generate steam and
    A generator connected to a turbine configured to be driveable using the steam,
    A condenser configured to generate condensate by condensing the steam that has finished its work in the turbine, and
    A condensate control valve configured to be able to adjust the amount of condensate supplied to the steam generator,
    A heater configured to heat the condensate using the bleed air from the turbine, and
    An bleed valve configured to adjust the flow rate of the bleed air,
    It is a control device of a power plant equipped with
    When the load command value for the power plant increases, the condensate throttle control that narrows the opening degree of the condensate control valve and the load increase control that increases the load of the steam generator are performed.
    In the condensate throttle control, the opening degree of the condensate control valve and the bleeding valve is controlled by the opening degree change rate set based on the change rate of the load command value. Control device.
  2.  前記発電プラントは、前記タービンへの蒸気供給量を制御するための蒸気弁を更に備え、
     前記復水絞り制御の実行中、前記復水絞り制御の実行に起因した前記蒸気弁に対する開度指令値の減少を抑制するように構成された、請求項1に記載の発電プラントの制御装置。
    The power plant further comprises a steam valve for controlling the amount of steam supplied to the turbine.
    The control device for a power plant according to claim 1, which is configured to suppress a decrease in an opening command value for the steam valve due to the execution of the condensate throttle control during execution of the condensate throttle control.
  3.  前記発電機の出力と前記負荷指令値との偏差に基づいて前記蒸気弁の開度を制御可能に構成された蒸気弁制御部を備え、
     前記蒸気弁制御部は、前記負荷指令値の増加時、前記復水絞り制御の実行中、前記偏差が負側領域において、前記偏差に対する前記蒸気弁の開度が、前記復水絞りの非実行中に比べて大きくなるように制御するように構成された、請求項1に記載の発電プラントの制御装置。
    A steam valve control unit configured to be able to control the opening degree of the steam valve based on the deviation between the output of the generator and the load command value is provided.
    When the load command value is increased, the steam valve control unit is performing the condensate throttle control, the deviation is in the negative side region, and the opening degree of the steam valve with respect to the deviation is the non-execution of the condensate throttle. The control device for a power plant according to claim 1, which is configured to be controlled so as to be larger than the inside.
  4.  前記蒸気弁制御部は、前記負荷指令値の増加時、前記復水絞り制御の実行中、前記偏差が所定値以上の負側領域において、前記偏差に対する前記蒸気弁の開度が、前記偏差に対して一定になるように制御するように構成された、請求項3に記載の発電プラントの制御装置。 When the load command value is increased, the steam valve control unit sets the opening degree of the steam valve with respect to the deviation to the deviation in the negative region where the deviation is equal to or more than a predetermined value during execution of the condensate throttle control. The control device for a power plant according to claim 3, which is configured to be controlled so as to be constant.
  5.  前記発電プラントは、
     前記復水器に貯留される前記復水を排出可能に構成された復水排出ラインと、
     前記復水排出ラインにおける前記復水の流量を調整可能に構成された復水排出弁と、
    を更に備え、
     前記復水絞り制御の実行中、前記復水排出弁の開度を調整することにより、前記復水器における前記復水のレベルを制御するように構成された、請求項1から4のいずれか一項に記載の発電プラントの制御装置。
    The power plant
    A condensate discharge line configured to discharge the condensate stored in the condensate,
    A condensate discharge valve configured to be able to adjust the flow rate of the condensate in the condensate discharge line,
    With more
    Any of claims 1 to 4, which is configured to control the level of the condenser in the condenser by adjusting the opening degree of the condenser discharge valve during the execution of the condenser control. The control device for the power plant according to paragraph 1.
  6.  前記復水絞り制御と前記負荷増加制御とは同時に実施される、請求項1から5のいずれか一項に記載の発電プラントの制御装置。 The control device for a power plant according to any one of claims 1 to 5, wherein the condensate throttle control and the load increase control are performed at the same time.
  7.  前記負荷指令値が5%以上増加した場合に、前記復水絞り制御を実行するように構成された、請求項1から6のいずれか一項に記載の発電プラントの制御装置。 The control device for a power plant according to any one of claims 1 to 6, which is configured to execute the condensate throttle control when the load command value increases by 5% or more.
  8.  前記負荷指令値は、電力系統の需給状態に応じて中央給電司令室から前記発電プラントに入力される、請求項1から7のいずれか一項に記載の発電プラントの制御装置。 The control device for a power plant according to any one of claims 1 to 7, wherein the load command value is input to the power plant from the central power supply control room according to the supply and demand state of the power system.
  9.  前記蒸気発生器は、石炭を燃料とする石炭焚きボイラである、請求項1から8のいずれか一項に記載の発電プラントの制御装置。 The control device for a power plant according to any one of claims 1 to 8, wherein the steam generator is a coal-fired boiler that uses coal as fuel.
  10.  請求項1から9のいずれか一項に記載の制御装置を備える、発電プラント。 A power plant provided with the control device according to any one of claims 1 to 9.
  11.  蒸気を生成可能に構成された蒸気発生器と、
     前記蒸気を用いて駆動可能に構成されたタービンと、
     前記タービンで仕事を終えた前記蒸気を凝縮することにより復水を生成可能に構成された復水器と、
     前記復水の前記蒸気発生器に対する供給量を調整可能に構成された復水調節弁と、
     前記タービンからの抽気を用いて前記復水を加熱可能に構成された加熱器と、
     前記抽気の流量を調整可能に構成された抽気弁と、
    を備える発電プラントの制御方法であって、
     前記発電プラントに対する負荷指令値の増加時、前記復水調節弁の開度を絞る復水絞り制御と、前記蒸気発生器の負荷を増加させる負荷増加制御とを実施し、
     前記復水絞り制御では、前記負荷指令値の変化率に基づいて設定される開度変化率で前記復水調節弁及び前記抽気弁の開度が制御される、発電プラントの制御方法。
    A steam generator configured to generate steam and
    A turbine configured to be driveable using the steam,
    A condenser configured to generate condensate by condensing the steam that has finished its work in the turbine, and
    A condensate control valve configured to be able to adjust the amount of condensate supplied to the steam generator,
    A heater configured to heat the condensate using the bleed air from the turbine, and
    An bleed valve configured to adjust the flow rate of the bleed air,
    It is a control method of a power plant equipped with
    When the load command value for the power plant increases, the condensate throttle control that narrows the opening degree of the condensate control valve and the load increase control that increases the load of the steam generator are performed.
    In the condensate throttle control, a power plant control method in which the opening degrees of the condensate control valve and the bleeding valve are controlled by an opening degree change rate set based on the change rate of the load command value.
PCT/JP2020/028090 2019-07-26 2020-07-20 Power plant control device, power plant, and power plant control method WO2021020207A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227001608A KR20220019829A (en) 2019-07-26 2020-07-20 Control device of power plant, power plant and control method of power plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-138072 2019-07-26
JP2019138072A JP6775070B1 (en) 2019-07-26 2019-07-26 Power plant control device, power plant, and power plant control method

Publications (1)

Publication Number Publication Date
WO2021020207A1 true WO2021020207A1 (en) 2021-02-04

Family

ID=72938121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028090 WO2021020207A1 (en) 2019-07-26 2020-07-20 Power plant control device, power plant, and power plant control method

Country Status (4)

Country Link
JP (1) JP6775070B1 (en)
KR (1) KR20220019829A (en)
TW (1) TWI772845B (en)
WO (1) WO2021020207A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454204A (en) * 1990-06-21 1992-02-21 Mitsubishi Heavy Ind Ltd Control device for gas-extraction and condensation type turbine
JP2000303803A (en) * 1999-04-21 2000-10-31 Nippon Steel Corp Power generation system
JP2002129908A (en) * 2000-10-25 2002-05-09 Kawasaki Steel Corp Water level control method of steam turbine condenser
WO2012090778A1 (en) * 2010-12-27 2012-07-05 三菱重工業株式会社 Condensate flow rate control device for power-plant, and control method
JP2013053531A (en) * 2011-09-01 2013-03-21 Hitachi Ltd Power plant and method for increasing power generation output of the same
CN107965356A (en) * 2017-12-25 2018-04-27 东北电力大学 A kind of fired power generating unit flexibility lifting control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6545737B2 (en) * 2017-02-23 2019-07-17 三菱重工業株式会社 POWER GENERATION SYSTEM AND CONTROL METHOD OF POWER GENERATION SYSTEM

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454204A (en) * 1990-06-21 1992-02-21 Mitsubishi Heavy Ind Ltd Control device for gas-extraction and condensation type turbine
JP2000303803A (en) * 1999-04-21 2000-10-31 Nippon Steel Corp Power generation system
JP2002129908A (en) * 2000-10-25 2002-05-09 Kawasaki Steel Corp Water level control method of steam turbine condenser
WO2012090778A1 (en) * 2010-12-27 2012-07-05 三菱重工業株式会社 Condensate flow rate control device for power-plant, and control method
JP2013053531A (en) * 2011-09-01 2013-03-21 Hitachi Ltd Power plant and method for increasing power generation output of the same
CN107965356A (en) * 2017-12-25 2018-04-27 东北电力大学 A kind of fired power generating unit flexibility lifting control method

Also Published As

Publication number Publication date
TWI772845B (en) 2022-08-01
TW202126895A (en) 2021-07-16
JP2021021361A (en) 2021-02-18
JP6775070B1 (en) 2020-10-28
KR20220019829A (en) 2022-02-17

Similar Documents

Publication Publication Date Title
KR101862893B1 (en) Method for operating a combined gas and steam turbine system, gas and steam turbine system for carrying out said method, and corresponding control device
CN109654475B (en) Reheating steam temperature control method for double reheating unit
JP2010223579A (en) Single loop temperature regulation control mechanism
KR101841316B1 (en) Method for controlling a short-term increase in power of a steam turbine
JP5840032B2 (en) Power generation system and steam temperature control method thereof
JP5050013B2 (en) Combined power plant and control method thereof
WO2021020207A1 (en) Power plant control device, power plant, and power plant control method
EP2867735B1 (en) A method for optimization of control and fault analysis in a thermal power plant
JP4892539B2 (en) Combined power plant and waste heat recovery boiler
CN104074560A (en) Steam bypass control method for gas turbine combined cycle generator set
US10697369B2 (en) Method for shutting down a gas turbine and a steam turbine of a combined cycle power plant at the same time
CN115751279A (en) Main steam temperature optimization control method and device for peak-shaving frequency-modulation thermal generator set
CN112628710B (en) Automatic control method for main steam temperature of gas-steam combined cycle unit
JP6036376B2 (en) Boiler system
JP2005214047A (en) Combined cycle power generation plant and method of operating the same
JP2008292119A (en) Power generator
WO2022118854A1 (en) Power generation system, control method for same, and program
WO2022145276A1 (en) Control device and control method
JP2007132630A (en) Boiler reheating steam temperature control device and method
JP4690904B2 (en) Boiler system and control method thereof
JPH05340205A (en) Controller for combined power generation plant
JP2008274819A (en) Operation control device for combined power plant steam turbine
JP2019105260A (en) Plant control device and power plant
CN117553288A (en) Cooling water flow control method for turbine cooling air system of gas turbine
CN114719626A (en) Big closed loop optimization system of air cooling unit backpressure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20846303

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227001608

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20846303

Country of ref document: EP

Kind code of ref document: A1