JPS62162703A - Turbine control device - Google Patents

Turbine control device

Info

Publication number
JPS62162703A
JPS62162703A JP217086A JP217086A JPS62162703A JP S62162703 A JPS62162703 A JP S62162703A JP 217086 A JP217086 A JP 217086A JP 217086 A JP217086 A JP 217086A JP S62162703 A JPS62162703 A JP S62162703A
Authority
JP
Japan
Prior art keywords
opening
steam
command
turbine
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP217086A
Other languages
Japanese (ja)
Inventor
Yoichi Tone
洋一 戸根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP217086A priority Critical patent/JPS62162703A/en
Publication of JPS62162703A publication Critical patent/JPS62162703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To reduce pressure fluctuation, by providing a change rate restricting unit for restricting an opening of a turbine bypass valve to a rate less than a change rate corresponding to a response property of a system regulating valve provided with a system for regulating the opening of the turbine bypass valve. CONSTITUTION:Steam pressure d is compared with a set value 7 and a first opening command of a steam regulating valve 2 is applied to a pressure control unit 8. A turbine speed a is compared with a set value 11 and a command for opening the steam regulating valve 2 corresponding to a valve obtained by adding its deviation to a load set value 13 is produced. A change rate restricting unit 19 is interposed between a low value selecting unit 15 and a deviation calculating unit 17 and its output is subtracted from a steam flow rate command for pressure control for obtaining an opening command for a bypass valve 4. With such an arrangement, a difference between a steam regulating valve and a turbine bypass valve can be corrected for reducing pressure fluctuation.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は蒸気加減弁とタービンバイパス弁とを備えたタ
ービンプラントの蒸気流量を制御するタービン制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a turbine control device that controls the flow rate of steam in a turbine plant that includes a steam control valve and a turbine bypass valve.

[発明の技術的背景とその問題点コ 近年、火力、yK子炉等の汽力発電システムにおいては
、プラント起動、系統負荷しゃ断時等の大幅な運転状態
の変化に際し、蒸気発生器とタービンの独立の運転を可
能として、プラント起動再併入の時間を短縮すべくター
ビンバイパスシステムが併設されている。
[Technical background of the invention and its problems] In recent years, in steam power generation systems such as thermal power plants and yK sub-furnaces, the independence of the steam generator and turbine has been increasing when there is a significant change in operating conditions such as when starting up the plant or cutting off the system load. A turbine bypass system has been installed to enable operation of the plant and reduce the time required to start up and rejoin the plant.

第5図はその従来例を示したものであり、原子炉1によ
り発生する蒸気は、常時は、加減弁2を通って、タービ
ン3を駆動するが、負荷しゃ断時等。
FIG. 5 shows a conventional example, in which steam generated by the nuclear reactor 1 normally passes through the control valve 2 and drives the turbine 3, but when the load is cut off, etc.

タービン3が蒸気を受容し得ない状態になると。When the turbine 3 becomes unable to receive steam.

バイパス弁4によりこの蒸気を図示せぬ復水器へ逃がす
ように構成されている。ここで、原子炉lの圧力dは、
圧力演出器5により検出されて偏差演算器6に入力され
、そこで、圧力設定器7から出力される圧力設定値との
偏差が演算される。圧力制御部8はこの偏差信号を受け
て偏差の拡大を抑制し、圧力を一定に保つような蒸気流
量指令を演算して出力する。
The bypass valve 4 is configured to release this steam to a condenser (not shown). Here, the pressure d in the reactor l is
It is detected by the pressure generator 5 and input to the deviation calculator 6, where the deviation from the pressure setting value output from the pressure setting device 7 is calculated. The pressure control unit 8 receives this deviation signal, suppresses the expansion of the deviation, and calculates and outputs a steam flow rate command that keeps the pressure constant.

一方、タービンの速度aは速度検出器9により検出され
て偏差演算器10に加えられ、そこで速度設定器11よ
り与えられる速度設定値との偏差が演算される。速度制
御部12はその偏差信号を受け、偏差の拡大を抑制し速
度を一定に保つような蒸気流量指令を演算する。この蒸
気流量指令と負荷設定器13からの負荷設定信号との和
が加算器14より演算出力される。
On the other hand, the speed a of the turbine is detected by the speed detector 9 and added to the deviation calculator 10, where the deviation from the speed setting value given by the speed setter 11 is calculated. The speed control unit 12 receives the deviation signal and calculates a steam flow rate command that suppresses the expansion of the deviation and keeps the speed constant. The sum of this steam flow rate command and the load setting signal from the load setting device 13 is calculated and outputted from the adder 14.

低値選択器15は、前記2つの蒸気流量指令を受け、そ
の代数的低値を選択して、これを加減弁開度指令とじ弁
開度制御器16に加える。これにより加減弁2の開度す
が制御される。また5バイパス弁4の開度指令は偏差演
算器17において、圧力制御上の蒸気流量指令と、加減
弁開度指令との差として演算出力され、弁開度制御器1
8によりバイパス弁4の開度Cが制御される。
The low value selector 15 receives the two steam flow rate commands, selects the algebraic low value thereof, and applies it to the adjustment valve opening command and the adjustment valve opening controller 16. As a result, the opening degree of the regulating valve 2 is controlled. Further, the opening degree command of the bypass valve 4 is calculated and outputted in the deviation calculator 17 as the difference between the steam flow rate command for pressure control and the adjustment valve opening degree command, and the valve opening degree controller 1
8 controls the opening degree C of the bypass valve 4.

一般しこ、沸騰水形の原子カプラントにおいては、原子
炉1の圧力を制御することがプラント制御上の第1の要
求であり、そのために通常の運転では、負荷設定器13
を高めに設定することで、低値選択器15の選択が圧力
制御側となるようにしている。
Generally speaking, in a boiling water type nuclear coupler, controlling the pressure in the reactor 1 is the first requirement for plant control, and therefore in normal operation, the load setting device 13
By setting the value relatively high, the low value selector 15 selects the pressure control side.

従って、加減弁2が圧力制御を行なうこととなり、バイ
パス弁4の開度指令はOとなってバイパス弁4は全閉し
ている。
Therefore, the regulating valve 2 performs pressure control, and the opening degree command for the bypass valve 4 is O, so that the bypass valve 4 is fully closed.

このとき、タービン3の速度は、タービン3と連結する
発電機(図示せず)が系統に接続されることによって、
系統周波数で決まる定格速度に制御されている。従って
、通常のタービン制御状態では図の速度制御側は何の作
用もしない。
At this time, the speed of the turbine 3 is changed by connecting a generator (not shown) connected to the turbine 3 to the grid.
The speed is controlled to the rated speed determined by the system frequency. Therefore, under normal turbine control conditions, the speed control side shown in the figure has no effect.

しかし、系統負荷しゃ断等により発電機速度を拘束する
ものが無くなり、タービン3の速度aが上昇すると、速
度制御上の蒸気流量指令が絞り込まれ、低値選択器15
は速度制御側を選択して、これを加減弁2の開度指令と
する。このとき、圧力制御上の蒸気流量指令〉加減弁開
度指令となって偏差演算器17によりバイパス弁4の開
度指令が演算出力される。
However, when there is no longer anything that restricts the generator speed due to system load cutoff, etc., and the speed a of the turbine 3 increases, the steam flow rate command for speed control is narrowed down, and the low value selector 15
selects the speed control side and uses this as the opening command for the control valve 2. At this time, the steam flow rate command for pressure control becomes greater than the adjustment valve opening command, and the deviation calculator 17 calculates and outputs the opening command for the bypass valve 4.

以上、従来の制御システムの構成、動作を説明したが、
この動作は加減弁2とバイパス弁4に全く同等の応答を
仮定して始めて成り立つものであり、応答性に差違があ
る場合には、一時的に主蒸気流量に過不足を生じ、圧力
変動を招来することがある。即ち、第6図に示す如く、
負荷しゃ断接、加減弁開度すの閉速度が遅く、バイパス
弁開度Cの開速度が速い場合には、加減弁2とバイパス
弁4の流量の和が一時的に過流量となり、圧力dに変動
を生じる。
The configuration and operation of conventional control systems have been explained above.
This operation can only be achieved by assuming exactly the same response for the regulator valve 2 and the bypass valve 4. If there is a difference in response, the main steam flow rate will temporarily be too high or too short, causing pressure fluctuations. I may be invited. That is, as shown in Figure 6,
When the closing speed of the load disconnection and adjustment valve opening C is slow and the opening speed of the bypass valve opening C is fast, the sum of the flow rates of the adjustment valve 2 and the bypass valve 4 temporarily becomes an overflow, and the pressure d fluctuations occur.

特に、原子力発電プラントにおいては、 I7I子炉圧
力の変動を極力小さく抑えるため、バイパス弁4は機構
的に他の蒸気弁より開閉速度がより高速に設計されてい
るが、このためかえって、系統負荷しゃ断等の異常時に
は、原子炉1の圧力dに変動を生し、原子炉安全上の問
題があった。
In particular, in nuclear power plants, bypass valve 4 is mechanically designed to have a faster opening/closing speed than other steam valves in order to suppress fluctuations in I7I reactor pressure as much as possible. In the event of an abnormality such as a shutdown, the pressure d in the reactor 1 fluctuates, posing a safety problem for the reactor.

[発明の目的] 本発明は、通常の圧力制御と速度制御の応答性を低下さ
せることなく、蒸気加減弁とタービンバイパス弁との応
答特性の差を補正し、もって圧力変動の少ないタービン
制御装置を提供することを目的とする。
[Object of the Invention] The present invention provides a turbine control device that corrects the difference in response characteristics between a steam control valve and a turbine bypass valve without reducing the responsiveness of normal pressure control and speed control, thereby reducing pressure fluctuations. The purpose is to provide

[発明の概要] 本発明は、蒸気加減弁の応答性に応じて蒸気加減弁開度
指令に変化率制限をかけ、この信号に基づいてタービン
バイパス弁開度指令を演算するようにしたものである。
[Summary of the Invention] The present invention applies a change rate limit to the steam control valve opening command according to the responsiveness of the steam control valve, and calculates the turbine bypass valve opening command based on this signal. be.

[発明の実施例] 以下、本発明の実施例を図面を参照して説明する。[Embodiments of the invention] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係るタービン制御装置の構
成図を示したもので、第5図と同一符号は同一または相
当部分を示す。第5図の構成と異なる点は、変化率制限
器19を低値選択器15と偏差演算器17との間に設け
、その出力を圧力制御上の蒸気流量指令から減算するこ
とで、バイパス減4の開度指令を得る構成とした点であ
る。
FIG. 1 shows a configuration diagram of a turbine control device according to an embodiment of the present invention, and the same reference numerals as in FIG. 5 indicate the same or corresponding parts. The difference from the configuration in FIG. 5 is that a change rate limiter 19 is provided between the low value selector 15 and the deviation calculator 17, and its output is subtracted from the steam flow rate command for pressure control, thereby reducing bypass. The point is that the structure is configured to obtain the opening degree command of 4.

第2図はその変化率制限値19の一例を示す構成図で、
2つの積分器20.21には負バイアス22あるいは正
バイアス23が常時印加され、一定変化率での減方向あ
るいは増方向の変化が演算される。この変化率制限器1
9に入力する開度指令eは、先ず、高値選択器24にお
いて一定変化率での減方向信号と比較され、その高値を
選択することで減方向の変化率が制限される。しかる後
に、低値選択器25において一定変化率での増方向信号
と比較され、その低値を選択することで、増方向の変化
率が制限されることになる。また、低値選択器25の出
力は2つのサンプルスイッチ26.27により、2つの
積分器20.21に帰還され、次のステップでの積分の
開始値を現在の出力値に一致させておく。ここで、前記
増方向、減方向の変化率即ち、バイアス22.23は加
減弁2の応答特性に応じて予め設定される。
FIG. 2 is a configuration diagram showing an example of the rate of change limit value 19.
A negative bias 22 or a positive bias 23 is constantly applied to the two integrators 20 and 21, and a change in the direction of decrease or increase at a constant rate of change is calculated. This rate of change limiter 1
The opening command e inputted to the opening command 9 is first compared with a decreasing direction signal at a constant rate of change in a high value selector 24, and by selecting the high value, the rate of change in the decreasing direction is limited. Thereafter, the low value selector 25 compares the increasing direction signal with a constant rate of change, and by selecting the low value, the rate of change in the increasing direction is limited. Further, the output of the low value selector 25 is fed back to the two integrators 20, 21 by two sample switches 26, 27, and the starting value of the integration in the next step is made to match the current output value. Here, the rate of change in the increasing direction and decreasing direction, that is, the bias 22.23 is set in advance according to the response characteristics of the regulating valve 2.

以上の構成で1通常の制御状態では、低値選択器15よ
り出力される開度指令eは変化率制限器19に設定され
る変化率制限範囲内の変化となるため、変化率制限1j
l19を設けたことによる影響は一切生じず、弁開閉制
御の応答性は従来装置と何ら変るところが無い。一方、
系統負荷しゃ断によるタービン3の急激な回転数上昇に
対しては、低値選択器15は速度制御側を選択して開度
指令eを出力するが、この開度指令eは加減弁2を急激
に絞り込むような値となるため、変化率制限器19で変
化率が制限される。これにより、バイパス弁開度Cは、
第3図のタイムチャートに示すように、加減弁開度すの
応答と同等の変化率で応答するために、加減弁2とバイ
パス弁4の蒸気総流量は過不足なく制御され、圧力変動
を模少に抑えることができる。
With the above configuration, 1 In the normal control state, the opening command e output from the low value selector 15 changes within the change rate limit range set in the change rate limiter 19, so that the change rate limit 1j
There is no effect due to the provision of l19, and the responsiveness of valve opening/closing control is no different from that of the conventional device. on the other hand,
In response to a sudden increase in the rotation speed of the turbine 3 due to system load cutoff, the low value selector 15 selects the speed control side and outputs the opening command e, but this opening command e causes the control valve 2 to suddenly increase. Therefore, the rate of change is limited by the rate of change limiter 19. As a result, the bypass valve opening degree C is
As shown in the time chart of Fig. 3, the total steam flow rate of the regulator valve 2 and bypass valve 4 is controlled to be just the right amount, and pressure fluctuations are controlled in order to respond at the same rate of change as the response of the regulator valve opening. It can be kept to a minimum.

尚、変化率制限器19の構成は第2図のものに限ること
なく、例えば、第4図に示すように構成することもでき
る。即ち、加減弁2開度を弁開度ゆ圧器28により検出
して、これに負バイアス22を加算器29で加算して下
限値とし、同様に正バイアス23を加算器30で加算し
て上限値として前述の実施例と同様に減方向、増方向の
変化率を制限することができ、同等の効果を期待するこ
とができる。
Note that the configuration of the rate of change limiter 19 is not limited to that shown in FIG. 2, and may be configured as shown in FIG. 4, for example. That is, the opening degree of the regulating valve 2 is detected by the valve opening pressure regulator 28, the negative bias 22 is added thereto by the adder 29 to obtain the lower limit value, and the positive bias 23 is similarly added to this by the adder 30 to determine the upper limit value. The rate of change in the decreasing direction and increasing direction can be limited as in the above-mentioned embodiment, and the same effect can be expected.

[発明の効果コ 以上説明したように本発明によれば、通常の圧力制御、
速度制御の応答性を低下させることなく、加減弁とバイ
パス弁の応答性の差を補正することができ、これにより
圧力変動の少ないタービン制御装置が得られる。
[Effects of the Invention] As explained above, according to the present invention, normal pressure control,
The difference in responsiveness between the control valve and the bypass valve can be corrected without reducing the responsiveness of speed control, thereby providing a turbine control device with less pressure fluctuation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るタービン制御装置のブ
ロック構成図、第2図は第1図の変化率制限器の一例を
示すブロック構成図、第3図は第1図の動作を説明する
ためのタイムチャート、第4図は第1図の変化率制限器
の他の例を示すブロック構成図、第5図は従来のタービ
ン制御装置のブロック構成図、第6図は第5図の動作を
説明するためのタイムチャートである。 1・・・原子炉、2・・・加減弁、3 ・・タービン。 4・・・バイパス弁、5・・・圧力検出器、6・・・偏
差演算器、7・・・圧力設定器、8・・・圧力制御部、
9・・・速度検出器、10・・・偏差演算器、11・・
・速度設定器、12・・・速度制御部、13・・・負荷
設定器、14・・・加算器、15・・・低値選択器、1
6・・・弁開度制御器、17・・・偏差演算器、18・
 弁開度制御器、19・・・変化率制限器、20.21
・・・積分器、22  ・・負バイパス、23・・・正
バイパス、24・・高値選択器、25・・・低値選択器
、26.27・・・サンプルスイッチ。 r−−=−−−−−−−−−−−−−−−−−−−−−
−−−一−−−−−−−−−−−一一二1第3図 第4図 第5図
FIG. 1 is a block configuration diagram of a turbine control device according to an embodiment of the present invention, FIG. 2 is a block configuration diagram showing an example of the rate of change limiter of FIG. 1, and FIG. 3 shows the operation of FIG. 1. A time chart for explanation, FIG. 4 is a block diagram showing another example of the rate of change limiter shown in FIG. 1, FIG. 5 is a block diagram of a conventional turbine control device, and FIG. FIG. 2 is a time chart for explaining the operation of FIG. 1...Nuclear reactor, 2...Adjustment valve, 3...Turbine. 4... Bypass valve, 5... Pressure detector, 6... Deviation calculator, 7... Pressure setting device, 8... Pressure control unit,
9... Speed detector, 10... Deviation calculator, 11...
・Speed setter, 12... Speed control unit, 13... Load setter, 14... Adder, 15... Low value selector, 1
6... Valve opening controller, 17... Deviation calculator, 18.
Valve opening controller, 19... Rate of change limiter, 20.21
... Integrator, 22 ... Negative bypass, 23 ... Positive bypass, 24 ... High value selector, 25 ... Low value selector, 26.27 ... Sample switch. r−−=−−−−−−−−−−−−−−−−−−−−
---1------------------------1121 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 蒸気圧力を設定値と比較し、その偏差に応じた蒸気加減
弁の第1の開度指令を出力する系と、タービン速度を設
定値と比較しその偏差と負荷設定値との和に応じた蒸気
加減弁の第2の開度指令を出力する系と、前記第1と第
2の開度指令のうち低値を選択して第3の開度指令とし
て出力する低値選択回路と、この第3の開度指令に応じ
て蒸気加減弁の開度を調節する系と、前記第3の開度指
令と前記第1の開度指令との偏差に応じてタービンバイ
パス弁の開度を調節する系と、この系に設けられ蒸気加
減弁の応答特性に応じた変化率以下にタービンバイパス
弁の開度調節を制限する変化率制限器とを備えてなるこ
とを特徴とするタービン制御装置。
A system that compares the steam pressure with a set value and outputs the first opening command for the steam control valve according to the deviation, and a system that compares the turbine speed with the set value and outputs a first opening command for the steam control valve according to the deviation and the sum of the deviation and the load set value. a system that outputs a second opening command for the steam control valve; a low value selection circuit that selects the lower value of the first and second opening commands and outputs it as a third opening command; A system that adjusts the opening of a steam control valve according to a third opening command; and a system that adjusts the opening of a turbine bypass valve according to a deviation between the third opening command and the first opening command. 1. A turbine control device comprising: a system for controlling the opening of the turbine bypass valve; and a rate-of-change limiter provided in the system for limiting the opening degree adjustment of the turbine bypass valve to a rate of change that corresponds to the response characteristics of the steam control valve.
JP217086A 1986-01-10 1986-01-10 Turbine control device Pending JPS62162703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP217086A JPS62162703A (en) 1986-01-10 1986-01-10 Turbine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP217086A JPS62162703A (en) 1986-01-10 1986-01-10 Turbine control device

Publications (1)

Publication Number Publication Date
JPS62162703A true JPS62162703A (en) 1987-07-18

Family

ID=11521887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP217086A Pending JPS62162703A (en) 1986-01-10 1986-01-10 Turbine control device

Country Status (1)

Country Link
JP (1) JPS62162703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429604A (en) * 1987-07-23 1989-01-31 Hitachi Ltd Turbine controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429604A (en) * 1987-07-23 1989-01-31 Hitachi Ltd Turbine controller

Similar Documents

Publication Publication Date Title
KR890001626B1 (en) Maximum efficiency steam temperature control system
JPS6239919B2 (en)
JPH0221558B2 (en)
JPS62162703A (en) Turbine control device
RU2156865C2 (en) Turbine speed governing system and method for controlling turbine speed at load shedding
JP3469685B2 (en) Control method and control device for feed water pump turbine
JPH0241720B2 (en)
JPS622279B2 (en)
JPS6123365B2 (en)
JP2515797B2 (en) Turbin controller
JP2720032B2 (en) Turbine control device
JPS639638B2 (en)
JPS6158903A (en) Turbine controller for nuclear reactor
JPH08189993A (en) Turbine speed controller
JPS63121798A (en) Load follow-up controller for nuclear power plant
JPS60129694A (en) Controller for pressure of nuclear power plant
JPH0335481B2 (en)
JPS62157598A (en) Controller for water level of nuclear reactor
JPH01123199A (en) Controlling of nuclear reactor output
JPS62105091A (en) Turbine controller
JPH0639889B2 (en) Steam turbine speed controller
JPH03215198A (en) Load controller for combined cycle plant
JPH0650531A (en) Fuel gas pressure stabilizing circuit for boiler
JPH01114797A (en) Speed controller for steam turbine
JPH04113298A (en) Controlling of nuclear reactor pressure