JPH0988507A - Control method of turbine for water supply pump and controller thereof - Google Patents

Control method of turbine for water supply pump and controller thereof

Info

Publication number
JPH0988507A
JPH0988507A JP24143595A JP24143595A JPH0988507A JP H0988507 A JPH0988507 A JP H0988507A JP 24143595 A JP24143595 A JP 24143595A JP 24143595 A JP24143595 A JP 24143595A JP H0988507 A JPH0988507 A JP H0988507A
Authority
JP
Japan
Prior art keywords
steam
turbine
deviation
water supply
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24143595A
Other languages
Japanese (ja)
Other versions
JP3469685B2 (en
Inventor
Hiroo Imahashi
裕夫 今橋
Shintaro Tsuji
真太郎 辻
Takumi Kawai
巧 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP24143595A priority Critical patent/JP3469685B2/en
Publication of JPH0988507A publication Critical patent/JPH0988507A/en
Application granted granted Critical
Publication of JP3469685B2 publication Critical patent/JP3469685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)
  • Feedback Control In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To move a degree of opening of a steam governing valve to a proper position speedily when a turbine drive steam source is changed over and enable stable control when water supply is controlled usually. SOLUTION: In a circuit which consists of a subtractor 31 which operates a command of the number of revolutions of a turbine for water supply pump and a deviation signal of the number of revolutions of the turbine and a proportional integration computing unit 32 which outputs a command for degree of opening of a steam governing valve based on the deviation signal, a compensation circuit consisting of a deviation large detector 33, a generator 34 of compensation amount of the steam governing valve, and an adder 35 is provided to add a compensation signal to the steam governing valve when a turbine drive steam source is changed over and control deviation is large.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は火力発電プラントの給水
ポンプ用タービン制御装置に関し、特に制御偏差大のと
きの制御方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine control device for a water feed pump of a thermal power plant, and more particularly to a control system when a control deviation is large.

【0002】[0002]

【従来の技術】給水ポンプ用タービン制御装置は、給水
制御装置から給水ポンプ用タービン回転数指令を入力し
て、実タービン回転数との偏差による比例積分演算を行
い、この結果で蒸気加減弁を操作して給水ポンプ用ター
ビンの駆動蒸気を調整し、給水ポンプ用タービンの回転
数を制御する。
2. Description of the Related Art A turbine controller for a feed water pump inputs a turbine rotation speed command for the feed water pump from the feed water controller, performs a proportional integral calculation based on a deviation from an actual turbine rotation speed, and uses this result to adjust a steam control valve. It is operated to adjust the drive steam of the water supply pump turbine and control the rotation speed of the water supply pump turbine.

【0003】給水ポンプ用タービンの駆動蒸気には、高
圧蒸気と低圧蒸気の2種類がある。低圧蒸気には、発電
用蒸気タービンに流入された蒸気を途中から抽出した蒸
気(以下、抽出蒸気と略称する)と、補助ボイラや他の
発電用ボイラからの補助蒸気(以下、補助蒸気と略称す
る)があり、この2種類の蒸気の一方を切り替えて使用
する。
There are two types of drive steam for a feed water pump turbine: high-pressure steam and low-pressure steam. The low-pressure steam includes steam extracted from the steam flowing into the steam turbine for power generation (hereinafter abbreviated as extracted steam) and auxiliary steam from auxiliary boilers and other power generation boilers (hereinafter abbreviated as auxiliary steam). One of these two types of steam is switched and used.

【0004】すなわち、発電用蒸気タービンが一定の発
電機出力に到達するまでのプラント起動時は、抽出蒸気
では給水ポンプ用タービンに安定した駆動蒸気を供給で
きないことから補助蒸気を使用し、発電用蒸気タービン
が一定の発電機出力に到達した後の通常運転時は抽出蒸
気を使用する。さらに、プラントの停止時など出力が一
定以下に低下した時は補助蒸気を使用する。
That is, at the time of starting the plant until the steam turbine for power generation reaches a constant power output of the generator, the extracted steam cannot supply stable driving steam to the turbine for the feedwater pump, so that auxiliary steam is used to generate power. Extracted steam is used during normal operation after the steam turbine reaches a certain generator output. In addition, auxiliary steam is used when the output drops below a certain level, such as when the plant is stopped.

【0005】一方、高圧蒸気は、低圧蒸気が発電用蒸気
タービンの抽出蒸気から補助蒸気に切り替わるまでの間
のバックアップとして使用する。すなわち、発電用蒸気
タービンの運転中に、電気系統の事故により発電用蒸気
タービンに流入する蒸気が遮断されると、発電用蒸気タ
ービンの抽出蒸気が供給できなくなるためである。
On the other hand, the high-pressure steam is used as a backup until the low-pressure steam is switched from the extracted steam of the steam turbine for power generation to the auxiliary steam. That is, when the steam flowing into the power generating steam turbine is shut off due to an accident in the electric system during the operation of the power generating steam turbine, the extracted steam of the power generating steam turbine cannot be supplied.

【0006】高圧蒸気と低圧蒸気は、それぞれ高圧蒸気
加減弁と低圧蒸気加減弁へ導かれ、給水ポンプ用タービ
ンへ供給される。低圧蒸気系はその前段で、発電用蒸気
タービンからの抽出蒸気ラインとボイラからの補助蒸気
ラインに蒸気元弁が設置してあり、一方の元弁を開して
蒸気を供給する。補助蒸気ラインには圧力調整弁が設置
されており、通常運転に使用する発電用蒸気タービンの
抽出蒸気と同等の圧力に調整されている。
The high-pressure steam and the low-pressure steam are guided to the high-pressure steam control valve and the low-pressure steam control valve, respectively, and are supplied to the feed pump turbine. In the preceding stage of the low-pressure steam system, a steam main valve is installed in the extraction steam line from the power generation steam turbine and the auxiliary steam line from the boiler, and one of the main valves is opened to supply steam. A pressure adjusting valve is installed in the auxiliary steam line, and the pressure is adjusted to the same level as the extracted steam of the steam turbine for power generation used for normal operation.

【0007】高圧蒸気加減弁と低圧蒸気加減弁は、給水
ポンプ用タービン制御装置からは一つの操作端を介して
制御され、先ず低圧蒸気加減弁が開し、低圧蒸気加減弁
が全開後に高圧蒸気加減弁が開する機構になっている。
The high-pressure steam control valve and the low-pressure steam control valve are controlled by the turbine control unit for the feed water pump via one operating end. First, the low-pressure steam control valve is opened, and then the low-pressure steam control valve is fully opened. The mechanism is such that the regulator valve opens.

【0008】このような給水ポンプ用タービン制御装置
においては、特開昭59−29704号公報に記載され
ているように、複数の駆動蒸気とそれを制御する各々の
制御弁を、各々に最適な比例積分演算回路を設置して切
替る方法で制御している。
In such a feed water turbine control device, as described in Japanese Patent Application Laid-Open No. 59-29704, a plurality of driving steams and respective control valves for controlling the driving steams are optimized. A proportional-integral operation circuit is installed and controlled by switching.

【0009】[0009]

【発明が解決しようとする課題】上記のように、従来の
低圧蒸気の補助蒸気ラインには、通常運転時に使用する
発電用蒸気タービンの抽出蒸気と同等の圧力にするため
に、圧力調整弁を設置していた。
As described above, in the conventional low pressure steam auxiliary steam line, in order to make the pressure equivalent to the extracted steam of the steam turbine for power generation used during normal operation, a pressure regulating valve is provided. It was installed.

【0010】ところで、低圧蒸気が最終的に導かれる給
水ポンプ用タービン制御装置の操作端である低圧蒸気加
減弁に、圧力調整の役割を持たせ、補助蒸気ラインの圧
力調整弁を省略することができる。この場合、圧力調整
のされていない補助蒸気は、抽出蒸気に比べて圧力が高
いので、蒸気源の切替時にタービン回転数の変動が発生
する。同様なタービン回転数の変動は、高圧蒸気による
バックアップ時やボイラ補機故障による負荷の急減時な
どにも生じる。
By the way, the low-pressure steam control valve, which is the operation end of the turbine controller for the feed water pump to which the low-pressure steam is finally introduced, has a role of pressure adjustment, and the pressure adjustment valve of the auxiliary steam line may be omitted. it can. In this case, since the pressure of the auxiliary steam whose pressure is not adjusted is higher than that of the extracted steam, the turbine speed changes when the steam source is switched. Similar fluctuations in turbine speed also occur during backup with high-pressure steam and during sudden load reduction due to boiler auxiliary equipment failure.

【0011】かかる場合、給水ポンプ用タービン制御装
置において、比例積分演算の制御ゲインを大きくして、
蒸気加減弁を適切な開度に速やかに移動できるが、反
面、高ゲインによる通常運転時の給水制御の安定性を欠
く。また、従来のように、運転状態に最適な比例積分演
算回路を設置することは、制御装置の構成を複雑にする
ばかりでなく、回路の切替時に操作量が不連続となるの
で、バンプレスな制御が困難になる。
In this case, in the turbine controller for the water supply pump, the control gain of the proportional-plus-integral calculation is increased,
Although the steam control valve can be quickly moved to an appropriate opening, on the other hand, the stability of water supply control during normal operation due to high gain is lacking. In addition, installing a proportional-plus-integral arithmetic circuit that is optimal for operating conditions, as in the past, not only complicates the configuration of the control device but also discontinues the amount of operation when switching the circuit, which is bumpless. It becomes difficult to control.

【0012】本発明の目的は、蒸気源の切替時等に給水
ポンプ用タービン回転数の変動を抑制するとともに、通
常運転時の給水制御の安定性を損なわない、給水ポンプ
用タービンの制御方法を提供することにある。
An object of the present invention is to provide a method for controlling a turbine for a water supply pump, which suppresses fluctuations in the rotational speed of the water supply pump turbine when switching the steam source, etc. and does not impair the stability of the water supply pump during normal operation. To provide.

【0013】本発明の目的は、前記制御方法を1つの制
御演算回路によって実現し、制御の連続性を保持して、
バンプレスで安定性の高い給水ポンプ用タービンの制御
装置を提供することにある。
An object of the present invention is to realize the above-mentioned control method by one control arithmetic circuit, maintain the continuity of control,
It is to provide a highly stable turbine control device for a water supply pump in bumpless.

【0014】[0014]

【課題を解決するための手段】上記した本発明の目的
は、給水制御装置からの給水ポンプ用タービン回転数指
令と実タービン回転数の偏差による比例積分演算によっ
て操作量を求めて、給水ポンプ用蒸気タービンの駆動蒸
気系の調節弁を操作する操作端を制御し、火力発電プラ
ントにおける給水ポンプ用タービンの回転数を制御する
方法において、所定の信号偏差が予め定めた偏差範囲を
超える場合に、前記比例積分演算の制御ゲインより高い
ゲインで比例演算した補正量を加算して、前記操作量を
補正することにより達成される。
SUMMARY OF THE INVENTION The above-mentioned object of the present invention is to determine a manipulated variable by a proportional-plus-integral calculation based on a deviation between a turbine rotation speed command for a water supply pump from a water supply control device and an actual turbine rotation speed, and to supply a water supply pump. In the method of controlling the operating end for operating the control valve of the drive steam system of the steam turbine, in the method of controlling the rotation speed of the feedwater pump turbine in the thermal power plant, when the predetermined signal deviation exceeds a predetermined deviation range, This is achieved by adding the correction amount proportionally calculated with a gain higher than the control gain of the proportional-plus-integral calculation to correct the operation amount.

【0015】前記信号偏差は、前記給水ポンプ用タービ
ン回転数指令と前記実タービン回転数の偏差、または、
ボイラ給水圧力とタービン駆動給水ポンプ出口圧力の偏
差であることを特徴とする。
The signal deviation is the deviation between the turbine rotational speed command for the feed water pump and the actual turbine rotational speed, or
It is characterized in that it is the deviation between the boiler feed water pressure and the turbine driven feed water pump outlet pressure.

【0016】前記偏差範囲は、通常運転時での信号偏差
はその範囲内にあり、前記駆動蒸気系の切り替え時や負
荷急減時での信号偏差はその範囲を超えるように設定さ
れることを特徴とする。
The deviation range is such that the signal deviation during normal operation is within that range, and the signal deviation during switching of the driving steam system or during sudden load reduction is set to exceed that range. And

【0017】また、本発明を適用した給水ポンプ用ター
ビンの制御装置は、発電用蒸気タービンからの抽出蒸気
と補助蒸気の2系統を切り替えて使用する低圧蒸気を調
整する蒸気加減弁を操作する操作端と、ボイラ給水制御
装置からの給水ポンプ用タービン回転数指令と実タービ
ン回転数との偏差から前記操作端の操作量を演算する比
例積分演算手段を備えるものにおいて、所定の信号偏差
が大なるときに前記操作端の補正量を比例演算する補正
用演算手段を前記比例積分演算手段と並列に設けたこと
により実現できる。
Further, the control system of the turbine for the water supply pump to which the present invention is applied operates the steam control valve for adjusting the low pressure steam to be used by switching the two systems of the extraction steam from the steam turbine for power generation and the auxiliary steam. In the one provided with a proportional-integral calculation means for calculating the operation amount of the operating end from the difference between the end and the turbine rotation speed command for the water supply pump from the boiler water supply control device and the actual turbine rotation speed, the predetermined signal deviation becomes large. This can sometimes be realized by providing a correction calculation means for proportionally calculating the correction amount of the operating end in parallel with the proportional integration calculation means.

【0018】[0018]

【作用】通常運転時における給水ポンプ用タービン回転
数指令と実タービン回転数との偏差は大きくないので、
低ゲインによる安定な制御が可能になる。しかし、駆動
蒸気の切替時は駆動蒸気の圧力変化により、タービン回
転数が大きく変動するために、給水ポンプ用タービン回
転数指令と実タービン回転数との偏差が大になり、低ゲ
インの制御回路では蒸気加減弁を適切な開度に速やかに
移動させることができない。
[Operation] Since the deviation between the turbine rotational speed command for the water supply pump and the actual turbine rotational speed during normal operation is not large,
Stable control with low gain is possible. However, when the drive steam is switched, the turbine speed changes greatly due to the pressure change of the drive steam, so the deviation between the turbine speed command for the feed water pump and the actual turbine speed becomes large, and the low gain control circuit Therefore, the steam control valve cannot be quickly moved to an appropriate opening.

【0019】本発明の構成によれば、前記補正用演算手
段は、通常運転時における給水ポンプ用タービン回転数
指令の変化に対しては応答しないので、低ゲインの比例
積分演算による蒸気加減弁の安定な制御を可能にする。
According to the configuration of the present invention, since the correction calculating means does not respond to a change in the feedwater turbine turbine speed command during normal operation, the steam control valve of the low gain proportional-integral calculation is used. Enables stable control.

【0020】一方、駆動蒸気の切替時は、回転数指令と
実タービン回転数との偏差が大になって通常運転時の制
御範囲を超え、比例積分演算回路による追従が困難にな
る。このとき、前記補正用演算回路によって操作端補正
信号が加算され、操作端の操作量は連続性を維持しなが
ら急速に増大し、蒸気加減弁を速やかに適切な開度に調
節するので、ポンプ回転数の変動が抑制される。
On the other hand, when the drive steam is switched, the deviation between the rotation speed command and the actual turbine rotation speed becomes large and exceeds the control range during normal operation, making it difficult to follow up by the proportional-plus-integral arithmetic circuit. At this time, the operation end correction signal is added by the correction arithmetic circuit, the operation amount of the operation end increases rapidly while maintaining continuity, and the steam control valve is quickly adjusted to an appropriate opening degree. The fluctuation of the rotation speed is suppressed.

【0021】この補正用演算回路の動作/不動作は、前
記信号偏差範囲のみに依存し、且つ、補正量は通常の比
例積分演算量に加算されるので、操作量がステップ変化
することなく制御の連続性が維持され、バンプレスで安
定性の高い制御となる。
The operation / non-operation of the correction arithmetic circuit depends only on the signal deviation range, and since the correction amount is added to the normal proportional-integral calculation amount, the operation amount is controlled without step change. Continuity is maintained, and bumps provide highly stable control.

【0022】また、本発明の前記補正用演算手段は、ボ
イラ給水圧力とタービン駆動給水ポンプ出口圧力の偏差
を基に補正するようにしてもよい。すなわち、負荷変化
率の小さい通常運転時には、ボイラ給水圧力とタービン
駆動給水ポンプ出口圧力は、プラント負荷変化に対して
同様に動作しその偏差は小さいので、補正出力は生じな
い。一方、駆動蒸気の切り替え時は、蒸気圧力の変化に
より給水ポンプ用蒸気タービン回転数が大きく変動し、
これに比例してタービン駆動給水ポンプ出口圧力が変動
するために、前記補正用演算回路による操作端補正信号
が加算され、操作量を急速に増大して、ポンプ回転数の
変動を抑制する。
Further, the correction calculating means of the present invention may perform the correction based on the deviation between the boiler feed water pressure and the turbine drive feed water pump outlet pressure. That is, during normal operation with a small load change rate, the boiler feed water pressure and the turbine drive feed water pump outlet pressure operate similarly with respect to the plant load change, and their deviations are small, so no correction output occurs. On the other hand, when switching the driving steam, the steam turbine speed for the water supply pump fluctuates greatly due to changes in steam pressure,
Since the turbine drive feed water pump outlet pressure fluctuates in proportion to this, the operation end correction signal by the correction arithmetic circuit is added, the operation amount is rapidly increased, and fluctuations in the pump rotational speed are suppressed.

【0023】[0023]

【実施例】本発明による第1の実施例を、図を用いて詳
細に説明する。
The first embodiment of the present invention will be described in detail with reference to the drawings.

【0024】図1は、給水ポンプ用タービンの駆動蒸気
ラインを含むボイラ給水系に適用した、第一の実施例に
よる給水ポンプ用タービン制御装置の構成を示す。
FIG. 1 shows the configuration of a turbine controller for a water supply pump according to the first embodiment, which is applied to a boiler water supply system including a drive steam line for a turbine for a water supply pump.

【0025】ボイラ14へ水を供給する給水ポンプ1、
給水ポンプ1を駆動する給水ポンプ用蒸気タービン2、
蒸気タービン2への駆動蒸気を調整する高圧蒸気加減弁
5、及び低圧蒸気加減弁6、蒸気加減弁5及び6を機械
式レバー機構40を介して操作するアクチュエータ4、
給水制御部9からの給水ポンプ用タービン回転数指令1
00及び給水ポンプ用蒸気タービン2の回転数検出器2
0からのタービン回転数101を入力し、アクチュエー
タ4に蒸気加減弁開度指令106を出力する給水ポンプ
用タービン制御部3、発電用蒸気タービンの抽出蒸気ラ
イン111と補助蒸気ライン112を切り替えて低圧蒸
気加減弁6へ供給するために、各蒸気ラインに設置され
た蒸気元弁11、12、及び給水ポンプ1の給水出口に
設置された給水出口弁10より構成される。なお、本実
施例では、補助蒸気ライン112に圧力調整弁を設置し
ないシステムである。
A water supply pump 1 for supplying water to the boiler 14,
A water supply pump steam turbine 2 for driving the water supply pump 1,
A high pressure steam control valve 5 for adjusting drive steam to the steam turbine 2, a low pressure steam control valve 6, an actuator 4 for operating the steam control valves 5 and 6 via a mechanical lever mechanism 40,
Turbine rotation speed command 1 for water supply pump from water supply controller 9
00 and rotation speed detector 2 of steam turbine 2 for feed water pump
The turbine rotation speed 101 from 0 is input and the steam control valve opening command 106 is output to the actuator 4. The feed water pump turbine control unit 3, the power generation steam turbine extraction steam line 111 and the auxiliary steam line 112 are switched to switch to a low pressure. In order to supply to the steam control valve 6, it comprises steam main valves 11 and 12 installed in each steam line, and a water supply outlet valve 10 installed in a water supply outlet of the water supply pump 1. In the present embodiment, the pressure adjustment valve is not installed in the auxiliary steam line 112.

【0026】アクチュエータ4と機械式レバー機構40
は、先ず低圧蒸気加減弁6から開し、その全開後に高圧
蒸気加減弁5を開する、各駆動蒸気に共通の操作端を構
成している。
The actuator 4 and the mechanical lever mechanism 40
First, the low pressure steam control valve 6 is opened, and after the full opening, the high pressure steam control valve 5 is opened to form an operating end common to each drive steam.

【0027】本実施例による給水ポンプ用タービン制御
部3は、ボイラ給水時の制御回路を示しており、給水ポ
ンプ用タービン回転数指令100と給水ポンプ用蒸気タ
ービン回転数101の偏差信号102を演算する減算器
31、偏差信号102を入力とする比例積分演算で蒸気
加減弁操作量103を出力する比例積分演算器32、偏
差信号102を入力して偏差大信号104を出力する偏
差大検出器33、偏差大信号104により蒸気加減弁補
正量105を演算する蒸気加減弁補正量発生器34、蒸
気加減弁操作量103と蒸気加減弁補正量105を加算
しアクチュエータ4に蒸気加減弁開度指令106を出力
する加算器35より構成される。この偏差大検出器3
3、蒸気加減弁補正量発生器34及び加算器35より補
正用演算回路が構成される。
The feed water turbine turbine control unit 3 according to this embodiment shows a control circuit for supplying water to the boiler, and calculates a deviation signal 102 between the feed water pump turbine rotation speed command 100 and the feed water pump steam turbine rotation speed 101. Subtractor 31, a proportional-plus-integral calculator 32 that outputs the steam control valve manipulated variable 103 by a proportional-plus-integral operation that receives the deviation signal 102, and a large deviation detector 33 that inputs the deviation signal 102 and outputs a large deviation signal 104 , The steam control valve correction amount generator 34 that calculates the steam control valve correction amount 105 from the large deviation signal 104, the steam control valve operation amount 103 and the steam control valve correction amount 105 are added, and the steam control valve opening command 106 is given to the actuator 4. It is composed of an adder 35 for outputting This large deviation detector 3
3. A correction arithmetic circuit is composed of the steam control valve correction amount generator 34 and the adder 35.

【0028】図2は比例積分演算器32の特性図、図3
はタービン補正用演算回路の特性図を示す。比例積分演
算器32は、入力される偏差信号に対し、勾配αの制御
ゲインで演算した蒸気加減弁開度(操作量)103を出
力する。
FIG. 2 is a characteristic diagram of the proportional-plus-integral calculator 32, and FIG.
Shows a characteristic diagram of a turbine correction arithmetic circuit. The proportional-plus-integral calculator 32 outputs the steam control valve opening degree (operation amount) 103 calculated with the control gain of the gradient α in response to the input deviation signal.

【0029】補正回路の偏差大検出器33は、図3
(a)に示すように、入力される偏差信号の絶対値が設
定値±a以下の範囲では出力を零とし、設定値±aを超
える偏差信号に1対1に比例した偏差大信号を出力す
る。蒸気加減弁補正量発生器34は、図3(b)に示す
ように、発電用蒸気タービンの抽出蒸気を駆動蒸気とし
た場合の低圧蒸気加減弁開度と、補助蒸気を駆動蒸気と
した場合の低圧蒸気加減弁開度の最大偏差量±bを上下
限値として、入力される偏差大信号に対し勾配β(β>
α)の制御ゲインで比例演算した蒸気加減弁開度補正量
104を出力する。
The large deviation detector 33 of the correction circuit is shown in FIG.
As shown in (a), the output is zero when the absolute value of the input deviation signal is within the set value ± a, and a large deviation signal proportional to the deviation signal exceeding the set value ± a is output one-to-one. To do. As shown in FIG. 3B, the steam control valve correction amount generator 34 uses a low-pressure steam control valve opening when the extracted steam of the power generation steam turbine is used as drive steam and when the auxiliary steam is used as drive steam. The maximum deviation amount ± b of the low-pressure steam control valve opening of is set as the upper and lower limit values, and the slope β (β>
A steam control valve opening correction amount 104 proportionally calculated by the control gain of α) is output.

【0030】ところで、減算器31の出力する偏差信号
102は、プラントの負荷変化に応じて給水制御部9か
ら出力される回転数指令100により変化する。通常の
給水運転時は、偏差信号102が図3の±a領域内の小
さな値であり、偏差大検出器33からの偏差大信号10
4は零となる。従って、アクチュエータ4に出力される
蒸気加減弁開度指令106は、比例積分演算器32の低
制御ゲインαによる出力信号103をそのまま出力し、
補正回路の影響を受けることなく制御される。
By the way, the deviation signal 102 output from the subtractor 31 changes according to the rotation speed command 100 output from the water supply control unit 9 according to the load change of the plant. During normal water supply operation, the deviation signal 102 has a small value within the ± a region of FIG. 3, and the deviation large signal 10 from the deviation large detector 33 is shown.
4 becomes zero. Therefore, the steam control valve opening command 106 output to the actuator 4 outputs the output signal 103 by the low control gain α of the proportional-plus-integral calculator 32 as it is,
It is controlled without being affected by the correction circuit.

【0031】一方、給水ポンプ用蒸気タービンの駆動蒸
気の切り替え運転時は、抽出蒸気と補助蒸気の蒸気圧力
の変化により、給水ポンプ用タービン回転数101が大
幅に変動する。このとき、減算器31から出力される偏
差信号102は、図3の±a領域を超えるので、偏差大
検出器33は±a以上の偏差信号102に比例した偏差
大信号104を出力する。蒸気加減弁補正量発生器34
は、入力され偏差大信号104に対し高制御ゲインβに
よる蒸気加減弁補正量106を出力する。そして、図3
(c)に示すように、蒸気加減弁補正量106と比例積
分演算器33の出力信号103を加算した蒸気加減弁開
度指令106をアクチュエータ4に出力する。
On the other hand, during the switching operation of the driving steam of the water feed pump steam turbine, the turbine rotation speed 101 of the water feed pump changes significantly due to changes in the steam pressures of the extraction steam and the auxiliary steam. At this time, since the deviation signal 102 output from the subtractor 31 exceeds the ± a region in FIG. 3, the large deviation detector 33 outputs the large deviation signal 104 proportional to the deviation signal 102 of ± a or more. Steam control valve correction amount generator 34
Outputs the steam control valve correction amount 106 by the high control gain β with respect to the input large deviation signal 104. And FIG.
As shown in (c), the steam control valve opening amount command 106 obtained by adding the steam control valve correction amount 106 and the output signal 103 of the proportional-plus-integral calculator 33 is output to the actuator 4.

【0032】この結果、切り替え時の蒸気加減弁6は、
比例積分演算器32の低ゲインの出力では追従できない
大きな開度変化分を、補正回路から高制御ゲインによる
補正量加算によってすばやく移動され、適切な開度に調
整される。このとき、補正前後の操作量はステップ変化
せずに連続性を保っているので、バンプレスな制御が実
現できる。しかも、通常運転時には補正回路の影響を全
く回避でき、通常運転時に最適化された制御ゲインの比
例積分演算回路によって、給水ポンプ用タービン制御系
の安定性を確保する。
As a result, the steam control valve 6 at the time of switching is
A large opening change amount that cannot be followed by the low-gain output of the proportional-plus-integral calculator 32 is quickly moved from the correction circuit by addition of the correction amount by the high control gain, and adjusted to an appropriate opening amount. At this time, since the operation amount before and after the correction does not change in steps and maintains continuity, bumpless control can be realized. Moreover, the influence of the correction circuit can be completely avoided during normal operation, and the stability of the feedwater pump turbine control system is ensured by the proportional-plus-integral calculation circuit of the control gain optimized during normal operation.

【0033】図6に、従来と比較した本実施例によるプ
ラントの動作特性を示す。図示の実線は本実施例、点線
は従来例による特性を示す。
FIG. 6 shows the operating characteristics of the plant according to this embodiment in comparison with the conventional one. The solid line in the figure shows the characteristics of this embodiment, and the dotted line shows the characteristics of the conventional example.

【0034】発電用蒸気タービンがが一定の発電機出力
に達しないプラント起動時は(A点以前)、給水ポンプ
用タービン2は補助蒸気ライン112からの低圧蒸気で
駆動しており、抽出蒸気ライン111からの抽出蒸気に
比べて蒸気圧力が高いので、低圧蒸気加減弁6の開度は
低い位置に制御されている。
When the steam turbine for power generation does not reach a constant power output of the generator (before the point A), the turbine 2 for water feed pump is driven by the low pressure steam from the auxiliary steam line 112, and the extraction steam line Since the steam pressure is higher than the extracted steam from 111, the opening degree of the low pressure steam control valve 6 is controlled to a low position.

【0035】ここで、駆動蒸気を補助蒸気から抽出蒸気
に切り替える。すなわち、抽出蒸気ライン111の元弁
11を開し、補助蒸気ライン112の元弁12を閉じる
と、駆動蒸気圧力が低下するためにタービン回転数もA
点⇒B点のように低下する。従来は、比例積分演算器3
2のみによる出力のため、給水制御部9からの回転数指
令と実回転数指令との偏差に対し、比例積分演算器32
からの低制御ゲインの出力で徐々に低圧蒸気加減弁6の
開度を上昇するが、この間に給水ポンプ用タービン回転
数がさらに低下するために、制御偏差は所定範囲(±
a)を超えて(B点⇒)ますます増大し、図示のように
振動を発生するなどして(C点⇒)、安定な回転数に制
定するのには長時間を要していた。
Here, the driving steam is switched from the auxiliary steam to the extraction steam. That is, when the main valve 11 of the extraction steam line 111 is opened and the main valve 12 of the auxiliary steam line 112 is closed, the driving steam pressure decreases, and therefore the turbine speed also becomes A.
Point ⇒ It decreases like point B. Conventionally, the proportional-plus-integral calculator 3
Since the output is made only by 2, the proportional-plus-integral calculator 32 is applied to the deviation between the rotation speed command from the water supply controller 9 and the actual rotation speed command.
The opening of the low-pressure steam control valve 6 is gradually increased by the output of a low control gain from, but the turbine deviation for the feedwater pump further decreases during this period, so the control deviation is within a predetermined range (±
Since it increased more than point a) (point B ⇒) and increased as shown in the figure (point C ⇒), it took a long time to establish a stable rotation speed.

【0036】しかし、本実施例では制御偏差が増大して
B点で所定範囲(+a)を超えると、補正回路が動作し
て高制御ゲインの出力で低圧蒸気加減弁6の開度を急速
に上昇する(B点⇒C点)。これに伴いタービン回転数
も上昇に点じ、制御偏差はC点で再び所定範囲(+a)
に収束する。補正回路は不動作となって、再び比例積分
演算器32のみによる制御に移行する。
However, in the present embodiment, when the control deviation increases and exceeds the predetermined range (+ a) at point B, the correction circuit operates and the opening of the low pressure steam control valve 6 is rapidly increased with the output of the high control gain. Ascend (point B ⇒ point C). Along with this, the turbine speed also rises, and the control deviation is again in the predetermined range (+ a) at point C.
Converges to The correction circuit becomes inoperative, and the control again shifts to the control by the proportional-plus-integral calculator 32 only.

【0037】発電機用蒸気タービンが発電機出力を減少
して、給水ポンプ用タービンの低圧蒸気源を抽出蒸気か
ら補助蒸気に切り替える場合は、上記とは逆の動作とな
る。すなわち、切り替えによって給水ポンプ用ターンビ
ンの回転数が上昇し、制御偏差が所定範囲(−a)を超
えると、本実施例の補助回路が動作して低圧蒸気加減弁
6の開度を急速に減少し、給水ポンプ用タービンの回転
数の変動を短時間に収束する。
When the generator steam turbine reduces the generator output and switches the low-pressure steam source of the feedwater pump turbine from the extracted steam to the auxiliary steam, the operation reverse to the above is performed. That is, when the number of rotations of the feedwater turnbin increases due to the switching, and the control deviation exceeds the predetermined range (-a), the auxiliary circuit of the present embodiment operates to rapidly decrease the opening degree of the low-pressure steam control valve 6. However, fluctuations in the rotational speed of the feedwater pump turbine are converged in a short time.

【0038】以上、本実施例による補正回路について、
低圧蒸気源の切り替えによる偏差増大に応答する動作を
説明した。しかし、給水ポンプ用タービン制御装置にお
ける制御偏差の増大は、電気系統の事故による発電機用
蒸気タービンの流入蒸気遮断、あるいはボイラ補機故障
による負荷の急減などによっても発生する。本実施例の
補正回路は、かかる変動要因にも適用可能である。
As described above, regarding the correction circuit according to the present embodiment,
The operation in response to the deviation increase due to the switching of the low pressure steam source has been described. However, an increase in control deviation in the turbine controller for the water supply pump is also caused by the inflow steam cutoff of the generator steam turbine due to an accident in the electric system, or a sudden decrease in load due to a failure in the boiler auxiliary equipment. The correction circuit of the present embodiment can be applied to such fluctuation factors.

【0039】すなわち、発電用蒸気タービンの抽出蒸気
を駆動蒸気として使用中に、電気系統の事故による発電
用蒸気タービン流入遮断が発生すると、タービン制御装
置の操作端制御は低圧加減弁6からボイラの出口蒸気を
使用する高圧加減弁5の開制御へと移行し、次いで高圧
蒸気加減弁6から補助蒸気を使用する低圧加減弁6への
制御へと切り替わる。この場合、抽出蒸気とボイラの出
口蒸気及びボイラの出口蒸気と補助蒸気の間で、蒸気圧
力が大きく変化することから、給水ポンプ用蒸気タービ
ンの実回転数が大幅に変動し、上述のように補正回路が
働いて操作端を急速に移動し、回転数の変動を短時間に
収束する。
That is, when the power generation steam turbine inflow cutoff occurs due to an accident in the electric system while using the extracted steam of the power generation steam turbine as drive steam, the control end of the turbine controller is controlled from the low pressure regulator valve 6 to the boiler. The control shifts to the opening control of the high pressure control valve 5 using the outlet steam, and then the control is switched from the high pressure steam control valve 6 to the low pressure control valve 6 using the auxiliary steam. In this case, since the steam pressure greatly changes between the extracted steam and the outlet steam of the boiler, and between the outlet steam of the boiler and the auxiliary steam, the actual rotation speed of the feed-water pump steam turbine fluctuates significantly, and as described above. The correction circuit works to move the operating end rapidly, and the fluctuation of the rotation speed is converged in a short time.

【0040】また、ボイラ補機故障による負荷の急激な
減少運転においては、給水制御部9からのタービン回転
数指令が通常運転時よりも大幅に変動するために、偏差
大信号が検出されて、同様に補正回路が動作する。
Further, in the operation of rapidly reducing the load due to the failure of the auxiliary boiler, the turbine speed command from the water supply controller 9 fluctuates significantly more than in the normal operation, so that the large deviation signal is detected. Similarly, the correction circuit operates.

【0041】以上のように、本発明の第一の実施例によ
る給水ポンプ用タービン制御装置は、給水制御部からの
給水ポンプ用タービン回転数指令と実タービン回転数と
の偏差による比例積分演算回路と並列に、制御偏差の大
きい時に操作端を補正する高制御ゲインの補正回路を設
けているので、低圧の駆動蒸気源である補助蒸気と抽出
蒸気の切り替え時の偏差増大による回転数の変動を、前
記補正回路の出力によって蒸気加減弁の開度を速やかに
調整して収束できる。しかも、通常の運転時には補正回
路の影響を回避するようにしているので、低制御ゲイン
による安定な制御系を構成できる。
As described above, the water supply pump turbine control apparatus according to the first embodiment of the present invention is a proportional-integral calculation circuit based on the deviation between the water supply pump turbine rotation speed command from the water supply control unit and the actual turbine rotation speed. In parallel with this, a high control gain correction circuit that corrects the operating end when the control deviation is large is provided, so fluctuations in the rotational speed due to deviation increase when switching between the auxiliary steam, which is the low-pressure drive steam source, and the extracted steam are prevented. The opening of the steam control valve can be quickly adjusted and converged by the output of the correction circuit. In addition, since the influence of the correction circuit is avoided during normal operation, a stable control system with a low control gain can be constructed.

【0042】次に、本発明の第二の実施例を説明する。Next, a second embodiment of the present invention will be described.

【0043】図4は、第一の実施例と同様のボイラ給水
系に適用した、第二の実施例による給水ポンプ用タービ
ン制御装置の構成を示す。なお、通常は複数のボイラ給
水系113が設置されている。
FIG. 4 shows the construction of a turbine control device for a feed water pump according to the second embodiment, which is applied to a boiler feed water system similar to that of the first embodiment. Note that a plurality of boiler water supply systems 113 are usually installed.

【0044】本実施例と図1の相違は補正用演算回路
に、ボイラ給水圧力検出器22からのボイラ給水圧力信
号109と、タービン駆動給水ポンプ1の出口圧力検出
器21からのタービン駆動給水ポンプ出口圧力信号10
8の偏差を演算する第2の減算器36を付加した点にあ
る。
The difference between this embodiment and FIG. 1 is that the correction arithmetic circuit includes a boiler feed water pressure signal 109 from the boiler feed water pressure detector 22 and a turbine driven feed pump from the outlet pressure detector 21 of the turbine driven feed pump 1. Outlet pressure signal 10
The second subtractor 36 for calculating the deviation of 8 is added.

【0045】図5に、偏差大検出器の特性を示す。図示
のように、減算器36の出力する偏差信号が−c以下、
+d以上の場合に偏差大信号を出力する。ここで、c≠
dに設定されるのは、正常な給水状態ではポンプ出口圧
力108がボイラ給水圧力109より一定値だけ高くな
るため、その分だけ原点を負側に移動させていることに
よる。
FIG. 5 shows the characteristics of the large deviation detector. As shown in the figure, the deviation signal output from the subtractor 36 is -c or less,
A large deviation signal is output when + d or more. Where c ≠
The reason for setting d is that the pump outlet pressure 108 becomes higher than the boiler feed water pressure 109 by a certain value in the normal water supply state, and the origin is moved to the negative side accordingly.

【0046】ボイラ給水圧力は、給水だけでなくその他
の運転条件にも応答するが、プラント負荷に比例して変
化する。タービン駆動給水ポンプ出口圧力は、給水制御
部9がプラントの負荷に対応して給水ポンプ用タービン
回転数指令100を変化させ、これに実タービン回転数
が追随することで、応答遅れ少なくプラント負荷に比例
して変化する。
The boiler feed water pressure responds to not only the feed water but also other operating conditions, but it changes in proportion to the plant load. As for the outlet pressure of the turbine driven feed water pump, the feed water control unit 9 changes the feed water pump turbine rotation speed command 100 in response to the load of the plant, and the actual turbine rotation speed follows this, so that the response load is reduced and the plant load is reduced. It changes in proportion.

【0047】従って、負荷変化率の小さい通常運転時に
は、ボイラ給水圧力とタービン駆動給水ポンプ出口圧力
は、プラント負荷変化に対して同様に動作し、減算器3
6による偏差信号107は、図5の−c〜+d領域内の
値となり、偏差大検出器33の出力104は零となる。
従って、アクチュエータ4への蒸気加減弁開度指令10
6は、比例積分演算器32の出力103がそのまま出力
される。
Therefore, during normal operation with a small load change rate, the boiler feed water pressure and the turbine drive feed water pump outlet pressure operate similarly with respect to the plant load change, and the subtractor 3
The deviation signal 107 due to 6 becomes a value within the range -c to + d in FIG. 5, and the output 104 of the large deviation detector 33 becomes zero.
Therefore, the steam control valve opening command 10 to the actuator 4
6, the output 103 of the proportional-plus-integral calculator 32 is output as it is.

【0048】一方、給水ポンプ用蒸気タービンの駆動蒸
気を、発電用蒸気タービンの抽出蒸気と補助蒸気の間で
切り替える時は、蒸気圧力の変化により給水ポンプ用蒸
気タービン回転数が大きく変動し、これに比例してター
ビン駆動給水ポンプ1の出口圧力108が変動する。こ
の結果、減算器36の偏差信号107は−c〜+d領域
を超え、偏差大検出器33からの偏差大信号104を入
力として、高制御ゲインを持つ蒸気加減弁補正量発生器
34からの補正量105が出力される。この補正量を加
算した蒸気加減弁開度指令106により、蒸気加減弁開
度を急速に移動させることができる。なお、高圧蒸気に
よるバックアップ時など、他の要因による回転数変動時
にも適応できることは言う間でもない。
On the other hand, when the drive steam of the water feed pump steam turbine is switched between the extracted steam of the power generation steam turbine and the auxiliary steam, the rotational speed of the water feed pump steam turbine varies greatly due to changes in the steam pressure. The outlet pressure 108 of the turbine driven feed water pump 1 fluctuates in proportion to. As a result, the deviation signal 107 of the subtractor 36 exceeds the -c to + d region, and the deviation large signal 104 from the large deviation detector 33 is input to the correction signal from the steam control valve correction amount generator 34 having a high control gain. The quantity 105 is output. The steam control valve opening degree command 106 added with this correction amount allows the steam control valve opening degree to be moved rapidly. Needless to say, the present invention can be applied even when the rotational speed changes due to other factors such as backup with high-pressure steam.

【0049】図6に示すように、第二の実施例による補
正は、給水ポンプ用蒸気タービンの回転数の変動による
給水ポンプ出口圧力の変動と、あまり変動しないボイラ
給水圧力による偏差を用いるために、第一の実施例に比
べて厳密には応答性が少々低下するが、実用上は同程度
の動作特性を実現できる。また、ボイラ給水圧力とター
ビン駆動給水ポンプ出口圧力の信号は、ボイラ制御装置
に使用されている信号であり、本実施例の構成は容易で
ある。
As shown in FIG. 6, the correction according to the second embodiment uses the fluctuation of the feed water pump outlet pressure due to the fluctuation of the rotational speed of the feed water pump steam turbine and the deviation due to the boiler feed water pressure which does not fluctuate much. Strictly speaking, the responsivity is slightly lowered as compared with the first embodiment, but practically the same operating characteristics can be realized. Further, the signals of the boiler feed water pressure and the turbine drive feed water pump outlet pressure are signals used in the boiler control device, and the configuration of this embodiment is easy.

【0050】[0050]

【発明の効果】本発明の給水ポンプ用タービンの制御方
法によれば、制御偏差が所定範囲内となる通常運転時の
場合は、低ゲインの比例積分演算で操作端操作量を出力
し、制御偏差が所定範囲を超える場合は、高ゲインで比
例演算した補正量を加算した操作量を出力するので、駆
動蒸気圧力や負荷の急変動によるタービン回転数の変動
を速やかに且つ、バンプレスに抑制するとともに、通常
運転時の給水制御の安定性を維持する効果がある。
According to the method for controlling a turbine for a water supply pump of the present invention, during normal operation in which the control deviation is within a predetermined range, the operating end operation amount is output and controlled by a low-gain proportional-plus-integral calculation. If the deviation exceeds the specified range, the manipulated variable is output by adding the correction amount proportionally calculated with a high gain, so the fluctuation of the turbine speed due to the sudden change of the driving steam pressure or the load can be suppressed quickly and bumplessly. In addition, it is effective in maintaining the stability of water supply control during normal operation.

【0051】本発明の給水ポンプ用タービンの制御装置
によれば、通常運転時に最適化された低ゲインの比例積
分演算手段と並列に、制御偏差が所定範囲を超える場合
に、高ゲインで補正量を比例演算する補正手段を設けて
いるので、駆動蒸気圧力や負荷の急変動時にも切り替え
不要な実質1台の制御演算装置によって簡単に制御で
き、シンプルで信頼性の高いシステムを構成できる果が
ある。
According to the control apparatus for a water supply pump turbine of the present invention, a correction amount with a high gain is provided in parallel with a low-gain proportional-plus-integral calculation means optimized during normal operation when the control deviation exceeds a predetermined range. Since the correction means for proportionally calculating is provided, even when the driving steam pressure or the load fluctuates rapidly, it can be easily controlled by one control arithmetic unit that does not require switching, and the simple and highly reliable system can be configured. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例を示す給水ポンプ用ター
ビン制御装置の構成図。
FIG. 1 is a configuration diagram of a turbine control device for a water supply pump showing a first embodiment of the present invention.

【図2】第一の実施例による制御偏差大検出器の特性
図。
FIG. 2 is a characteristic diagram of a large control deviation detector according to the first embodiment.

【図3】第一の実施例による蒸気加減弁補正量発生器の
特性図。
FIG. 3 is a characteristic diagram of the steam control valve correction amount generator according to the first embodiment.

【図4】本発明の第二の実施例を示す給水ポンプ用ター
ビン制御装置の構成図。
FIG. 4 is a configuration diagram of a turbine control device for a water feed pump showing a second embodiment of the present invention.

【図5】第二の実施例による制御偏差大検出器の特性
図。
FIG. 5 is a characteristic diagram of the control deviation large detector according to the second embodiment.

【図6】本発明の適用前後におけるボイラ給水系の動作
を示す動特性図。
FIG. 6 is a dynamic characteristic diagram showing the operation of the boiler water supply system before and after the application of the present invention.

【符号の説明】[Explanation of symbols]

1…給水ポンプ、2…給水ポンプ用蒸気タービン、3…
給水ポンプ用タービン制御装置、4…アクチュエータ、
5…高圧蒸気加減弁、6…低圧蒸気加減弁、9…給水制
御装置、10…給水出口弁、11,12…蒸気元弁、1
4…ボイラ、20…回転数検出器、21…給水ポンプの
出口圧力検出器、22…ボイラ給水圧力検出器、31,
36…減算器、32…比例積分演算器、33…偏差大検
出器、34…蒸気加減弁補正量発生器、35…加算器、
40…機械式レバー機構、110…高圧蒸気ライン、1
11…抽出蒸気ライン、112…補助蒸気ライン、11
3…他のポンプ給水系。
1 ... Water pump, 2 ... Steam turbine for water pump, 3 ...
Turbine controller for feed pump, 4 ... Actuator,
5 ... High-pressure steam control valve, 6 ... Low-pressure steam control valve, 9 ... Water supply control device, 10 ... Water supply outlet valve, 11, 12 ... Steam main valve, 1
4 ... Boiler, 20 ... Rotation speed detector, 21 ... Outlet pressure detector of water supply pump, 22 ... Boiler feed water pressure detector, 31,
36 ... Subtractor, 32 ... Proportional-integral calculator, 33 ... Large deviation detector, 34 ... Steam adjusting valve correction amount generator, 35 ... Adder,
40 ... Mechanical lever mechanism, 110 ... High-pressure steam line, 1
11 ... Extraction steam line, 112 ... Auxiliary steam line, 11
3 ... Other pump water supply system.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G05B 13/02 G05B 13/02 B (72)発明者 河合 巧 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location G05B 13/02 G05B 13/02 B (72) Inventor Takumi Kawai 5-2 Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 Stock company Hitachi Ltd. Omika factory

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 給水制御装置からの給水ポンプ用タービ
ン回転数指令と実タービン回転数の偏差による比例積分
演算によって操作量を求めて、給水ポンプ用蒸気タービ
ンの駆動蒸気系の調節弁を操作する操作端を制御し、火
力発電プラントにおける給水ポンプ用タービンの回転数
を制御する方法において、 所定の信号偏差が予め定めた偏差範囲を超える場合に、
前記比例積分演算の制御ゲインより高いゲインで比例演
算した補正量を加算して、前記操作量を補正することを
特徴とする給水ポンプ用タービンの制御方法。
1. A control valve of a driving steam system of a steam turbine for a water supply pump is operated by obtaining an operation amount by a proportional integral calculation based on a deviation between a turbine speed command for the water supply pump from a water supply control device and an actual turbine speed. In the method of controlling the operating end and controlling the rotation speed of the feedwater pump turbine in the thermal power plant, when a predetermined signal deviation exceeds a predetermined deviation range,
A method for controlling a turbine for a water supply pump, comprising: adding a correction amount proportionally calculated with a gain higher than a control gain of the proportional-plus-integral calculation to correct the operation amount.
【請求項2】 請求項1において、 前記信号偏差は、前記給水ポンプ用タービン回転数指令
と前記実タービン回転数の偏差であることを特徴とする
給水ポンプ用タービンの制御方法。
2. The method for controlling a turbine for a water supply pump according to claim 1, wherein the signal deviation is a deviation between the turbine rotation speed command for the water supply pump and the actual turbine rotation speed.
【請求項3】 請求項1において、 前記信号偏差は、ボイラ給水圧力とタービン駆動給水ポ
ンプ出口圧力の偏差であることを特徴とする給水ポンプ
用タービンの制御方法。
3. The method for controlling a turbine for a feed water pump according to claim 1, wherein the signal deviation is a deviation between a boiler feed water pressure and a turbine drive feed water pump outlet pressure.
【請求項4】 請求項1または2または3において、 前記偏差範囲は、通常運転時での信号偏差はその範囲内
にあり、前記駆動蒸気系の切り替え時や負荷急減時での
信号偏差はその範囲を超えるように設定されることを特
徴とする給水ポンプ用タービンの制御方法。
4. The deviation range according to claim 1, 2 or 3, wherein the signal deviation during normal operation is within that range, and the signal deviation during switching of the drive steam system or during sudden load reduction is within that range. A method for controlling a turbine for a water supply pump, which is set so as to exceed a range.
【請求項5】 発電用蒸気タービンからの抽出蒸気(以
下、抽出蒸気と称する)と補助蒸気の2系統を切り替え
て使用する低圧蒸気を調整する蒸気加減弁を操作する操
作端と、ボイラ給水制御装置からの給水ポンプ用タービ
ン回転数指令と実タービン回転数との偏差から前記操作
端の操作量を演算する比例積分演算手段を備えて、火力
発電プラントにおける給水ポンプ用タービンの回転数を
制御する装置において、 前記比例積分演算手段と並列に、所定の信号偏差が大な
るときに前記操作端の補正量を演算する補正用演算手段
を設けたことを特徴とする給水ポンプ用タービンの制御
装置。
5. An operating end for operating a steam control valve for adjusting low pressure steam used by switching between two systems of extracted steam from a steam turbine for power generation (hereinafter referred to as “extracted steam”) and auxiliary steam, and boiler feedwater control. The turbine rotation speed command of the water supply pump in the thermal power plant is controlled by providing the proportional-integral calculation means for calculating the operation amount of the operating end from the deviation between the turbine rotation speed command for the water supply pump from the device and the actual turbine rotation speed. In the apparatus, a controller for a feed water pump turbine is provided, in parallel with the proportional-plus-integral calculation means, a correction calculation means for calculating a correction amount of the operating end when a predetermined signal deviation becomes large.
【請求項6】 請求項5において、 前記補正用演算手段は、前記信号偏差が前記給水ポンプ
用タービン回転数指令と前記実タービン回転数の偏差あ
るいは他の偏差の場合に、予め定めた偏差範囲を超える
値の偏差を出力する偏差大検出手段、前記比例積分演算
手段より高い制御ゲインを有して前記偏差大検出手段の
出力から前記補正量を比例演算する補正量演算手段及び
前記操作量と前記補正量を加算して前記操作端に出力す
る加算手段を備えることを特徴とする給水ポンプ用ター
ビンの制御装置。
6. The correction calculation means according to claim 5, wherein when the signal deviation is a deviation between the feedwater pump turbine rotation speed command and the actual turbine rotation speed or another deviation, a predetermined deviation range is set. Large deviation detecting means for outputting a deviation of a value exceeding 0, correction amount calculating means for proportionally calculating the correction amount from the output of the large deviation detecting means having a control gain higher than that of the proportional-plus-integral calculating means, and A control device of a turbine for a water supply pump, comprising: an addition unit that adds the correction amount and outputs the addition amount to the operation end.
【請求項7】 請求項6において、 前記補正用演算手段は、前記他の偏差の場合にボイラ給
水圧力とタービン駆動給水ポンプ出口圧力の偏差を求め
る減算手段を備えることを特徴とする給水ポンプ用ター
ビンの制御装置。
7. The feed pump according to claim 6, wherein the correction computing means includes subtraction means for obtaining a deviation between the boiler feed water pressure and the turbine drive feed water pump outlet pressure in the case of the other deviation. Turbine control device.
【請求項8】 請求項6または7において、 前記偏差範囲は、前記2系統の切り替え時やボイラ補機
故障による負荷の急減時に、前記信号偏差がその範囲を
超えるように設定されてなることを特徴とする給水ポン
プ用タービンの制御装置。
8. The deviation range according to claim 6 or 7, wherein the signal deviation exceeds the range when the two systems are switched or when the load is rapidly reduced due to a failure of a boiler auxiliary machine. A characteristic control device for a water supply pump turbine.
【請求項9】 発電用蒸気タービンからの抽出蒸気と補
助蒸気の2系統の蒸気を切り替えて使用する低圧蒸気
と、ボイラ出口からの高圧蒸気の2種類の蒸気を駆動蒸
気とし、前記低圧蒸気と高圧蒸気を各々調整する蒸気加
減弁を先ず低圧蒸気加減弁から開し、低圧蒸気加減弁が
全開に到達後高圧蒸気加減弁を開する操作端と、ボイラ
給水制御装置からの給水ポンプ用タービン回転数指令と
実タービン回転数の偏差から前記操作端の操作量を演算
する比例積分演算手段を備えて、火力発電プラントにお
ける給水ポンプ用タービンの回転数を制御する装置にお
いて、 前記給水ポンプ用タービン回転数指令と前記実タービン
回転数の信号偏差又はボイラ給水圧力とタービン駆動給
水ポンプ出口圧力の信号偏差が予め定めた偏差範囲を超
える場合にその値を出力する偏差大検出手段と、前記比
例積分演算手段より高い制御ゲインを有して前記偏差大
検出手段の出力から補正量を比例演算する補正量演算手
段と、前記操作量と前記補正量を加算して前記操作端に
出力する加算手段とを含む操作量補正手段を、前記比例
積分演算手段と並列に設けることを特徴とする給水ポン
プ用タービンの制御装置。
9. Two types of steam, low-pressure steam that is used by switching between two systems of steam extracted from a steam turbine for power generation and auxiliary steam, and high-pressure steam from a boiler outlet are used as drive steam, and the low-pressure steam is used. First open the steam control valve for adjusting each high-pressure steam from the low-pressure steam control valve, and after the low-pressure steam control valve reaches full opening, open the high-pressure steam control valve, and rotate the turbine for the water supply pump from the boiler water supply control device. In a device for controlling the rotation speed of a water supply pump turbine in a thermal power plant, the apparatus includes a proportional-integral calculation means for calculating an operation amount of the operation end from a deviation between a number command and an actual turbine rotation speed, If the signal deviation between the number command and the actual turbine speed or the signal deviation between the boiler feed water pressure and the turbine drive feed water pump outlet pressure exceeds a predetermined deviation range. Large deviation detecting means for outputting a value, correction amount calculating means for proportionally calculating a correction amount from the output of the large deviation detecting means having a control gain higher than that of the proportional-plus-integral calculating means, the operation amount and the correction amount Is provided in parallel with the proportional-plus-integral calculation means, and a control device for a feed water pump turbine is provided.
【請求項10】 請求項9において、 通常の運転時における信号偏差は前記偏差範囲内にあ
り、前記駆動蒸気として使用する蒸気の切り替え時や負
荷の急減時における信号偏差は前記偏差範囲外となるよ
うに、前記偏差大検出手段の偏差範囲を設定してなるこ
とを特徴とする給水ポンプ用タービンの制御装置。
10. The signal deviation during normal operation is within the deviation range, and the signal deviation during switching of the steam used as the driving steam or during a rapid decrease in load is outside the deviation range. As described above, the control apparatus for the turbine for the water supply pump, wherein the deviation range of the deviation large detection means is set.
JP24143595A 1995-09-20 1995-09-20 Control method and control device for feed water pump turbine Expired - Lifetime JP3469685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24143595A JP3469685B2 (en) 1995-09-20 1995-09-20 Control method and control device for feed water pump turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24143595A JP3469685B2 (en) 1995-09-20 1995-09-20 Control method and control device for feed water pump turbine

Publications (2)

Publication Number Publication Date
JPH0988507A true JPH0988507A (en) 1997-03-31
JP3469685B2 JP3469685B2 (en) 2003-11-25

Family

ID=17074270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24143595A Expired - Lifetime JP3469685B2 (en) 1995-09-20 1995-09-20 Control method and control device for feed water pump turbine

Country Status (1)

Country Link
JP (1) JP3469685B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110894796A (en) * 2019-11-06 2020-03-20 大唐郓城发电有限公司 Steam extraction back pressure type small steam turbine control and regulation system and method with power balance generator
CN113605998A (en) * 2021-07-23 2021-11-05 中国能源建设集团华中电力试验研究院有限公司 Method and system for processing operation fault of power generating unit of thermal power plant
CN114017146A (en) * 2021-10-29 2022-02-08 华能秦煤瑞金发电有限责任公司 Method for starting double-machine regenerative small steam turbine without electric pump and carrying load
CN114233407A (en) * 2021-12-02 2022-03-25 中国船舶重工集团公司第七0三研究所 Water supply electric valve and steam turbine rotating speed interlocking control method
CN117294214A (en) * 2023-11-27 2023-12-26 河北众瑞电气科技有限公司 Rotor variable-frequency speed regulation control method and device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110894796A (en) * 2019-11-06 2020-03-20 大唐郓城发电有限公司 Steam extraction back pressure type small steam turbine control and regulation system and method with power balance generator
CN113605998A (en) * 2021-07-23 2021-11-05 中国能源建设集团华中电力试验研究院有限公司 Method and system for processing operation fault of power generating unit of thermal power plant
CN113605998B (en) * 2021-07-23 2023-08-22 中国能源建设集团华中电力试验研究院有限公司 Thermal power plant generator set operation fault processing method and system
CN114017146A (en) * 2021-10-29 2022-02-08 华能秦煤瑞金发电有限责任公司 Method for starting double-machine regenerative small steam turbine without electric pump and carrying load
CN114017146B (en) * 2021-10-29 2023-10-31 华能秦煤瑞金发电有限责任公司 No-electric pump starting load method for double-engine regenerative small steam turbine
CN114233407A (en) * 2021-12-02 2022-03-25 中国船舶重工集团公司第七0三研究所 Water supply electric valve and steam turbine rotating speed interlocking control method
CN114233407B (en) * 2021-12-02 2023-11-24 中国船舶重工集团公司第七0三研究所 Interlocking control method for water supply electric valve and turbine rotating speed
CN117294214A (en) * 2023-11-27 2023-12-26 河北众瑞电气科技有限公司 Rotor variable-frequency speed regulation control method and device
CN117294214B (en) * 2023-11-27 2024-02-02 河北众瑞电气科技有限公司 Rotor variable-frequency speed regulation control method and device

Also Published As

Publication number Publication date
JP3469685B2 (en) 2003-11-25

Similar Documents

Publication Publication Date Title
KR101206711B1 (en) Method and apparatus for drum level control for drum-type boilers
KR890001172B1 (en) Hrsg damper control
JP3469685B2 (en) Control method and control device for feed water pump turbine
JP4734184B2 (en) Steam turbine control device and steam turbine control method
JP2000297608A (en) Control device for feed water pump of power station
JPH11223302A (en) Automatic control device and method of power generating plant
JP3026049B2 (en) Turbine control device
JP2005155349A (en) Boiler control method following up load variation
JP3183937B2 (en) Water supply control device
JP3324899B2 (en) Turbine gland steam pressure controller
JP4624255B2 (en) Turbine controller
JPH0122521B2 (en)
JP2999884B2 (en) Method and apparatus for controlling turbine for feeding water pump
JPS6123365B2 (en)
JPH03246306A (en) Control device for extraction turbine
JPS60200004A (en) Method of controlling feed pump
JPS6326802B2 (en)
JPS62162703A (en) Turbine control device
JPH0979508A (en) Feed water controller for steam generating plant
JPS6212361B2 (en)
JPS6059483B2 (en) Boiler water supply system stabilization device
JPH06272233A (en) Automatic load control device for hydraulic power plant
JPH0256481B2 (en)
JPH059604B2 (en)
JPH051505A (en) Feed water pump drive turbine controlling device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term