JP2720032B2 - Turbine control device - Google Patents

Turbine control device

Info

Publication number
JP2720032B2
JP2720032B2 JP62267756A JP26775687A JP2720032B2 JP 2720032 B2 JP2720032 B2 JP 2720032B2 JP 62267756 A JP62267756 A JP 62267756A JP 26775687 A JP26775687 A JP 26775687A JP 2720032 B2 JP2720032 B2 JP 2720032B2
Authority
JP
Japan
Prior art keywords
signal
control valve
control
valve opening
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62267756A
Other languages
Japanese (ja)
Other versions
JPH01110813A (en
Inventor
尚司 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62267756A priority Critical patent/JP2720032B2/en
Publication of JPH01110813A publication Critical patent/JPH01110813A/en
Application granted granted Critical
Publication of JP2720032B2 publication Critical patent/JP2720032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、沸騰水型原子力発電所の蒸気加圧弁や中間
蒸気加減弁を制御するタービン制御装置に係り、特に系
統周波数上昇時に加減弁の閉鎖量を制御し、不必要な原
子炉スクラムの発生を防止するのに好適なタービン制御
装置に関する。 〔発明の背景〕 タービン制御系は、大別すると検出された圧力信号に
応じて原子炉圧力制御を行う圧力調整機能と、検出され
たタービン速度信号及び負荷設定値に応じてタービン出
力制御を行う速度/負荷調整機能の両方を有し、この両
者の信号により蒸気加減弁とタービンバイパス弁及び中
間蒸気加減弁の協調制御を行つている。 第2図は、従来技術におけるタービン制御系の動作を
説明するブロツク図である。図において、原子炉又は主
蒸気配管に設置した圧力検出器で測定された圧力信号1
と予め設定した圧力設定値2との偏差信号は、フイルタ
回路3を通して圧力調定器4に入力される。圧力調定器
4は、その偏差信号に基づき全主蒸気流量信号5を作成
する。 一方、タービン速度検出器で測定されたタービン速度
信号6とタービン速度設定値7との偏差信号8を加減弁
速度調定器9に入力し、加減弁開度調停器9に入力し、
加減弁開度制御信号10を作成する。更に加減弁開度制御
信号10に負荷設定器の出力信号である負荷設定値11を付
加し、速度/負荷制御信号12を作成する。 また、タービン速度偏差信号8を中間加減弁開度調停
器14に入力し、中間蒸気加減弁開度制御信号13を作成す
る。負荷設定値11をCV調定率/IV調定率調定器16に入力
し作成した中間加減弁閉鎖開始点バイアス17と開バイア
ス15とを制御信号13に付加し中間加減弁流量信号18を作
成する。なお、CVとはcontrol valve蒸気加減弁を表わ
し、IVとはintermediate valve中間蒸気加減弁を示す。 こうして演算された全蒸気流量信号5と速度/負荷制
御信号12は低値優先回路19に入力され、両者のうち低い
方の信号が加減弁流量要求信号20として加減弁開度制御
を行うことになる。 一方、バイパス弁は全主蒸気流量信号5から加減弁流
量要求信号20及び通常運転時のバイパス弁チヤタリング
防止用バイアス信号21を減算したバイパス弁流量要求信
号22で開度制御される。 沸騰水型原子力発電所では、炉心内のボイド(蒸気
泡)量により原子炉出力調整を行つているため、中性子
は圧力の変化に対し敏感に反応する。従つて、通常運転
時においては、圧力信号に基づく全主蒸気流量信号5で
加減弁が優先的に制御され、タービン速度の比較的小さ
な変動で加減弁が動作することのないように負荷設定値
11を全主蒸気流量信号5の10%程度以上に設定してあ
る。そこで、加減弁開度要求信号10が−10%以内(一般
的に速度調定率は、100%制御信号/5%速度変化であ
り、10%の開度要求信号は)50Hzの場合0.25Hzに相当す
る)のタービン速度上昇に対しては、加減弁は応答せ
ず、圧力制御を優先的に行うことになる。 一方、速度/負荷制御信号12が10%以上減少するよう
なタービン速度上昇(0.25Hz以上の周波数上昇)に対し
ては、速度/負荷制御信号12が全主蒸気流量信号5以下
となり、低値優先回路で速度/負荷制御信号12が選択さ
れ、加減弁の絞り動作が行われる。 この時、加減弁の絞り動作により余剰となつた蒸気
は、全主蒸気流量信号5から加減弁流量要求信号20及び
バイアス値21を減算した結果のバイパス弁流量要求信号
22によりバイパス弁が開いて処理される。このようにし
て、タービン速度の上昇(0.25Hz以上)に対し加減弁を
絞り負荷を減少させ、タービン速度の上昇を防止する。
またその際、加減弁とバイパス弁は協調動作し、原子炉
圧力はほとんど変化することなく、プラント運転を安定
に継続できる。 次に、第3図を用いて系統事故により0.5Hzのタービ
ン速度上昇が生じた後整定した場合の原子力プラントの
応答を説明する。 送電系統において落雷等の事故が発生し、その影響に
より負荷が部分的に欠落した場合は、系統周波数が上昇
する(0.5Hz上昇を仮定)。その後、保護動作により故
障が除去されると、系統周波数は定常値に整定する。 この時、タービン速度も系統周波数に追従する。これ
により加減弁開度制御信号10は負値となり、速度/負荷
制御信号12も通常の信号より絞られる。タービン速度が
約0.25Hz上昇した時点で、速度/負荷制御信号12が全主
蒸気流量信号5以下となり、低値優先回路19の出力は速
度/負荷制御信号12側に切り換わる。従つて加減弁は、
速度/負荷制御信号12の減少に従い絞られ、タービン出
力を減少させる。0.5Hzの系統周波数上昇に対して加減
弁は10%絞られる。しかしそれによる余剰蒸気は全てバ
イパス弁を通して直接復水器に導かれるため、原子炉圧
力の変動は小さく、中性子束も若干変動するにとどま
る。このように比較的小さな系統周波数上昇に対して
は、加減弁を絞つたときに生ずる余剰蒸気はバイパス弁
で処理可能である。 これに対して、バイパス弁容量が25%の原子力プラン
トでは、加減弁を25%以上絞る系統周波数の上昇(0.82
5Hz以上)に対しては、余剰蒸気を全て処理できないた
め、主蒸気流量ミスマツチにより中性子束が上昇し、ス
クラムに至る。第4図を用いて系統周波数が1.5Hz上昇
した場合の原子力プラントの応答を説明する。図に示す
ように、1.5Hzの周波数上昇に対し、速度制御信号が−6
0%となり、これにより速度/負荷制御信号は50%とな
る(負荷設定は110%と仮定)。その結果、加減弁開度
は100%から50%に絞られる。同時にバイパス弁に対し
ても50%開く要求信号が出るが、全開しても25%分の余
剰蒸気しか処理できないため、原子炉圧力が上昇し、中
性子束は急上昇し、120%を上回つた時点で中性子束高
スクラムに至る。 以上示したように、25%タービンバイパス容量の沸騰
水型原子力発電プラントでは、0.825Hz以上の周波数変
動に対しスクラム(中性子束高)に至ることがわかる。
0.825Hz以上の系統周波数上昇はもちろん稀な事象では
あるが、25%タービンバイパスプラントが全プラントス
クラムに至つた場合は、逆に電源不足となり、系統周波
数が低下するため、事故が拡大する可能性がある。原子
力プラントの再起動にはある程度の時間が必要であるか
ら、系統の復旧が遅れ、稼動率が低下する問題がある。 〔発明の目的〕 本発明の目的は、送電系統での事故発生時に生ずる系
統周波数(タービン速度)の上昇により不必要なスクラ
ムが発生するのを防止可能なタービン制御装置を提供す
ることである。 〔発明の概要〕 本発明は、従来装置が系統周波数上昇時の加減弁閉鎖
量を単純に系統周波数上昇幅に比例させているため、特
に25%タービンバイパスプラントで0.825Hz以上の周波
数上昇によりスクラムに至る点に着目し、まず加減弁調
定率を周波数依存型にし、加減弁の閉鎖量を制限すると
共に、加減弁と中間加減弁の協調の取れた制御を維持す
るため、CV調定率/IV調定率についても周波数依存型と
し、1.5Hz程度の原子炉をスクラムする必要のない系統
周波数の上昇に対し、スクラムの発生防止するようにし
たものである。 すなわち、本発明は、上記目的を達成するため、沸騰
水型原子力発電所の原子炉又は主蒸気配管に配置された
圧力検出器の測定値および予め定められた圧力設定値の
偏差に基づく全主蒸気流量信号とタービン速度検出器の
測定値および予め定められた速度設定値の偏差信号に基
づく加減弁開度制御信号に負荷設定器の設定値を加算し
た速度/負荷制御信号とを比較し低い方の値を加減弁流
量要求信号として加減弁開度を制御し、全主蒸気流量信
号から加減弁流量要求信号を減算した値をバイパス弁流
量要求信号としてバイパス弁開度を制御し、上記タービ
ン速度偏差信号に基づいく中間蒸気加減弁開度制御信号
に中間蒸気加減弁間バイアス負荷設定器の設定値に基づ
く中間蒸気加減弁閉鎖開始点バイアス加算した値を中間
蒸気加減弁流量信号として中間蒸気加減弁開度を制御す
るタービン制御装置において、上記タービン速度偏差信
号から周波数に依存して加減弁開度制御信号を算出する
加減弁開度調定率用関数発生器と、上記負荷設定器の設
定値に基づき加減弁が全閉となる周波数以上の周波数に
中間蒸気加減弁閉鎖開始点バイアスを設定する蒸気加減
弁/中間蒸気加減弁調定率用関数発生器とを備えたター
ビン制御装置を提案する。 〔発明の実施例〕 以下、本発明の実施例を第1図により説明する。 第1図は、タービン制御系のうち加減弁・バイパス弁
及び中間蒸気加減弁流量要求信号演算回路を示すもので
ある。図において、タービン速度偏差信号8は、周波数
依存型加減弁開度調定率用関数発生器23により加減弁開
度制御信号10に変換され、負荷設定値11と加算され、速
度/負荷制御信号12となる。この速度/負荷制御信号12
と全主蒸気要求信号5は低値優先回路19に入力され、両
者のうち低い方の信号が加減弁流量要求信号20として加
減弁を制御する。 また、タービン速度偏差信号8は、中間蒸気加減弁開
度調定器14により中間加減弁開度制御信号13に変換さ
れ、さらに負荷設定値11を周波数依存型CV調定率/IV調
定率用関数発生器24により変換した中間蒸気加減弁閉鎖
開始制御信号17と加算され、中間蒸気加減弁流量要求信
号18として中間蒸気加減弁を制御する。 バイパス弁は、全主蒸気流量信号5から加減弁流量要
求信号20及び通常運転時のバイパス弁チヤタリング防止
用バイアス信号21を減算したバイパス弁流量要求信号22
で開度制御される。 ここでは、25%容量タービンバイパスプラントで、1.
5Hzの周波数上昇に対しスクラムを防止する周波数依存
型加減弁調定率と、周波数依存型CV調定率/IV調定率を
例にとり効果を説明する。 第5図に周波数依存型加減弁調定率における周波数上
昇幅(速度制御信号)と、加減弁閉鎖要求の関係を示
す。系統周波数が1.5Hz上昇しても加減弁閉鎖要求は30
%となり、これに+10%のバイアスが加算されるため、
実閉鎖要求は20%となる。従つて、1.5Hzの周波数上昇
に対しても加減弁をバイパス容量以上に閉鎖することな
く、余剰蒸気を全てバイパス弁で処理できることにな
る。 第6図に負荷設定110%(実負荷100%)時の系統周波
数と加減弁流量要求信号との関係を示す。51.5Hzまでは
加減弁流量要求は80%を下回ることはない。 次に、加減弁開度調定率を周波数依存型とし、CV調定
率/IV調定率は従来通りの(5/2)とした場合の負荷設定
40%(実負荷30%)における加減弁及び中間蒸気加減弁
の流量要求信号を周波数の関数として第7図に示す。第
7図に示すように、CV調定率/IV調定率を従来通りとす
ると、加減弁が全閉する前に中間蒸気加減弁が閉鎖し始
めるため、中間蒸気圧が上昇する可能性がある。 これに対して、CV調定率/IV調定率を第8図に示す周
波数依存型にすると、第9図に示すように加減弁が閉鎖
した後、中間加減弁が閉鎖し始めるため、従来と同等の
制御方式となる。 このことはいかなる負荷設定値においても不変であ
る。 以上示した如く、加減弁開度調定率及びCV調定率/IV
調定率を周波数依存型とすると、1.5Hzまでの周波数上
昇に対し、原子炉はスクラムすることなく、しかも加減
弁と中間蒸気加減弁の協調性は従来通りにすることが可
能である。 〔発明の効果〕 本発明によれば、系統周波数上昇時に加減弁を絞る場
合に、系統周波数に応じて加減弁を絞るために、運転継
続が可能な程度の周波数上昇に対してはバイパス弁容量
以上には加減弁を絞らないで済むから、原子炉圧力の上
昇が防止され、中性子束高スクラムの発生が防止され
る。それとともにCV調定率/IV調定率も周波数依存型に
してあるので、加減弁と中間蒸気加減弁の協調性も確保
され、系統周波数上昇に対しプラント耐久力を向上させ
ることができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine control device for controlling a steam pressurizing valve and an intermediate steam control valve of a boiling water nuclear power plant, and particularly to closing of the control valve when a system frequency rises. The present invention relates to a turbine control device suitable for controlling a quantity and preventing generation of unnecessary reactor scram. [Background of the Invention] A turbine control system performs a pressure regulation function of performing a reactor pressure control according to a detected pressure signal and a turbine output control according to a detected turbine speed signal and a load set value. It has both speed / load adjustment functions, and the signals of both control the coordinated control of the steam control valve, turbine bypass valve, and intermediate steam control valve. FIG. 2 is a block diagram for explaining the operation of the turbine control system in the prior art. In the figure, a pressure signal 1 measured by a pressure detector installed in a reactor or a main steam pipe is shown.
And a deviation signal from the preset pressure set value 2 is input to the pressure adjuster 4 through the filter circuit 3. The pressure regulator 4 creates a total main steam flow signal 5 based on the deviation signal. On the other hand, the deviation signal 8 between the turbine speed signal 6 measured by the turbine speed detector and the turbine speed set value 7 is input to the adjustable valve speed adjuster 9 and input to the adjustable valve opening arbiter 9,
The control valve control signal 10 is created. Further, a load / set value 11 which is an output signal of the load setting device is added to the control valve 10 to generate a speed / load control signal 12. In addition, the turbine speed deviation signal 8 is input to the intermediate control valve opening arbiter 14 to generate an intermediate steam control valve opening control signal 13. The load set value 11 is input to the CV adjustment rate / IV adjustment rate adjuster 16 and the created intermediate adjustment valve closing start point bias 17 and open bias 15 are added to the control signal 13 to create the intermediate adjustment valve flow signal 18. . CV represents a control valve steam control valve, and IV represents an intermediate valve intermediate steam control valve. The total steam flow signal 5 and the speed / load control signal 12 thus calculated are input to the low value priority circuit 19, and the lower one of the two signals is used as the control valve flow request signal 20 to control the control valve opening degree. Become. On the other hand, the degree of opening of the bypass valve is controlled by a bypass valve flow request signal 22 obtained by subtracting the control valve flow request signal 20 and the bypass valve chattering preventing bias signal 21 during normal operation from the total main steam flow signal 5. At a boiling water nuclear power plant, reactor power is adjusted by the amount of voids (steam bubbles) in the reactor core, so neutrons are sensitive to changes in pressure. Therefore, during normal operation, the control valve is preferentially controlled by the total main steam flow signal 5 based on the pressure signal, and the load set value is controlled so that the control valve does not operate with a relatively small change in turbine speed.
11 is set to about 10% or more of the total main steam flow signal 5. Therefore, if the opening / closing valve opening request signal 10 is within -10% (generally, the speed regulation rate is 100% control signal / 5% speed change, and the 10% opening request signal is 50%) The control valve does not respond to the turbine speed increase of (equivalent), and pressure control is performed preferentially. On the other hand, for a turbine speed increase (frequency increase of 0.25 Hz or more) at which the speed / load control signal 12 decreases by 10% or more, the speed / load control signal 12 becomes less than or equal to the total main steam flow signal 5 and a low value. The speed / load control signal 12 is selected by the priority circuit, and the throttle operation of the control valve is performed. At this time, the excess steam generated by the throttle operation of the control valve is used as a bypass valve flow request signal obtained by subtracting the control valve flow request signal 20 and the bias value 21 from the total main steam flow signal 5.
By 22 the bypass valve is opened and processed. In this way, the throttle valve is throttled to increase the turbine speed (0.25 Hz or more) to reduce the load, thereby preventing the turbine speed from increasing.
At that time, the control valve and the bypass valve cooperate with each other, so that the reactor pressure can hardly change and the plant operation can be stably continued. Next, the response of the nuclear power plant when settling after a 0.5 Hz turbine speed increase due to a system accident will be described with reference to FIG. If an accident such as a lightning strike occurs in the transmission system and the load is partially lost due to the effect, the system frequency will increase (assuming a 0.5 Hz increase). Thereafter, when the fault is removed by the protection operation, the system frequency is settled to a steady value. At this time, the turbine speed also follows the system frequency. As a result, the opening / closing valve opening control signal 10 becomes a negative value, and the speed / load control signal 12 is also narrowed down from the normal signal. When the turbine speed increases by about 0.25 Hz, the speed / load control signal 12 becomes equal to or less than the total main steam flow signal 5, and the output of the low value priority circuit 19 switches to the speed / load control signal 12 side. Therefore, the regulating valve is
It is throttled as the speed / load control signal 12 decreases, reducing turbine output. The control valve is reduced by 10% for 0.5Hz system frequency rise. However, all excess steam is led directly to the condenser through the bypass valve, so that the reactor pressure fluctuates little and the neutron flux fluctuates only slightly. For such a relatively small increase in the system frequency, excess steam generated when the control valve is throttled can be processed by the bypass valve. On the other hand, in a nuclear power plant with a bypass valve capacity of 25%, the system frequency rise (0.82
(5Hz or more), the surplus steam cannot be completely processed, and the neutron flux rises due to a mismatch in the main steam flow rate, leading to scram. The response of the nuclear power plant when the system frequency increases by 1.5 Hz will be described with reference to FIG. As shown in the figure, the speed control signal is
0%, which results in a 50% speed / load control signal (assuming a load setting of 110%). As a result, the valve opening is reduced from 100% to 50%. At the same time, a request signal to open the bypass valve by 50% is issued, but even if it is fully opened, only 25% of excess steam can be processed, so the reactor pressure rises, the neutron flux rises sharply, and exceeds 120% At this point, a neutron flux scram is reached. As shown above, in the boiling water nuclear power plant with 25% turbine bypass capacity, it can be seen that a frequency fluctuation of 0.825 Hz or more leads to a scram (high neutron flux).
Although a system frequency increase of 0.825 Hz or more is a rare event, of course, if a 25% turbine bypass plant reaches the entire plant scram, power shortages will occur, conversely, the system frequency will decrease, and accidents may increase. There is. Since restarting of a nuclear power plant requires a certain amount of time, there is a problem that the restoration of the system is delayed and the operation rate is reduced. [Object of the Invention] An object of the present invention is to provide a turbine control device capable of preventing generation of unnecessary scrum due to an increase in system frequency (turbine speed) that occurs when an accident occurs in a power transmission system. [Summary of the Invention] Since the conventional device simply adjusts the closing amount of the control valve when the system frequency rises in proportion to the system frequency increase width, the scram is particularly required in a 25% turbine bypass plant by increasing the frequency by 0.825 Hz or more. Focusing on the points leading to the above, first, the control valve adjustment rate is made frequency dependent, limiting the closing amount of the control valve, and maintaining the coordinated control of the control valve and the intermediate control valve, the CV adjustment rate / IV The regulation rate is also frequency-dependent, and prevents the occurrence of scram when the system frequency rises, which does not require the reactor to be scrammed at about 1.5 Hz. That is, in order to achieve the above-mentioned object, the present invention provides a method for measuring the total pressure based on a deviation of a measured value of a pressure detector arranged in a reactor or a main steam pipe of a boiling water nuclear power plant and a predetermined pressure set value. The steam flow signal is compared with the speed / load control signal obtained by adding the set value of the load setting device to the control valve opening control signal based on the measured value of the turbine speed detector and the deviation signal of the predetermined speed set value, and is low. Control the valve opening as a control valve flow request signal, and control the bypass valve opening as a bypass valve flow request signal by subtracting the control valve flow request signal from the total main steam flow signal. The intermediate steam control valve opening control signal based on the speed deviation signal is added to the intermediate steam control valve closing start point bias based on the set value of the intermediate steam control valve bias load setting device, and the intermediate steam control valve flow rate signal is added. A turbine control device for controlling an intermediate steam control valve opening by controlling a control valve opening control signal according to a frequency from the turbine speed deviation signal; Turbine control provided with a steam regulator / intermediate steam regulator regulating function generator for setting an intermediate steam regulator closing start bias to a frequency equal to or higher than a frequency at which the regulator is fully closed based on a setting value of a setter. Suggest a device. Embodiment of the Invention Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 shows the control valve / bypass valve and the intermediate steam control valve flow request signal calculation circuit in the turbine control system. In the figure, a turbine speed deviation signal 8 is converted into an adjustable valve opening control signal 10 by a frequency dependent type adjustable valve opening adjustment rate function generator 23, added to a load set value 11, and a speed / load control signal 12 Becomes This speed / load control signal 12
And the total main steam request signal 5 are input to the low value priority circuit 19, and the lower one of the two signals controls the control valve as the control valve flow request signal 20. The turbine speed deviation signal 8 is converted into an intermediate control valve opening control signal 13 by an intermediate steam control valve opening adjuster 14, and the load set value 11 is further converted to a frequency-dependent CV setting rate / IV setting rate function. The intermediate steam control valve closing start control signal 17 converted by the generator 24 is added to the control signal 17 to control the intermediate steam control valve as an intermediate steam control valve flow request signal 18. The bypass valve is a bypass valve flow request signal 22 obtained by subtracting the control valve flow request signal 20 and the bypass valve chattering prevention bias signal 21 during normal operation from the total main steam flow signal 5.
The opening is controlled by. Here, a 25% capacity turbine bypass plant, 1.
The effect will be described using a frequency dependent CV regulation rate and a frequency dependent CV regulation rate / IV regulation rate as an example to prevent scram against a 5 Hz frequency rise. FIG. 5 shows the relationship between the frequency increase width (speed control signal) at the frequency dependent type regulating valve regulation rate and the regulating valve closing request. Even if the system frequency rises by 1.5 Hz, the adjustment valve closing request is 30
%, And a bias of + 10% is added to this.
The actual closing requirement is 20%. Therefore, even if the frequency rises by 1.5 Hz, all of the excess steam can be processed by the bypass valve without closing the control valve to the bypass capacity or more. FIG. 6 shows the relationship between the system frequency and the control valve flow request signal when the load setting is 110% (actual load 100%). Until 51.5Hz, the flow rate control valve requirement will not fall below 80%. Next, the load setting when the adjustment valve opening / closing ratio is frequency dependent and the CV / IV adjustment ratio is (5/2) as before.
FIG. 7 shows the flow demand signals of the regulator and intermediate steam regulator at 40% (30% actual load) as a function of frequency. As shown in FIG. 7, when the CV adjustment rate / IV adjustment rate is the same as before, the intermediate steam control valve starts to close before the control valve fully closes, so that the intermediate steam pressure may increase. On the other hand, if the CV adjustment rate / IV adjustment rate is frequency-dependent as shown in FIG. 8, the intermediate adjustment valve starts closing after the adjustment valve closes as shown in FIG. Control method. This is unchanged at any load setting. As shown above, the control valve opening adjustment rate and CV adjustment rate / IV
If the adjustment rate is frequency-dependent, the reactor will not scram when the frequency rises to 1.5 Hz, and the coordination between the control valve and the intermediate steam control valve can be maintained as before. [Effects of the Invention] According to the present invention, when the control valve is throttled when the system frequency rises, the bypass valve capacity is reduced for a frequency rise that allows continuous operation in order to throttle the control valve according to the system frequency. As described above, since it is not necessary to throttle the control valve, an increase in the reactor pressure is prevented, and the occurrence of a high neutron flux scram is prevented. At the same time, the CV adjustment rate / IV adjustment rate is also frequency-dependent, so that the coordination between the control valve and the intermediate steam control valve is ensured, and the plant durability against the system frequency rise can be improved.

【図面の簡単な説明】 第1図は本発明によるタービン制御装置の実施例を説明
するブロツク図、第2図は従来のタービン制御装置のブ
ロツク図、第3図は従来装置での周波数0.5Hz上昇時の
過渡応答を示す図、第4図は従来装置での周波数1.5Hz
上昇時の過渡応答を示す図、第5図は周波数依存型加減
弁開度調定率の一例を示す図、第6図は本発明による周
波数と加減弁流量信号との関係を示す図、第7図はCV調
定率/IV調定率を変更しない場合のCVとIVの関係を示す
図、第8図は周波数依存型CV調定率/IV調定率を示す
図、第9図は周波数依存型CV調定率/IV調定率によるCV
とIVとの関係を示す図である。 1……圧力信号、2……圧力設定値、3……フイルタ回
路、4……圧力調定器、5……全主蒸気流量信号、6…
…タービン速度信号、7……タービン速度設定値、8…
…偏差信号、9……加減弁開度調定器、10……加減弁開
度制御信号、11……負荷設定値、12……速度/負荷制御
信号、13……中間加減弁開度制御信号、14……中間蒸気
加減弁開度調定器、15……中間蒸気加減弁間バイアス、
16……CV調定率/IV調定率調定器、17……中間加減弁閉
鎖開始点バイアス、18……中間加減弁流量信号、19……
低値優先回路、20……加減弁流量要求信号、21……チヤ
タリング防止バイアス信号、22……バイパス弁流量要求
信号、23……周波数依存型加減弁開度調定率用関数発生
器、24……周波数依存型CV調定率/IV調定率用関数発生
器。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram for explaining an embodiment of a turbine control device according to the present invention, FIG. 2 is a block diagram of a conventional turbine control device, and FIG. Fig. 4 shows the transient response when rising, Fig. 4 shows the frequency of 1.5Hz in the conventional device
FIG. 5 is a diagram showing a transient response at the time of rising, FIG. 5 is a diagram showing an example of a frequency-dependent regulating valve opening / closing rate, FIG. 6 is a diagram showing a relationship between a frequency and a regulating valve flow signal according to the present invention, The figure shows the relationship between CV and IV when the CV setting rate / IV setting rate is not changed, FIG. 8 shows the frequency-dependent CV setting rate / IV setting rate, and FIG. 9 shows the frequency-dependent CV setting rate. CV by fixed rate / IV adjustment rate
FIG. 4 is a diagram showing a relationship between and IV. 1 ... pressure signal, 2 ... pressure set value, 3 ... filter circuit, 4 ... pressure regulator, 5 ... total main steam flow rate signal, 6 ...
... turbine speed signal, 7 ... turbine speed set value, 8 ...
... Deviation signal, 9 ... Adjustable valve opening adjuster, 10 ... Adjustable valve opening control signal, 11 ... Load set value, 12 ... Speed / load control signal, 13 ... Intermediate opening and closing valve opening control Signal, 14 …… Intermediate steam control valve opening adjuster, 15 …… Intermediate steam control valve bias,
16 CV adjustment rate / IV adjustment rate adjuster, 17 Intermediate control valve closing start point bias, 18 Intermediate control valve flow signal, 19
Low value priority circuit, 20: Adjustable valve flow request signal, 21: Anti-chattering bias signal, 22: Bypass valve flow request signal, 23: Frequency-dependent function generator for opening / closing valve opening adjustment rate, 24 ... … Function generator for frequency dependent CV setting rate / IV setting rate.

Claims (1)

(57)【特許請求の範囲】 1.沸騰水型原子力発電所の原子炉又は主蒸気配管に設
置された圧力検出器の測定値および予め定められた圧力
設定値の偏差に基づく全主蒸気流量信号とタービン速度
検出器の測定値および予め定められた速度設定値の偏差
信号に基づく加減弁開度制御信号に負荷設定器の設定値
を加算した速度/負荷制御信号とを比較し低い方の値を
加減弁流量要求信号として加減弁開度を制御し、全主蒸
気流量信号から加減弁流量要求信号を減算した値をバイ
パス弁流量要求信号としてバイパス弁開度を制御し、上
記タービン速度偏差信号に基づく中間蒸気加減弁開度制
御信号に中間蒸気加減弁開バイアス及び前記負荷設定器
の設定値に基づく中間蒸気加減弁閉鎖開始点バイアスを
加算した値を中間蒸気加減弁流量信号として中間蒸気加
減弁開度を制御するタービン制御装置において、 上記タービン速度偏差信号から周波数に依存して加減弁
開度制御信号を算出する加減弁開度調定率用関数発生器
と、上記負荷設定器の設定値に基づき前記加減弁が全閉
となる周波数以上の周波数に中間蒸気加減弁閉鎖開始点
バイアスを設定する蒸気加減弁/中間蒸気加減弁調定率
用関数発生器とを備えた ことを特徴とするタービン制御装置。
(57) [Claims] The measured value of the pressure detector installed in the reactor or main steam pipe of the boiling water nuclear power plant and the total main steam flow signal based on the deviation of the predetermined pressure set value and the measured value of the turbine speed detector and the A control value based on a deviation signal of a predetermined speed set value is compared with a speed / load control signal obtained by adding a set value of a load setting device to a control valve opening / closing control signal. Control the bypass valve opening as a bypass valve flow request signal using a value obtained by subtracting the control valve flow request signal from the total main steam flow signal, and control the intermediate steam control valve opening control signal based on the turbine speed deviation signal. A value obtained by adding the intermediate steam control valve opening bias and the intermediate steam control valve closing start point bias based on the set value of the load setter to the intermediate steam control valve flow signal is used as the intermediate steam control valve opening signal. In the bin control device, a function generator for an adjustable valve opening adjustment rate that calculates an adjustable valve opening control signal depending on a frequency from the turbine speed deviation signal, and the adjustable valve based on a set value of the load setting device. A turbine control device comprising: a steam control valve / intermediate steam control valve setting rate function generator for setting an intermediate steam control valve closing start point bias to a frequency equal to or higher than a frequency at which the valve is fully closed.
JP62267756A 1987-10-23 1987-10-23 Turbine control device Expired - Lifetime JP2720032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62267756A JP2720032B2 (en) 1987-10-23 1987-10-23 Turbine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62267756A JP2720032B2 (en) 1987-10-23 1987-10-23 Turbine control device

Publications (2)

Publication Number Publication Date
JPH01110813A JPH01110813A (en) 1989-04-27
JP2720032B2 true JP2720032B2 (en) 1998-02-25

Family

ID=17449148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62267756A Expired - Lifetime JP2720032B2 (en) 1987-10-23 1987-10-23 Turbine control device

Country Status (1)

Country Link
JP (1) JP2720032B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105201565B (en) * 2015-09-30 2016-08-17 西安西热电站信息技术有限公司 A kind of multicomputer steam-turbine real-time distribution method of flow based on piping-main scheme
CN116241343B (en) * 2023-03-09 2023-11-10 南京汽轮电力科技有限公司 System for optimizing operation control and adjusting security of steam turbine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131903A (en) * 1985-12-03 1987-06-15 Toshiba Corp Speed control device for steam turbine

Also Published As

Publication number Publication date
JPH01110813A (en) 1989-04-27

Similar Documents

Publication Publication Date Title
JP2720032B2 (en) Turbine control device
JPS63117298A (en) Turbine controller
JPH0639889B2 (en) Steam turbine speed controller
JPS622279B2 (en)
JPH01178900A (en) Feed-water flow-rate controller for nuclear reactor
JPS62131903A (en) Speed control device for steam turbine
JPH01114797A (en) Speed controller for steam turbine
KR840002451B1 (en) Method for regulating the power supplied to a steam turbine pressurized water nuclear reactor
JPS639638B2 (en)
JPH0241720B2 (en)
JPS6390605A (en) Control device for steam generating plant
JPS6158903A (en) Turbine controller for nuclear reactor
JPH0441800B2 (en)
JPS60256097A (en) Controller for recycle flow rate of nuclear reactor
JPH0639886B2 (en) Steam turbine speed controller
JPS61157705A (en) Steam turbine velocity control device
JPS60256098A (en) Controller for pressure of nuclear reactor
JPH0245601A (en) Turbine control device
JPS61205306A (en) Turbine controller
JPH05927B2 (en)
JPH0441799B2 (en)
JPS62210205A (en) Turbine controller
JPS60129694A (en) Controller for pressure of nuclear power plant
JPS6175295A (en) Control system of boiling water type nuclear power plant
JPS62105092A (en) Controller for nuclear reactor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371