JP2021113510A - Steam turbine control device and steam turbine power generation equipment - Google Patents

Steam turbine control device and steam turbine power generation equipment Download PDF

Info

Publication number
JP2021113510A
JP2021113510A JP2020005602A JP2020005602A JP2021113510A JP 2021113510 A JP2021113510 A JP 2021113510A JP 2020005602 A JP2020005602 A JP 2020005602A JP 2020005602 A JP2020005602 A JP 2020005602A JP 2021113510 A JP2021113510 A JP 2021113510A
Authority
JP
Japan
Prior art keywords
rotation speed
steam turbine
steam
control valve
adjustment rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020005602A
Other languages
Japanese (ja)
Other versions
JP7328155B2 (en
Inventor
有亮 河野
Yusuke Kono
有亮 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Power Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Power Ltd filed Critical Mitsubishi Power Ltd
Priority to JP2020005602A priority Critical patent/JP7328155B2/en
Publication of JP2021113510A publication Critical patent/JP2021113510A/en
Application granted granted Critical
Publication of JP7328155B2 publication Critical patent/JP7328155B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

To suppress a sensitive change of an opening of a steam regulating valve, and to make a rotation number of a steam turbine smoothly converged to a target rotation number, or its vicinity.SOLUTION: In a steam turbine control device 10 for controlling a steam regulating valve 4 so that a rotation number deviation X being a difference between a measurement rotation number Xm of a steam turbine 2 and a preset target rotation number Xt becomes small, the target rotation number Xt, choices which are preset in a plurality of pieces at each value of the rotation number deviation X on the basis of an operation amount of the steam regulating valve 4, and a limit change rate R which is preset with respect to a change of a speed adjustment rate are stored in the control device in advance. A speed adjustment rate function is defined by using the operation amount which is selected at each value of the rotation number deviation X, an opening of the steam regulating valve 4 is controlled according to the rotation number deviation X under the defined speed adjustment rated function, and when the selection of the operation amount is changed, the speed adjustment rate function is transited at the limit change rate R.SELECTED DRAWING: Figure 1

Description

本発明は、蒸気タービン制御装置及び蒸気タービン発電設備に関する。 The present invention relates to a steam turbine control device and a steam turbine power generation facility.

一般に蒸気タービンは蒸気加減弁を介して供給される蒸気で駆動される。蒸気タービンで発電機を駆動する蒸気タービン発電設備では、蒸気タービンの測定回転数(実回転数)と目標回転数(例えば定格回転数)との回転数偏差について速度調定率の関数(以下、速度調定率関数)が設定されている場合がある(特許文献1等参照)。 Generally, a steam turbine is driven by steam supplied through a steam control valve. In a steam turbine power generation facility in which a generator is driven by a steam turbine, a function of the speed adjustment rate (hereinafter referred to as speed) is obtained with respect to the rotation speed deviation between the measured rotation speed (actual rotation speed) and the target rotation speed (for example, the rated rotation speed) of the steam turbine. The adjustment rate function) may be set (see Patent Document 1 and the like).

こうした蒸気タービン発電設備では、電力系統(例えば商用電力系統)に発電機を並列(併入)している間、速度調定率関数の下で回転数偏差に応じて蒸気加減弁の開度が制御される。例えば蒸気タービンの測定回転数が目標回転数に対して低ければ、蒸気加減弁を現在の開度から回転数偏差の大きさに応じた割合だけ開け、作動流体の供給流量を増加させて蒸気タービンの回転数を上昇させる。反対に蒸気タービンの測定回転数が目標回転数に対して高ければ、蒸気加減弁を現在の開度から回転数偏差の大きさに応じた割合だけ閉じ、作動流体の供給流量を減少させて蒸気タービンの回転数を低下させる。このようなフィードバック制御により蒸気タービンの回転数を目標回転数に収束させ、系統周波数の安定化が図られる。 In such a steam turbine power generation facility, the opening degree of the steam control valve is controlled according to the rotation speed deviation under the speed adjustment rate function while the generator is paralleled (joined) in the power system (for example, a commercial power system). Will be done. For example, if the measured rotation speed of the steam turbine is lower than the target rotation speed, the steam control valve is opened by a ratio corresponding to the magnitude of the rotation speed deviation from the current opening, and the supply flow rate of the working fluid is increased to increase the supply flow rate of the working fluid. Increase the number of revolutions of. On the contrary, if the measured rotation speed of the steam turbine is higher than the target rotation speed, the steam control valve is closed by a ratio corresponding to the magnitude of the rotation speed deviation from the current opening, and the supply flow rate of the working fluid is reduced to steam. Reduce the turbine speed. By such feedback control, the rotation speed of the steam turbine is converged to the target rotation speed, and the system frequency is stabilized.

特開平3−92505号公報Japanese Unexamined Patent Publication No. 3-92505

近年、風力や太陽光に代表される自然エネルギーを利用した発電設備が電力系統に接続される場合が増えてきており、こうした発電設備が電力系統に占める割合も大きくなってきている。ただ、こうした自然エネルギーを利用した発電設備の出力は季節や時間、気象条件等によって変動し易く、系統周波数を不安定にする一因となっている。このような系統周波数の変動は、電力系統に発電機を並列した蒸気タービン発電設備において、蒸気タービンの回転数を変動させて発電出力を不安定にさせ得る。 In recent years, power generation facilities that use natural energy such as wind power and solar power are increasingly connected to the power system, and the proportion of such power generation facilities in the power system is also increasing. However, the output of power generation equipment that uses such natural energy tends to fluctuate depending on the season, time, weather conditions, etc., which is one of the causes of unstable system frequency. Such fluctuations in the system frequency can fluctuate the rotation speed of the steam turbine and destabilize the power generation output in the steam turbine power generation facility in which the generator is arranged in parallel with the power system.

このとき、蒸気加減弁の開度と回転数偏差とを単純比例関係に設定した場合、蒸気タービンの回転数が急激に変化すると、これに伴って蒸気加減弁の開度も急変する。例えば蒸気タービンの回転数が目標回転数付近で静定している時に系統周波数が急激に変化すると、その影響を受けて蒸気タービンの回転数が急激に低下し得る。この場合、蒸気タービンへの供給蒸気流量が必要を超えて急増し、ハンチングが起こる等して蒸気タービンの回転数が不安定になり得る。 At this time, when the opening degree of the steam control valve and the rotation speed deviation are set in a simple proportional relationship, when the rotation speed of the steam turbine changes abruptly, the opening degree of the steam control valve also changes abruptly. For example, if the system frequency suddenly changes while the rotation speed of the steam turbine is settled near the target rotation speed, the rotation speed of the steam turbine may decrease sharply under the influence of the sudden change. In this case, the flow rate of steam supplied to the steam turbine suddenly increases more than necessary, hunting may occur, and the rotation speed of the steam turbine may become unstable.

本発明の目的は、蒸気加減弁の開度の過敏な変化を抑制し蒸気タービンの回転数をスムーズに目標回転数又はその付近に収束させることができる蒸気タービン制御装置及び蒸気タービン発電設備を提供することにある。 An object of the present invention is to provide a steam turbine control device and a steam turbine power generation facility capable of suppressing a sensitive change in the opening degree of a steam control valve and smoothly converging the rotation speed of the steam turbine to or near the target rotation speed. To do.

上記目的を達成するために、本発明は、蒸気を発生させるボイラと、前記ボイラから供給される蒸気で駆動される蒸気タービンと、前記蒸気タービンで駆動される発電機と、前記ボイラから前記蒸気タービンへの供給蒸気流量を調整する蒸気加減弁とを備えた蒸気タービン発電設備に備えられ、前記蒸気タービンの測定回転数と予め設定された目標回転数との差分である回転数偏差が小さくなるように前記蒸気加減弁を制御する蒸気タービン制御装置において、記憶装置と演算装置とを含んで構成され、前記記憶装置には、前記蒸気タービンの目標回転数と、前記蒸気加減弁の操作量について前記回転数偏差の値毎に複数ずつ予め設定された選択肢と、速度調定率の変化について予め設定された制限変化率とが記憶されており、前記演算装置は、前記回転数偏差の値毎に選択された前記操作量で速度調定率関数を定義し、定義した速度調定率関数の下で前記回転数偏差に応じて前記蒸気加減弁の開度を制御し、かつ前記回転数偏差の個々の値の少なくとも1つについて前記操作量の選択が変更された場合、現在の速度調定率関数から変更後の速度調定率関数に前記制限変化率で遷移させるように構成されていることを特徴とする。 In order to achieve the above object, the present invention comprises a boiler that generates steam, a steam turbine driven by steam supplied from the boiler, a generator driven by the steam turbine, and the steam from the boiler. It is provided in a steam turbine power generation facility equipped with a steam control valve that adjusts the flow rate of steam supplied to the turbine, and the rotation speed deviation, which is the difference between the measured rotation speed of the steam turbine and the preset target rotation speed, becomes small. The steam turbine control device that controls the steam control valve is configured to include a storage device and a calculation device, and the storage device has a target rotation speed of the steam turbine and an operating amount of the steam control valve. A plurality of preset options for each rotation speed deviation value and a preset limit change rate for a change in the speed adjustment rate are stored, and the calculation device stores each of the rotation speed deviation values. A speed regulation rate function is defined by the selected operation amount, the opening degree of the steam control valve is controlled according to the rotation speed deviation under the defined speed adjustment rate function, and the individual rotation speed deviations are individually controlled. When the selection of the operation amount is changed for at least one of the values, the current speed adjustment rate function is configured to transition to the changed speed adjustment rate function at the limit change rate. ..

本発明によれば、蒸気加減弁の開度の過敏な変化を抑制し蒸気タービンの回転数をスムーズに目標回転数又はその付近に収束させることができる。 According to the present invention, it is possible to suppress a sensitive change in the opening degree of the steam control valve and smoothly converge the rotation speed of the steam turbine to or near the target rotation speed.

本発明の一実施形態に係るタービン制御装置の構成を示す模式図Schematic diagram showing the configuration of the turbine control device according to the embodiment of the present invention. 回転数偏差と蒸気加減弁の操作量との関係で定義した蒸気タービンの速度調定率関数(基本関数)を表すグラフA graph showing the speed adjustment rate function (basic function) of a steam turbine defined by the relationship between the rotation speed deviation and the operating amount of the steam control valve. 回転数偏差と蒸気加減弁の操作量との関係で定義した蒸気タービンの速度調定率関数(調整を加えた関数)を表すグラフA graph showing the speed adjustment rate function (adjusted function) of the steam turbine defined by the relationship between the rotation speed deviation and the operating amount of the steam control valve. 本発明の一実施形態に係る蒸気タービン制御装置による速度調定率の切換動作を示すフローチャートA flowchart showing a speed adjustment rate switching operation by the steam turbine control device according to the embodiment of the present invention. 図4の切換動作に伴って速度調定率等が遷移する様子の例を表す波形図Waveform diagram showing an example of how the speed adjustment rate and the like transition with the switching operation of FIG.

以下に図面を用いて本発明の実施の形態を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

−構成−
図1は本発明の一実施形態に係る蒸気タービン発電設備の構成を示す模式図である。同図に示した蒸気タービン発電設備は、ボイラ1、蒸気タービン2、発電機3、蒸気加減弁4、蒸気タービン制御装置10を含んで構成されている。
− Configuration −
FIG. 1 is a schematic view showing a configuration of a steam turbine power generation facility according to an embodiment of the present invention. The steam turbine power generation facility shown in the figure includes a boiler 1, a steam turbine 2, a generator 3, a steam control valve 4, and a steam turbine control device 10.

ボイラ1は給水ポンプ(不図示)により供給された水を加熱して蒸気を発生させ、蒸気タービン2に供給する。ボイラ1の熱源については図示していないが、ボイラ1の熱源の代表例は、例えばガスタービンの排気ガス、燃料の燃焼熱、原子炉等である。 The boiler 1 heats the water supplied by the water supply pump (not shown) to generate steam, which is supplied to the steam turbine 2. Although the heat source of the boiler 1 is not shown, typical examples of the heat source of the boiler 1 are, for example, exhaust gas of a gas turbine, heat of combustion of fuel, a reactor, and the like.

蒸気タービン2は、ボイラ1から供給される蒸気により駆動される。蒸気タービン2を駆動した蒸気は復水器(不図示)に導かれて水に戻され、再び給水ポンプ(不図示)によりボイラ1に供給される。 The steam turbine 2 is driven by the steam supplied from the boiler 1. The steam that drives the steam turbine 2 is guided by a condenser (not shown) and returned to water, and is supplied to the boiler 1 again by a water supply pump (not shown).

発電機3のロータは蒸気タービン2のロータと同軸に連結されている。発電機3は蒸気タービン2の回転動力により駆動されて発電する。発電機3は電力系統(例えば商用電力系統)に接続されている。電力系統には、図1に示した蒸気タービン発電設備以外に、少なくとも1つの他の発電設備(不図示)が接続されている。電力系統に接続される他の発電設備には、風力や太陽光等の自然エネルギー(再生可能エネルギー)により発電する発電設備が含まれ得る。 The rotor of the generator 3 is coaxially connected to the rotor of the steam turbine 2. The generator 3 is driven by the rotational power of the steam turbine 2 to generate electricity. The generator 3 is connected to an electric power system (for example, a commercial electric power system). In addition to the steam turbine power generation equipment shown in FIG. 1, at least one other power generation equipment (not shown) is connected to the power system. Other power generation facilities connected to the power grid may include power generation facilities that generate electricity from natural energy (renewable energy) such as wind power and solar power.

蒸気加減弁4は電磁駆動弁であり、ボイラ1から蒸気タービン2への供給蒸気流量を調整する。蒸気加減弁4の基本開度は中間開度(例えば50%開度)である。蒸気加減弁4の開度が上がると蒸気タービン2への供給蒸気流量が増加し、蒸気タービン2の出力ひいては発電機3の発電量が増加する。反対に蒸気加減弁4の開度が下がると蒸気タービン2への供給蒸気流量が減少し、蒸気タービン2の出力ひいては発電機3の発電量が減少する。 The steam control valve 4 is an electromagnetically driven valve, and adjusts the flow rate of steam supplied from the boiler 1 to the steam turbine 2. The basic opening degree of the steam control valve 4 is an intermediate opening degree (for example, 50% opening degree). When the opening degree of the steam control valve 4 increases, the flow rate of steam supplied to the steam turbine 2 increases, and the output of the steam turbine 2 and thus the amount of power generated by the generator 3 increase. On the contrary, when the opening degree of the steam control valve 4 decreases, the flow rate of steam supplied to the steam turbine 2 decreases, and the output of the steam turbine 2 and thus the amount of power generated by the generator 3 decrease.

蒸気タービン発電設備には、蒸気タービン2の回転数を測定する回転数センサ5が備わっている。回転数センサ5により測定された蒸気タービン2の測定回転数Xmは、蒸気タービン制御装置10の回転数偏差演算回路13に入力される。 The steam turbine power generation facility is provided with a rotation speed sensor 5 that measures the rotation speed of the steam turbine 2. The measured rotation speed Xm of the steam turbine 2 measured by the rotation speed sensor 5 is input to the rotation speed deviation calculation circuit 13 of the steam turbine control device 10.

蒸気タービン制御装置10はコンピュータであり、メモリ(記憶装置)11やCPU(演算装置)12、タイマー(不図示)等を含んで構成されている。この蒸気タービン制御装置10は、蒸気タービン2の測定回転数Xmと予め設定された目標回転数Xtとの差分である回転数偏差X(=Xm−Xt)が小さくなるように蒸気加減弁4を制御する機能を備えている。特に本実施形態の蒸気タービン制御装置10は、後述のように回転数偏差Xの値毎に選択された蒸気加減弁4の操作量(補正量)で速度調定率関数を定義し、定義した速度調定率関数の下で回転数偏差Xに応じて蒸気加減弁4の開度を制御するように構成してある。回転数偏差Xに応じて蒸気タービン制御装置10により蒸気加減弁4が制御され、蒸気タービン2の回転数が目標回転数Xt又はその付近に収束するようになっている。蒸気タービン2の回転数が目標回転数Xtに収束するか、目標回転数Xt又はその付近に収束するかは、後で図2及び図3で説明するように速度調定率関数がどのようにデザインされるかによる。 The steam turbine control device 10 is a computer, and includes a memory (storage device) 11, a CPU (arithmetic unit) 12, a timer (not shown), and the like. The steam turbine control device 10 sets the steam control valve 4 so that the rotation speed deviation X (= Xm-Xt), which is the difference between the measured rotation speed Xm of the steam turbine 2 and the preset target rotation speed Xt, becomes small. It has a function to control. In particular, in the steam turbine control device 10 of the present embodiment, the speed adjustment rate function is defined by the operating amount (correction amount) of the steam control valve 4 selected for each value of the rotation speed deviation X as described later, and the defined speed. It is configured to control the opening degree of the steam control valve 4 according to the rotation speed deviation X under the adjustment rate function. The steam control valve 4 is controlled by the steam turbine control device 10 according to the rotation speed deviation X, and the rotation speed of the steam turbine 2 converges to or near the target rotation speed Xt. Whether the rotation speed of the steam turbine 2 converges to the target rotation speed Xt or converges to the target rotation speed Xt or its vicinity is designed by the speed adjustment rate function as will be described later in FIGS. 2 and 3. It depends on what is done.

なお、目標回転数Xtの一例としては、定格回転数を挙げることができる。定格回転数とは、製造元で指定された蒸気タービン2の運転条件における蒸気タービン2の回転数である。 As an example of the target rotation speed Xt, the rated rotation speed can be mentioned. The rated rotation speed is the rotation speed of the steam turbine 2 under the operating conditions of the steam turbine 2 specified by the manufacturer.

蒸気タービン制御装置10のメモリ11には、蒸気加減弁4の制御に関するプログラムの他、プログラムの実行に必要なデータが記憶されている。このメモリ11に記憶されたプログラム及びデータがCPU12に読み込まれ、CPU12により回転数偏差Xの値に応じて蒸気加減弁4が制御される。メモリ11に記憶されたデータには、蒸気加減弁4の操作量Yについて回転数偏差Xの値毎に複数ずつ予め設定された選択肢(後述)が含まれる。ここで、本実施形態では、回転数偏差Xの個々の値をXn(n=自然数)と適宜表す。XnとXn−1との差は、回転数センサ5の分解能に応じて識別可能な回転数の2値の最小差とすることができるが、本例ではそれよりも大きく任意に設定した大きさとする。つまり、回転数偏差Xの個々の値Xnは任意に設定した定数である。これら回転数偏差Xの個々の値Xnについては、それぞれ2つの操作量Yの複数の選択肢Yn1,Yn2が紐づけて設定してある。メモリ11には、これらの回転数偏差Xの個々の値Xn、及び値Xn毎に設定した操作量Yの複数の選択肢Yn1,Yn2が記憶されている。回転数偏差Xの個々の値Xnについての操作量Yの値は、入力装置20によりオペレータが選択肢Yn1,Yn2から任意に選択することができる。入力装置20は、蒸気タービン制御装置10に速度調定率切換信号Ss(後述)等を入力するユーザインターフェースである。 In the memory 11 of the steam turbine control device 10, in addition to the program related to the control of the steam control valve 4, data necessary for executing the program is stored. The program and data stored in the memory 11 are read into the CPU 12, and the steam control valve 4 is controlled by the CPU 12 according to the value of the rotation speed deviation X. The data stored in the memory 11 includes a plurality of preset options (described later) for each value of the rotation speed deviation X with respect to the operation amount Y of the steam control valve 4. Here, in the present embodiment, each value of the rotation speed deviation X is appropriately represented as Xn (n = natural number). The difference between Xn and Xn-1 can be the minimum difference between the two values of the rotation speed that can be identified according to the resolution of the rotation speed sensor 5, but in this example, it is larger than that and is arbitrarily set. do. That is, each value Xn of the rotation speed deviation X is an arbitrarily set constant. For each value Xn of the rotation speed deviation X, a plurality of options Yn1 and Yn2 of two manipulated variables Y are set in association with each other. The memory 11 stores individual values Xn of these rotation speed deviations X, and a plurality of options Yn1 and Yn2 of the manipulated variable Y set for each value Xn. The value of the manipulated variable Y for each value Xn of the rotation speed deviation X can be arbitrarily selected by the operator from the options Yn1 and Yn2 by the input device 20. The input device 20 is a user interface for inputting a speed adjustment rate switching signal Ss (described later) or the like to the steam turbine control device 10.

メモリ11にはまた、操作量Yの他、蒸気タービン2の目標回転数Xt、及び蒸気タービン2の速度調定率の変化について予め設定された制限変化率R等のデータも記憶されている。制限変化率Rは、回転数偏差Xのある値Xnについて速度調定率を定義する操作量Yの値を一の値から他の値に変化させる場合に、操作量Yの単位時間当たりの変化量について規定した値である。つまり本実施形態では、ある回転数偏差Xnについて第1選択肢Yn1から第2選択肢Yn2に操作量Yの選択が変更された場合、時間的に一定の割合で第1選択肢Yn1から第2選択肢Yn2に操作量Yの値が遷移する。切換操作と同時に操作量Yの値が第2選択肢Yn2に時間的に離散的に切り換わるのではなく、操作量Yは切換操作により変化し始め、第1選択肢Yn1から第2選択肢Yn2に徐々に遷移して時間をかけて切り換わる。 In addition to the manipulated variable Y, the memory 11 also stores data such as a target rotation speed Xt of the steam turbine 2 and a preset limit change rate R for changes in the speed adjustment rate of the steam turbine 2. The limit change rate R is the amount of change in the manipulated variable Y per unit time when the value of the manipulated variable Y that defines the speed adjustment rate for a certain value Xn with the rotation speed deviation X is changed from one value to another. It is a value specified for. That is, in the present embodiment, when the selection of the manipulated variable Y is changed from the first option Yn1 to the second option Yn2 for a certain rotation speed deviation Xn, the first option Yn1 is changed to the second option Yn2 at a constant rate in time. The value of the manipulated variable Y changes. At the same time as the switching operation, the value of the operation amount Y does not switch to the second option Yn2 discretely in time, but the operation amount Y begins to change by the switching operation and gradually changes from the first option Yn1 to the second option Yn2. It transitions and switches over time.

CPU12は、回転数偏差演算回路13、速度調定率切換回路14、操作量演算回路15及び開度指令値演算回路16を含んで構成されている。速度調定率切換回路14は更に、選択回路17及び変化率制限回路18を含んで構成されている。言い換えれば、CPU12は、回転数偏差演算回路13、速度調定率切換回路14、操作量演算回路15及び開度指令値演算回路16を構成し、プログラムに従って各回路の機能を実行する。 The CPU 12 includes a rotation speed deviation calculation circuit 13, a speed adjustment rate switching circuit 14, an operation amount calculation circuit 15, and an opening command value calculation circuit 16. The speed adjustment rate switching circuit 14 is further configured to include a selection circuit 17 and a rate of change limiting circuit 18. In other words, the CPU 12 constitutes a rotation speed deviation calculation circuit 13, a speed adjustment rate switching circuit 14, an operation amount calculation circuit 15, and an opening command value calculation circuit 16, and executes the functions of each circuit according to a program.

回転数偏差演算回路13は、回転数センサ5で測定された測定回転数Xmとメモリ11に記憶された目標回転数Xtとの差分である回転数偏差X(=Xm−Xt)を演算し、操作量演算回路15に出力する。 The rotation speed deviation calculation circuit 13 calculates the rotation speed deviation X (= Xm-Xt), which is the difference between the measured rotation speed Xm measured by the rotation speed sensor 5 and the target rotation speed Xt stored in the memory 11. Output to the operation amount calculation circuit 15.

速度調定率切換回路14は、オペレータの切換操作に応じて入力装置20から入力される速度調定率切換信号Ssに基づいて、選択回路17により回転数偏差Xの個々の値Xnについて操作量Yの値を選択肢Yn1,Yn2から択一し変化率制限回路18に出力する。速度調定率切換信号Ssは、例えば回転数偏差Xの個々の値XnについてのON/OFFのデータを含んだ信号である。例えば回転数偏差X1に着目して説明する。例えば速度調定率切換信号Ssにおける回転数偏差X1の設定がONのとき、選択回路17により回転数偏差X1対応する操作量Yとして第1選択肢Y11が選択される。そして、回転数偏差X1について速度調定率関数を定義するデータ(X1,Y11)が選択回路17から変化率制限回路18に出力される。反対に速度調定率切換信号Ssにおける回転数偏差X1の設定がOFFのとき、回転数偏差X1対応する操作量Yとして第2選択肢Y12が選択される。そして、回転数偏差X1について速度調定率関数を定義するデータ(X1,Y12)が選択回路17から変化率制限回路18に出力される。 The speed adjustment rate switching circuit 14 determines the operation amount Y for each value Xn of the rotation speed deviation X by the selection circuit 17 based on the speed adjustment rate switching signal Ss input from the input device 20 in response to the switching operation of the operator. The value is selected from the options Yn1 and Yn2 and output to the rate of change limiting circuit 18. The speed adjustment rate switching signal Ss is, for example, a signal including ON / OFF data for each value Xn of the rotation speed deviation X. For example, the rotation speed deviation X1 will be focused on. For example, when the setting of the rotation speed deviation X1 in the speed adjustment rate switching signal Ss is ON, the selection circuit 17 selects the first option Y11 as the manipulated variable Y corresponding to the rotation speed deviation X1. Then, the data (X1, Y11) that defines the speed adjustment rate function for the rotation speed deviation X1 is output from the selection circuit 17 to the change rate limiting circuit 18. On the contrary, when the setting of the rotation speed deviation X1 in the speed adjustment rate switching signal Ss is OFF, the second option Y12 is selected as the operation amount Y corresponding to the rotation speed deviation X1. Then, the data (X1, Y12) that defines the speed adjustment rate function for the rotation speed deviation X1 is output from the selection circuit 17 to the change rate limiting circuit 18.

速度調定率切換回路14はまた、変化率制限回路18により、メモリ11に記憶された制限変化率Rのデータを選択回路17から出力されたデータに付加して操作量演算回路15に出力する。 The speed adjustment rate switching circuit 14 also adds the data of the limit change rate R stored in the memory 11 to the data output from the selection circuit 17 by the change rate limiting circuit 18 and outputs the data to the manipulated variable calculation circuit 15.

操作量演算回路15は、速度調定率切換回路14から入力されたデータを基に速度調定率関数を生成し、回転数偏差演算回路13で演算された現在の回転数偏差Xに応じた蒸気加減弁4の操作量Yを演算して開度指令値演算回路16に出力する。このとき、回転数偏差Xの個々の値Xnの少なくとも1つについて操作量Yの選択が変更された場合、現在の速度調定率関数から変更後の速度調定率関数に速度調定率関数を制限変化率Rで遷移させる。例えば、制限変化率Rが単位時間t当たりの操作量Yの変化量をk(%)と規定するものであるとして、回転数偏差X1について操作量Yの値をYn1からYn2に変更したとする。この場合、回転数偏差X1に対応する操作量Yについて、時間t後に出力される値は(Yn1+k)、時間2t後に出力される値は(Yn1+2k)となり、徐々に操作量Yの値が変化していく。仮に操作量Yn1,Yn2の間に10k(%)の差がある場合、回転数偏差X1についての操作量Yの値の切り換えの開始から完了までに10tの時間がかかることになる。 The manipulated variable calculation circuit 15 generates a speed adjustment rate function based on the data input from the speed adjustment rate switching circuit 14, and adjusts the steam according to the current rotation speed deviation X calculated by the rotation speed deviation calculation circuit 13. The operation amount Y of the valve 4 is calculated and output to the opening command value calculation circuit 16. At this time, when the selection of the manipulated variable Y is changed for at least one of the individual values Xn of the rotation speed deviation X, the speed adjustment rate function is limited and changed from the current speed adjustment rate function to the changed speed adjustment rate function. Transition at a rate R. For example, suppose that the limit change rate R defines the change amount of the manipulated variable Y per unit time t as k (%), and the value of the manipulated variable Y is changed from Yn1 to Yn2 for the rotation speed deviation X1. .. In this case, with respect to the manipulated variable Y corresponding to the rotation speed deviation X1, the value output after the time t is (Yn1 + k), the value output after the time 2t is (Yn1 + 2k), and the value of the manipulated variable Y gradually changes. To go. If there is a difference of 10 k (%) between the manipulated quantities Yn1 and Yn2, it takes 10 tons from the start to the completion of switching the value of the manipulated variable Y for the rotation speed deviation X1.

開度指令値演算回路16は、蒸気加減弁4の開度指令の基礎値Sv0に操作量演算回路15から入力された操作量Yを加算し、これを開度指令値Svとして蒸気加減弁4に出力する。これにより蒸気加減弁4の開度が開度指令値Svに制御される。なお、開度指令の基礎値Sv0は、例えば中央給電指令所からの要求発電量に応じて上位制御装置(不図示)から蒸気タービン制御装置10に入力される負荷指令S1に応じて演算された蒸気加減弁4の開度である。この基礎値Sv0は、測定回転数Xmを加味することなく蒸気タービン発電設備の仕様に基づいて演算された値であり、要求発電量が一定であれば一定の値となる。 The opening command value calculation circuit 16 adds the operation amount Y input from the operation amount calculation circuit 15 to the basic value Sv0 of the opening command of the steam control valve 4, and uses this as the opening command value Sv for the steam control valve 4 Output to. As a result, the opening degree of the steam control valve 4 is controlled to the opening degree command value Sv. The basic value Sv0 of the opening command was calculated according to the load command S1 input to the steam turbine control device 10 from the upper control device (not shown) according to, for example, the required power generation amount from the central power supply command center. This is the opening degree of the steam control valve 4. This basic value Sv0 is a value calculated based on the specifications of the steam turbine power generation facility without taking into account the measured rotation speed Xm, and is a constant value if the required power generation amount is constant.

図2及び図3は回転数偏差と蒸気加減弁の操作量との関係で定義した蒸気タービンの速度調定率関数(蒸気加減弁の制御特性)を表すグラフであり、図2には基本関数、図3には調整を加えた関数が例示してある。図2及び図3のグラフにおいて、横軸は回転数偏差X(rpm)を表し、縦軸は蒸気加減弁4の操作量Y(%)を表している。図2及び図3に示したグラフは、操作量演算回路15で生成される速度調定率関数の例を図式化したものに相当する。 2 and 3 are graphs showing the speed adjustment rate function (control characteristics of the steam control valve) of the steam turbine defined by the relationship between the rotation speed deviation and the operation amount of the steam control valve, and FIG. 2 shows the basic function. FIG. 3 illustrates the adjusted function. In the graphs of FIGS. 2 and 3, the horizontal axis represents the rotation speed deviation X (rpm), and the vertical axis represents the operation amount Y (%) of the steam control valve 4. The graphs shown in FIGS. 2 and 3 correspond to a diagram of an example of the speed adjustment rate function generated by the manipulated variable calculation circuit 15.

本実施形態では回転数偏差X(=Xm−Xt)の正負を区別することとし、Xm>XtのときX>0、Xm=XtのときX=0、Xm<XtのときX<0の値をとる。図2及び図3に例示したX1,X2は負の値、X3,Xaは正の値である。aはnの値の1つである。 In the present embodiment, the positive and negative values of the rotation speed deviation X (= Xm-Xt) are distinguished, and the value of X> 0 when Xm> Xt, X = 0 when Xm = Xt, and X <0 when Xm <Xt. Take. X1 and X2 illustrated in FIGS. 2 and 3 are negative values, and X3 and Xa are positive values. a is one of the values of n.

本実施形態において、操作量Yの第1選択肢Yn1には、回転数偏差Xの個々の値Xn毎に異なる値が設定してある。回転数偏差Xの値Xnの全てについて第1選択肢Yn1を選択すると、図2に示した速度調定率の基本関数が定義される。この基本関数の下では原点(0,0)を通り回転数偏差Xに比例して操作量Yが小さくなる。つまり、回転数偏差X>0であれば、回転数偏差Xの大きさ(絶対値)に比例して操作量Yが閉弁方向に増加し、蒸気加減弁4の開度が現状の値に対して操作量Yの大きさ(絶対値)だけ減少する。反対に回転数偏差X<0であれば、回転数偏差Xの大きさ(絶対値)に比例して操作量Yが開弁方向に増加し、蒸気加減弁4の開度が現状の値に対して操作量Yの大きさ(絶対値)だけ増加する。回転数偏差X=0の場合は操作量Yが0(ゼロ)であるため、蒸気加減弁4の開度は現状の値で維持される。従って、蒸気タービン2の回転数は目標回転数Xtに収束するようにフィードバック制御される。 In the present embodiment, a different value is set for each of the individual values Xn of the rotation speed deviation X in the first option Yn1 of the manipulated variable Y. When the first option Yn1 is selected for all the values Xn of the rotation speed deviation X, the basic function of the speed adjustment rate shown in FIG. 2 is defined. Under this basic function, the manipulated variable Y decreases in proportion to the rotation speed deviation X through the origin (0,0). That is, if the rotation speed deviation X> 0, the operation amount Y increases in the valve closing direction in proportion to the magnitude (absolute value) of the rotation speed deviation X, and the opening degree of the steam control valve 4 becomes the current value. On the other hand, it decreases by the magnitude (absolute value) of the manipulated variable Y. On the contrary, when the rotation speed deviation X <0, the operation amount Y increases in the valve opening direction in proportion to the magnitude (absolute value) of the rotation speed deviation X, and the opening degree of the steam control valve 4 becomes the current value. On the other hand, it increases by the magnitude (absolute value) of the manipulated variable Y. When the rotation speed deviation X = 0, the operation amount Y is 0 (zero), so that the opening degree of the steam control valve 4 is maintained at the current value. Therefore, the rotation speed of the steam turbine 2 is feedback-controlled so as to converge to the target rotation speed Xt.

一方、第2選択肢Yn2は0(ゼロ)に設定してある。図3のグラフでは、図2の基本関数から、回転数偏差X2,X3の操作量Yの選択を第2選択肢Y22,Y32(=0)に変更した例を表している。図3に例示した調整後の速度調定率関数によれば、回転数偏差XがX2−X3の間で変動しても蒸気加減弁4の操作量Yが0となり、蒸気加減弁4の現状の開度が維持される。図3の例では、蒸気タービン2の回転数は、第2選択肢Yn2が選択されているX2−X3の範囲に回転数偏差Xが収まるように、つまり目標回転数Xt又はその付近の回転数に収束するようにフィードバック制御される。 On the other hand, the second option Yn2 is set to 0 (zero). The graph of FIG. 3 shows an example in which the selection of the manipulated variable Y of the rotation speed deviations X2 and X3 is changed to the second options Y22 and Y32 (= 0) from the basic function of FIG. According to the adjusted speed adjustment rate function illustrated in FIG. 3, even if the rotation speed deviation X fluctuates between X2-X3, the operation amount Y of the steam control valve 4 becomes 0, and the current state of the steam control valve 4 The opening is maintained. In the example of FIG. 3, the rotation speed of the steam turbine 2 is set so that the rotation speed deviation X falls within the range of X2-X3 in which the second option Yn2 is selected, that is, the rotation speed at or near the target rotation speed Xt. Feedback control is performed so as to converge.

−動作−
図4は蒸気タービン制御装置による速度調定率の切換動作を示すフローチャートである。図5は図4の切換動作に伴って速度調定率等が遷移する様子の例を表す波形図である。図5に示した各波形図の縦軸は各パラメータの大きさを示し、横軸は共通の時間軸である。ここでは、速度調定率関数を図2に示す関数から図3に示す関数に切り換える場合を例に挙げて説明する。また、理解を容易にするために回転数偏差XがX2で一定した状態を例に挙げて説明するが、実際には、速度調定率関数に基づく蒸気加減弁4の開度制御により、測定回転数Xmは制御されて目標回転数Xt又はその付近に収束していく。
-Operation-
FIG. 4 is a flowchart showing the switching operation of the speed adjustment rate by the steam turbine control device. FIG. 5 is a waveform diagram showing an example of how the speed adjustment rate and the like transition with the switching operation of FIG. The vertical axis of each waveform diagram shown in FIG. 5 indicates the magnitude of each parameter, and the horizontal axis is a common time axis. Here, a case where the speed adjustment rate function is switched from the function shown in FIG. 2 to the function shown in FIG. 3 will be described as an example. Further, in order to facilitate understanding, a state in which the rotation speed deviation X is constant at X2 will be described as an example, but in reality, the measurement rotation is performed by controlling the opening degree of the steam control valve 4 based on the speed adjustment rate function. The number Xm is controlled and converges to or near the target rotation speed Xt.

・START
まず、速度調定率関数が図2のように定義された状態で、図3のような速度調定率関数に切り換える速度調定率切換信号Ssが図5に示す時刻T0に蒸気タービン制御装置10に入力されたとする。これにより蒸気タービン制御装置10は時刻T0に図4の手順の実行を開始する。図3の速度調定率を定義する速度調定率切換信号Ssには、例えば{(X1,X2,X3,…Xa)=(ON,OFF,OFF,…ON)}の情報が含まれる。
・ START
First, with the speed adjustment rate function defined as shown in FIG. 2, the speed adjustment rate switching signal Ss for switching to the speed adjustment rate function as shown in FIG. 3 is input to the steam turbine control device 10 at time T0 shown in FIG. Suppose it was done. As a result, the steam turbine controller 10 starts executing the procedure of FIG. 4 at time T0. The speed adjustment rate switching signal Ss that defines the speed adjustment rate in FIG. 3 includes, for example, information of {(X1, X2, X3, ... Xa) = (ON, OFF, OFF, ... ON)}.

・ステップS101
図4の手順を開始すると、蒸気タービン制御装置10は、ステップS101として、選択回路17で速度調定率切換信号Ssに基づいて各回転数偏差Xnについて操作量Yn1,Yn2のいずれかを選択し、それらのデータを変化率制限回路18に出力する。ここで変化率制限回路18に入力されるデータは{(X1,Y11),(X2,Y22),(X3,Y32),…(Xa,Ya1)}である。
-Step S101
When the procedure of FIG. 4 is started, the steam turbine control device 10 selects one of the manipulated quantities Yn1 and Yn2 for each rotation speed deviation Xn based on the speed adjustment rate switching signal Ss in the selection circuit 17 as step S101. The data is output to the rate of change limiting circuit 18. Here, the data input to the rate of change limiting circuit 18 is {(X1, Y11), (X2, Y22), (X3, Y32), ... (Xa, Ya1)}.

・ステップS102
ステップS102に手順を移すと、蒸気タービン制御装置10は、選択回路17で生成されたデータと共に制限変化率R(=k/t)を操作量演算回路15に出力する。
-Step S102
When the procedure is moved to step S102, the steam turbine control device 10 outputs the limit change rate R (= k / t) to the manipulated variable calculation circuit 15 together with the data generated by the selection circuit 17.

・ステップS103−END
続くステップS103,S104では、蒸気タービン制御装置10は、変化率制限回路18から入力されたにデータに基づき、操作量演算回路15により図2の関数から図3の関数に速度調定率関数を制限変化率Rで遷移させる。例えば時刻T0の時間t後にはデータ{(X1,Y11),(X2,Y22−k),(X3,Y32+k),…(Xa,Ya1)}を基に速度調定率関数を生成する(ステップS103)。そして、時間t後の速度調定率関数が図3の関数に一致したかを判定する(ステップS104)。この判定では、図3の速度調定率関数のデータ{(X1,Y11),(X2,Y22),(X3,Y32),…(Xa,Ya1)}との一致性を判定する。ステップS104の判定が満たされなければ、蒸気タービン制御装置10はステップS103に手順を戻す。そして蒸気タービン制御装置10は、更に時間t後(時刻T0の時間2t後)にデータ{(X1,Y11),(X2,Y22−2k),(X3,Y32+2k),…(Xa,Ya1)}に基づく速度調定率関数を生成し、再度ステップS104の判定を実行する。
-Step S103-END
In the following steps S103 and S104, the steam turbine control device 10 limits the speed adjustment rate function from the function of FIG. 2 to the function of FIG. 3 by the manipulated variable calculation circuit 15 based on the data input from the rate of change limiting circuit 18. The transition is made at the rate of change R. For example, after the time t at time T0, a speed adjustment rate function is generated based on the data {(X1, Y11), (X2, Y22-k), (X3, Y32 + k), ... (Xa, Ya1)} (step S103). ). Then, it is determined whether the speed adjustment rate function after the time t matches the function of FIG. 3 (step S104). In this determination, the consistency with the data {(X1, Y11), (X2, Y22), (X3, Y32), ... (Xa, Ya1)} of the speed adjustment rate function of FIG. 3 is determined. If the determination in step S104 is not satisfied, the steam turbine controller 10 returns the procedure to step S103. Then, the steam turbine control device 10 further after the time t (after the time 2t at the time T0), the data {(X1, Y11), (X2, Y22-2k), (X3, Y32 + 2k), ... (Xa, Ya1)} The speed adjustment rate function based on the above is generated, and the determination in step S104 is executed again.

これにより回転数偏差X2の操作量YがY21から時間t当たりkずつ、つまり制限変化率RでY22まで減少していく。同じように回転数偏差X3の操作量YがY31から時間t当たりkずつY32まで増加していく。仮にY21,Y22に10kの差がある場合、ステップS103,S104の手順を10回繰り返して時間10t後(=時刻T1)に回転数偏差X2についての操作量Yの遷移は完了する(図5)。その際、例えばY31,Y32の差が10kより大きく回転数偏差X3についての操作量Yの遷移が未だ完了していなければ、ステップS104の判定が満たされるまでステップS103の手順が繰り返される。反対にY31,Y32の差が10k以下で、回転数偏差X2についての操作量Yの遷移完了時に回転数偏差X3についての操作量Yの遷移が既に完了していれば速度調定率の切換が完了し、蒸気タービン制御装置10は図4のフローを終了する。 As a result, the manipulated variable Y of the rotation speed deviation X2 decreases from Y21 by k per time t, that is, to Y22 at the limit change rate R. Similarly, the manipulated variable Y of the rotation speed deviation X3 increases from Y31 to Y32 by k per hour t. If there is a difference of 10k between Y21 and Y22, the procedure of steps S103 and S104 is repeated 10 times, and after a time of 10t (= time T1), the transition of the manipulated variable Y for the rotation speed deviation X2 is completed (FIG. 5). .. At that time, for example, if the difference between Y31 and Y32 is larger than 10k and the transition of the manipulated variable Y for the rotation speed deviation X3 is not completed yet, the procedure of step S103 is repeated until the determination of step S104 is satisfied. On the contrary, if the difference between Y31 and Y32 is 10 k or less and the transition of the manipulated variable Y for the rotational speed deviation X3 is already completed when the transition of the manipulated variable Y for the rotational speed deviation X2 is completed, the switching of the speed adjustment rate is completed. Then, the steam turbine control device 10 ends the flow shown in FIG.

なお、本例では回転数偏差X=X2である。速度調定率関数を図3の関数に切り換えるに当たり、図5に示したように時刻T0からT1にかけて回転数偏差X2の操作量YはY21からY22に遷移する。そのため、時刻T0からT1にかけては遷移中の速度調定率に基づいて蒸気加減弁4の開度指令値Svが演算される。その結果、時刻T0からT1にかけて、回転数偏差XがX2で一定であっても、開度指令値Svは時間10tをかけて操作量Y21,Y22の差分だけ線形的に減少する(図5)。 In this example, the rotation speed deviation X = X2. When switching the speed adjustment rate function to the function of FIG. 3, as shown in FIG. 5, the manipulated variable Y of the rotation speed deviation X2 transitions from Y21 to Y22 from time T0 to T1. Therefore, from time T0 to T1, the opening command value Sv of the steam control valve 4 is calculated based on the speed adjustment rate during the transition. As a result, from time T0 to T1, even if the rotation speed deviation X is constant at X2, the opening command value Sv linearly decreases by the difference between the manipulated quantities Y21 and Y22 over time 10t (FIG. 5). ..

−効果−
一般に、蒸気タービン発電設備では、図2に示したように回転数偏差と蒸気加減弁の開度とを単純比例関係に規定した速度調定率関数が定義される。蒸気タービン発電設備によっては、また時によっては、図2のような速度調定率関数が適切な場合もある。しかし、回転数偏差の生じ方には蒸気タービン発電設備毎、或いは時間や季節等によって傾向があり、特定範囲の回転数偏差(例えば目標回転数の前後30%程度)については蒸気加減弁の開度補正をしなくてもすぐに抑制方向に転じる場合がある。このように蒸気加減弁の開度補正をしなくてもすぐに自然に収まる回転数偏差に関しては、蒸気加減弁の開度が過敏に変化すると、例えばハンチングが生じて蒸気タービンの回転数が目標回転数又はその付近に収束するまでにかえって時間を要する場合がある。
-Effect-
Generally, in a steam turbine power generation facility, as shown in FIG. 2, a speed adjustment rate function is defined in which the rotation speed deviation and the opening degree of the steam control valve are defined as a simple proportional relationship. Depending on the steam turbine power generation facility, and in some cases, the speed regulation rate function as shown in FIG. 2 may be appropriate. However, there is a tendency for the rotation speed deviation to occur for each steam turbine power generation facility, time, season, etc., and for the rotation speed deviation in a specific range (for example, about 30% before and after the target rotation speed), the steam control valve is opened. Even if the degree is not corrected, it may immediately turn to the suppression direction. Regarding the rotation speed deviation that can be settled naturally without correcting the opening degree of the steam control valve, if the opening degree of the steam control valve changes sensitively, for example, hunting occurs and the rotation speed of the steam turbine is targeted. It may take some time to converge to the number of revolutions or its vicinity.

それに対し、本実施形態では、回転数偏差Xの個々の値Xn毎に複数用意された選択肢Yn1,Yn2から操作量Yの値を選択して速度調定率をデザインすることができる。例えば蒸気タービン発電設備の過去の運用実績データから蒸気加減弁の開度が過敏に変化すると好ましくない回転数偏差Xの特定範囲が知見された場合、その範囲の回転数偏差Xnについては選択肢Yn1,Yn2のうち絶対値の小さな方を選択する。これにより、特定範囲で回転数偏差Xが推移している間は、必要以上に弁開度が変化することを抑制できる。特に本実施形態では各回転数偏差Xnについて操作量Yの第2選択肢Yn2を0に設定してあるので、特定範囲では第2選択肢Yn2を選択することにより一種の不感帯を確保することができる。この場合、特定範囲で回転数偏差Xが推移している限りにおいては蒸気加減弁4の開度を維持することができる。 On the other hand, in the present embodiment, the speed adjustment rate can be designed by selecting the value of the manipulated variable Y from a plurality of options Yn1 and Yn2 prepared for each individual value Xn of the rotation speed deviation X. For example, if a specific range of rotation speed deviation X, which is not preferable when the opening degree of the steam control valve changes sensitively, is found from the past operation record data of the steam turbine power generation facility, the rotation speed deviation Xn in that range is selected as options Yn1, Select the smaller absolute value of Yn2. As a result, it is possible to suppress the valve opening degree from changing more than necessary while the rotation speed deviation X is changing in a specific range. In particular, in the present embodiment, since the second option Yn2 of the manipulated variable Y is set to 0 for each rotation speed deviation Xn, a kind of dead zone can be secured by selecting the second option Yn2 in a specific range. In this case, the opening degree of the steam control valve 4 can be maintained as long as the rotation speed deviation X changes within a specific range.

また、例えば特定範囲の回転数偏差Xnについて操作量Yの選択を変更する場合、その回転数偏差Xnが現在の回転数偏差に一致する場合も想定される。このような場合、仮に速度調定率切換信号Ssの入力を受けて例えば図2の関数から図3の関数に時間的に離散的に速度調定率関数が切り変わると、操作量YがYn1からYn2に時間的に離散的に切り換わり、蒸気加減弁4の開度が急変することになる。 Further, for example, when the selection of the operation amount Y is changed for the rotation speed deviation Xn in a specific range, it is assumed that the rotation speed deviation Xn matches the current rotation speed deviation. In such a case, if the speed adjustment rate switching signal Ss is input and the speed adjustment rate function is discretely switched from the function of FIG. 2 to the function of FIG. 3, for example, the manipulated variable Y changes from Yn1 to Yn2. The opening degree of the steam control valve 4 suddenly changes.

この点に対しては、本実施形態では速度調定率関数を制限変化率Rで遷移させて時間をかけて切り換えるようにした。これにより、先に図5で説明したように現在の蒸気タービン2に生じている回転数偏差について操作量Yの選択が変更されても、蒸気加減弁4の開度の急変を抑えることができる。 With respect to this point, in the present embodiment, the speed adjustment rate function is changed at the limit change rate R and switched over time. As a result, even if the selection of the operation amount Y is changed with respect to the rotation speed deviation occurring in the current steam turbine 2 as described above with reference to FIG. 5, it is possible to suppress a sudden change in the opening degree of the steam control valve 4. ..

以上の通り、本実施形態によれば、蒸気加減弁4の開度の過敏な変化を抑制し蒸気タービン2の回転数をスムーズに目標回転数Xt又はその付近に収束させることができる。 As described above, according to the present embodiment, it is possible to suppress a sensitive change in the opening degree of the steam control valve 4 and smoothly converge the rotation speed of the steam turbine 2 to the target rotation speed Xt or its vicinity.

−変形例−
以上、本発明の一実施形態について説明したが、本発明は上記実施形態例に限定されるものではなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて適宜設計変更可能である。
-Modification example-
Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and the design can be appropriately changed as long as the gist of the present invention described in the claims is not deviated. ..

例えば回転数偏差Xの個々の値Xnに対する操作量Yの選択肢に0を含める必要は必ずしもない。また、回転数偏差Xの個々の値Xnについてそれぞれ操作量Yの値として用意される選択肢の数は2つである必要はなく、3つ以上としても良い。操作量Yの選択肢を増やすことで蒸気加減弁4の速度調定率をより柔軟に調整することができる。 For example, it is not always necessary to include 0 in the choice of the manipulated variable Y for each value Xn of the rotation speed deviation X. Further, the number of options prepared as the value of the manipulated variable Y for each value Xn of the rotation speed deviation X does not have to be two, and may be three or more. By increasing the options for the operation amount Y, the speed adjustment rate of the steam control valve 4 can be adjusted more flexibly.

また、表現上、速度調定率を回転数偏差Xと蒸気加減弁4の操作量Yとの関係で定義しているが、回転数偏差Xは目標回転数Xt(定数)と測定回転数Xmとの差分であって測定回転数Xmの変化に対応する。そのため、速度調定率は測定回転数Xmと操作量Yの関係で表現することができるが、これも表現上の違いこそあれ回転数偏差Xと蒸気加減弁4の操作量Yとの関係で定義した速度調定率と同義である。 Further, in terms of expression, the speed adjustment rate is defined by the relationship between the rotation speed deviation X and the operation amount Y of the steam control valve 4, but the rotation speed deviation X is the target rotation speed Xt (constant) and the measured rotation speed Xm. It corresponds to the change of the measured rotation speed Xm. Therefore, the speed adjustment rate can be expressed by the relationship between the measured rotation speed Xm and the manipulated variable Y, but this is also defined by the relationship between the rotation speed deviation X and the manipulated variable Y of the steam control valve 4, although there is a difference in expression. It is synonymous with the speed adjustment rate.

また、上記実施形態では、回転数偏差Xの個々の値Xnの操作量Yについての制限変化率Rを区別していないが、個々の回転数偏差Xnの少なくとも1つについて他の回転数偏差と異なる制限変化率Rの値を任意に設定しても良い。個々の回転数偏差Xnについて操作量Yの制限変化率Rの値は任意に設定することができ、勿論全ての回転数偏差Xnで制限変化率Rに同一の値を設定することもできる。 Further, in the above embodiment, the limit change rate R for the manipulated variable Y of each value Xn of the rotation speed deviation X is not distinguished, but at least one of the individual rotation speed deviations Xn is different from the other rotation speed deviations. A different value of the limit change rate R may be arbitrarily set. The value of the limit change rate R of the manipulated variable Y can be arbitrarily set for each rotation speed deviation Xn, and of course, the same value can be set for the limit change rate R for all the rotation speed deviations Xn.

1…ボイラ、2…蒸気タービン、3…発電機、4…蒸気加減弁、10…蒸気タービン制御装置、11…メモリ(記憶装置)、12…CPU(演算装置)、R…制限変化率、X…回転数偏差、X1,X2,Xa,Xn…回転数偏差の個々の値、Xm…測定回転数、Xt…目標回転数、Y…蒸気加減弁の操作量、Yn1,Yn2…操作量の選択肢 1 ... Boiler, 2 ... Steam turbine, 3 ... Generator, 4 ... Steam control valve, 10 ... Steam turbine control device, 11 ... Memory (storage device), 12 ... CPU (computing device), R ... Limit change rate, X ... Rotation speed deviation, X1, X2, Xa, Xn ... Individual values of rotation speed deviation, Xm ... Measured rotation speed, Xt ... Target rotation speed, Y ... Steam control valve operation amount, Yn1, Yn2 ... Operation amount options

Claims (3)

蒸気を発生させるボイラと、前記ボイラから供給される蒸気で駆動される蒸気タービンと、前記蒸気タービンで駆動される発電機と、前記ボイラから前記蒸気タービンへの供給蒸気流量を調整する蒸気加減弁とを備えた蒸気タービン発電設備に備えられ、前記蒸気タービンの測定回転数と予め設定された目標回転数との差分である回転数偏差が小さくなるように前記蒸気加減弁を制御する蒸気タービン制御装置において、
記憶装置と演算装置とを含んで構成され、
前記記憶装置には、前記蒸気タービンの目標回転数と、前記蒸気加減弁の操作量について前記回転数偏差の値毎に複数ずつ予め設定された選択肢と、速度調定率の変化について予め設定された制限変化率とが記憶されており、
前記演算装置は、
前記回転数偏差の値毎に選択された前記操作量で速度調定率関数を定義し、定義した速度調定率関数の下で前記回転数偏差に応じて前記蒸気加減弁の開度を制御し、かつ
前記回転数偏差の個々の値の少なくとも1つについて前記操作量の選択が変更された場合、現在の速度調定率関数から変更後の速度調定率関数に前記制限変化率で遷移させるように構成されている
ことを特徴とする蒸気タービン制御装置。
A boiler that generates steam, a steam turbine driven by the steam supplied from the boiler, a generator driven by the steam turbine, and a steam control valve that adjusts the flow rate of steam supplied from the boiler to the steam turbine. A steam turbine control equipped with a steam turbine power generation facility equipped with the above, which controls the steam control valve so that the rotation speed deviation, which is the difference between the measured rotation speed of the steam turbine and the preset target rotation speed, becomes small. In the device
It is composed of a storage device and an arithmetic unit.
In the storage device, a plurality of preset options for the target rotation speed of the steam turbine, a plurality of operating amounts of the steam control valve for each value of the rotation speed deviation, and a change in the speed adjustment rate are preset. The limit change rate is memorized,
The arithmetic unit
A speed adjustment rate function is defined by the manipulated variable selected for each value of the rotation speed deviation, and the opening degree of the steam control valve is controlled according to the rotation speed deviation under the defined speed adjustment rate function. And when the selection of the manipulated variable is changed for at least one of the individual values of the rotation speed deviation, the current speed adjustment rate function is changed to the changed speed adjustment rate function at the limit change rate. A steam turbine control device characterized by being used.
請求項1の蒸気タービン制御装置において、前記回転数偏差の個々の値について設定された前記操作量の複数の選択肢の1つが0であることを特徴とする蒸気タービン制御装置。 The steam turbine control device according to claim 1, wherein one of a plurality of options of the manipulated variable set for each value of the rotation speed deviation is 0. 請求項1の蒸気タービン制御装置と、前記ボイラと、前記蒸気タービンと、前記発電機と、前記蒸気加減弁とを備えた蒸気タービン発電設備。 A steam turbine power generation facility including the steam turbine control device according to claim 1, the boiler, the steam turbine, the generator, and the steam control valve.
JP2020005602A 2020-01-17 2020-01-17 Steam turbine controller and steam turbine generator Active JP7328155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020005602A JP7328155B2 (en) 2020-01-17 2020-01-17 Steam turbine controller and steam turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020005602A JP7328155B2 (en) 2020-01-17 2020-01-17 Steam turbine controller and steam turbine generator

Publications (2)

Publication Number Publication Date
JP2021113510A true JP2021113510A (en) 2021-08-05
JP7328155B2 JP7328155B2 (en) 2023-08-16

Family

ID=77077512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020005602A Active JP7328155B2 (en) 2020-01-17 2020-01-17 Steam turbine controller and steam turbine generator

Country Status (1)

Country Link
JP (1) JP7328155B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271906A (en) * 1987-02-20 1987-11-26 Hitachi Ltd Control device for turbine
JPH11223105A (en) * 1998-02-05 1999-08-17 Hitachi Ltd Automatic plant control device
JP2006161566A (en) * 2004-12-02 2006-06-22 Babcock Hitachi Kk Frequency bias control device for thermal electric power plant and method using the same
JP2009197637A (en) * 2008-02-20 2009-09-03 Central Res Inst Of Electric Power Ind Governor-free control device and governor-free control method
JP2012246889A (en) * 2011-05-31 2012-12-13 Hitachi Ltd Turbine control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271906A (en) * 1987-02-20 1987-11-26 Hitachi Ltd Control device for turbine
JPH11223105A (en) * 1998-02-05 1999-08-17 Hitachi Ltd Automatic plant control device
JP2006161566A (en) * 2004-12-02 2006-06-22 Babcock Hitachi Kk Frequency bias control device for thermal electric power plant and method using the same
JP2009197637A (en) * 2008-02-20 2009-09-03 Central Res Inst Of Electric Power Ind Governor-free control device and governor-free control method
JP2012246889A (en) * 2011-05-31 2012-12-13 Hitachi Ltd Turbine control device

Also Published As

Publication number Publication date
JP7328155B2 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
JP4745767B2 (en) Fuel flow control device, power generation system, and fuel flow control method
JP5346359B2 (en) Compensation method of combustion efficiency in fuel control system
AU2004208656B2 (en) Voltage control for wind generators
JP2004162711A (en) System and method for displaying real time turbine corrected output and corrected heat consumption rate
US7600369B2 (en) Gas turbine load control device
WO2016035416A1 (en) Control device, system, and control method, and power control device, gas turbine, and power control method
JP6139311B2 (en) Control valve control method and control device, and power plant using these
CN105204461A (en) Coordinated boiler control method and system of generating set
US9885256B2 (en) Method for optimization of control and fault analysis in a thermal power plant
JP2021113510A (en) Steam turbine control device and steam turbine power generation equipment
JP4814058B2 (en) Gas engine control device
CN115733137A (en) System and method for inhibiting low-frequency oscillation of power system through compressed air energy storage
JP2001295607A (en) Method and device for controlling load of thermal power plant
JP5730833B2 (en) Turbine control device, turbine control method, and turbine control program
JPH09144645A (en) Water tank level control device for hydraulic power plant
KR102273982B1 (en) Gas turbine control device and gas turbine and gas turbine control method
JP2022104052A (en) Control device and control method
CN118192213A (en) Feedforward control method for coal-fired unit
CN118316132A (en) Method, device, equipment and medium for controlling network-structured converter based on P-DPC
JPH08296546A (en) Runner vane control device
JP2011144732A (en) Turbine control device
JP2005330927A (en) Control device of prime mover
Mansoor et al. Development of gain scheduling scheme for pumped storage plant
JP2021025500A (en) Control device for power generation plant, power generation plant and control method for power generation plant
JP2013181455A (en) Turbine control device and turbine control method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230803

R150 Certificate of patent or registration of utility model

Ref document number: 7328155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150