JPH04113298A - Controlling of nuclear reactor pressure - Google Patents

Controlling of nuclear reactor pressure

Info

Publication number
JPH04113298A
JPH04113298A JP2232512A JP23251290A JPH04113298A JP H04113298 A JPH04113298 A JP H04113298A JP 2232512 A JP2232512 A JP 2232512A JP 23251290 A JP23251290 A JP 23251290A JP H04113298 A JPH04113298 A JP H04113298A
Authority
JP
Japan
Prior art keywords
reactor
flow rate
signal
valve
steam flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2232512A
Other languages
Japanese (ja)
Inventor
Yuuji Koshi
古志 裕司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2232512A priority Critical patent/JPH04113298A/en
Publication of JPH04113298A publication Critical patent/JPH04113298A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To avoid any scram caused by changing of nuclear reactor pressure by calculating an opening demand signal of a bypass valve based on the actual opening of a regulating valve. CONSTITUTION:Thermal output of a nuclear reactor is detected by a neutron flux detector 11 and the detected signal 11a is input to a circuit 12 for calculating steam flow rate. A steam flow rate demand signal 12a being output from the calculating circuit 12, together with a frequency controlling signal 14a, are input to a lower value preferential circuit 15 and then an output signal 15a of the lower value preferential circuit 15 is input to a circuit 16 for compensating opening demand. From the compensating circuit 16, opening demand signals 13a and 13a' are output to each regulating valve 3 and 3 to control turbine steam flow rate. Also, a total steam flow rate signal 18a of the turbine is calculated by an adder 19, along with the steam flow rate demand signal 12a and a bypass signal 20, to control a bypass valve 7 by an opening demand signal 13b from the adder 19. With this procedure, scram risk caused by changing of nuclear reactor pressure can be avoided.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は原子炉圧力制御装置に係り、゛特に不用意な原
子炉スクラムを回避するとともに炉心の健全性を確保す
ることができる原子炉圧力制御装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a nuclear reactor pressure control system, and is particularly directed to avoiding inadvertent reactor scrams and ensuring the integrity of the reactor core. This invention relates to a nuclear reactor pressure control device that can perform

(従来の技術) 一般に、沸騰水型原子カプラントにおいては、原子炉で
発生した蒸気を、複数の加減弁を介しタービンに供給し
て発電機を駆動するともに、バイパス弁の開度を制御し
て圧力調節を行なう原子炉圧力制御装置を設けるのが通
例である。
(Prior art) Generally, in a boiling water nuclear coupler, steam generated in the reactor is supplied to a turbine via multiple control valves to drive a generator, and the opening degree of a bypass valve is controlled. It is customary to provide a reactor pressure control device for pressure regulation.

ところで、従来の原子炉圧力制御装置では、加減弁蒸気
流量要求信号と圧力制御系の圧力調整器出力信号との差
分により、バイパス弁の開度および流量を制御するよう
にしている。
By the way, in a conventional nuclear reactor pressure control device, the opening degree and flow rate of a bypass valve are controlled based on the difference between a regulating valve steam flow rate request signal and a pressure regulator output signal of a pressure control system.

(発明が解決しようとする課題) 前記従来の原子炉圧力制御装置においては、バイパス弁
の開度および流電制御に、加減弁蒸気流量要求信号を用
いているため、電力系統外乱や主蒸気系昇順の不具合等
により、加減弁およびバイパス弁が急速に作動した場合
、各弁の作動特性のミスマツチにより、タービン蒸気流
量が変動することがあり、この場合には、原子炉圧力お
よび中性子束が上昇して原子炉スクラムに至るおそれが
ある。
(Problems to be Solved by the Invention) In the conventional reactor pressure control device described above, the regulator valve steam flow rate request signal is used to control the opening degree and current flow of the bypass valve. If the regulator valve and bypass valve operate rapidly due to an ascending fault, etc., the turbine steam flow rate may fluctuate due to a mismatch in the operating characteristics of each valve, and in this case, the reactor pressure and neutron flux will increase. This could lead to a reactor scram.

本発明は、このような点を考慮してなされたもので、加
減弁およびバイパス弁が急速に作動した場合でも、原子
炉圧力および中性子束の上昇を抑制し、不用意な原子炉
スクラムを防止するとともに原子炉の健全性を確保する
ことができる原子炉圧力制御装置を提供することを目的
とする。
The present invention was made with these points in mind, and even if the moderation valve and bypass valve operate rapidly, the rise in reactor pressure and neutron flux is suppressed, and inadvertent reactor scrams are prevented. It is an object of the present invention to provide a reactor pressure control device that can simultaneously ensure the integrity of a nuclear reactor.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、前記目的を達成する手段として、各加減弁の
弁開度に基づき総加減弁流量を算出する加減弁蒸気流量
算出回路と、この加減弁蒸気流量算出回路からの出力信
号と原子炉から送られてくる蒸気量に対応する信号との
差分によりバイパス弁の開度および流量を制御するバイ
パス弁制御回路とを有する蒸気流量制御回路と、そのバ
イパス弁制御出力信号が著しく大きい場合には再循環ポ
ンプ及び制御棒駆動系へ原子炉出力の降下信号を出力す
る炉出力制御回路を設けるようにしたことを特徴とする
(Means for Solving the Problems) As a means for achieving the above object, the present invention provides a control valve steam flow rate calculation circuit that calculates a total control valve flow rate based on the valve opening degree of each control valve, and a control valve steam flow rate calculation circuit that calculates a total control valve flow rate based on the valve opening degree of each control valve. A steam flow control circuit having a bypass valve control circuit that controls the opening degree and flow rate of a bypass valve based on the difference between an output signal from a calculation circuit and a signal corresponding to the amount of steam sent from a nuclear reactor, and the bypass valve. The present invention is characterized in that a reactor power control circuit is provided which outputs a reduction signal of the reactor power to the recirculation pump and control rod drive system when the control output signal is extremely large.

(作用) 本発明に係る原子炉圧力制御装置においては、従来の加
減弁蒸気流量要求信号に代えて、個々の加減弁開度に基
づき求められた総加減弁蒸気流斌信号が用いられ、この
信号と原子炉から送られてくる蒸気量に対応する信号と
の差分から、バイパス弁に流すべき流量が求められる。
(Function) In the reactor pressure control system according to the present invention, a total control valve steam flow signal obtained based on the individual control valve opening degree is used in place of the conventional control valve steam flow rate request signal. The flow rate that should flow through the bypass valve is determined from the difference between the signal and the signal corresponding to the amount of steam sent from the reactor.

このため、加減弁とバイパス弁との応答特性のずれが補
正され、原子炉圧力および中性子束の上昇に伴なう原子
炉スクラムを回避して運転を継続することが可能となる
Therefore, the difference in response characteristics between the control valve and the bypass valve is corrected, and it becomes possible to continue operation while avoiding reactor scram caused by increases in reactor pressure and neutron flux.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明に係る原子炉圧力制御装置の一例を示
すもので、図中、符号1は原子炉であり。
FIG. 1 shows an example of a nuclear reactor pressure control system according to the present invention, and in the figure, reference numeral 1 indicates a nuclear reactor.

この原子炉1で発生した蒸気は、主蒸気管2および複数
の加減弁3.3′を介してタービン4に導かれ、発電機
5を駆動するようになっている。また、原子炉1で発生
した蒸気の一部は、第1図に示すように、バイパス管6
およびバイパス弁7を介して直接復水器8に導かれ、原
子炉圧力が制御されるようになっている。
Steam generated in the nuclear reactor 1 is led to a turbine 4 via a main steam pipe 2 and a plurality of control valves 3,3', and drives a generator 5. In addition, some of the steam generated in the reactor 1 is transferred to the bypass pipe 6 as shown in FIG.
The reactor pressure is guided directly to the condenser 8 via the bypass valve 7, and the reactor pressure is controlled.

原子炉の熱出力は、第1図に示すように、中性子束検出
器11により検出され、その検出信号11aは、蒸気流
量算出回路12に入力されるようになっており、この蒸
気流量算出回路12からは、原子炉出力に見合った。す
なわち原子炉熱出力に対応する蒸気流量要求信号12a
が出力され、この蒸気流量要求信号12aは、各加減弁
3,3′からの加減弁開度信号3a、 3a’ ととも
に、蒸気流量制御回路13に入力されるようになってい
る。そして、この蒸気流量制御回路13は、第1図に示
すように、各加減弁3,3′およびバイパス弁7に対し
、適切な開度要求信号13a、 13a’および13b
を出力し。
As shown in FIG. 1, the thermal output of the nuclear reactor is detected by a neutron flux detector 11, and its detection signal 11a is input to a steam flow rate calculation circuit 12. From 12 onwards, it was commensurate with the reactor output. That is, the steam flow rate request signal 12a corresponding to the reactor thermal output
This steam flow rate request signal 12a is input to the steam flow rate control circuit 13 together with the control valve opening signals 3a, 3a' from each control valve 3, 3'. As shown in FIG. 1, this steam flow rate control circuit 13 sends appropriate opening request signals 13a, 13a', and 13b to each control valve 3, 3' and bypass valve 7.
Output.

それらの開度制御を行なうようになっている。These opening degrees are controlled.

蒸気流量制御回路13は、第2図に示すように、蒸気流
量算出回路12からの蒸気流量要求信号12aと系統側
からの周波数制御信号14aとが入力される低値優先回
路15を備えており、したがって、通常は蒸気流量算出
回路12からの蒸気流量要求信号12aにより弁制御が
行なわれるが、系統周波数変動時には、周波数制御信号
14aが優先されるようになっている。
As shown in FIG. 2, the steam flow rate control circuit 13 includes a low value priority circuit 15 into which a steam flow rate request signal 12a from the steam flow rate calculation circuit 12 and a frequency control signal 14a from the system side are input. Therefore, valve control is normally performed by the steam flow rate request signal 12a from the steam flow rate calculation circuit 12, but when the system frequency fluctuates, the frequency control signal 14a is given priority.

低値優先回路15からの出力信号15aは、開度要求補
償回路16に入力されるようになっており、この開度要
求補償回路16からは、各加減弁3,3′に対して開度
要求信号13a、 13a’ を出力し、タービン蒸気
流量を制御するようになっている。
The output signal 15a from the low value priority circuit 15 is input to the opening request compensation circuit 16, and from this opening request compensation circuit 16, the opening degree is determined for each regulating valve 3, 3'. Request signals 13a and 13a' are outputted to control the turbine steam flow rate.

また、各加減弁3,3′からの各加減弁開度信号3a、
 3a’は、加減弁流量算出回路17.17’にそれぞ
れ入力されるようになっており、これら各加減弁流量算
出回路17.17’から出力される各蒸気流量信号17
a、 17a’は、加算器18に入力されて加算される
ようになっている。そして、この加算器18から出力さ
れるタービン総蒸気流量信号18aは、加算器19にお
いて、蒸気流量算出回路12からの蒸気流量要求信号1
2aおよび若干のバイアス信号20とともに演算され、
加算器18からは、バイパス弁7で処理すべき蒸気流量
要求信号としてのバイパス弁開度要求信号13bが出力
されるようになっている。なお、開度要求信号13bが
著しく大きい場合には原子炉出力制御回路21が作動し
て再循環ポンプ9及び制御棒駆動系10へ炉出力降下信
号21a。
In addition, each control valve opening signal 3a from each control valve 3, 3',
3a' are respectively input to the control valve flow rate calculation circuits 17.17', and each steam flow rate signal 17 output from each control valve flow rate calculation circuit 17.17'
a and 17a' are input to an adder 18 and added. Then, the turbine total steam flow rate signal 18a outputted from the adder 18 is converted into the steam flow rate request signal 1 from the steam flow rate calculation circuit 12 in the adder 19.
2a and some bias signal 20,
The adder 18 outputs a bypass valve opening request signal 13b as a steam flow rate request signal to be processed by the bypass valve 7. Note that when the opening request signal 13b is extremely large, the reactor power control circuit 21 operates and sends a reactor power reduction signal 21a to the recirculation pump 9 and control rod drive system 10.

21bを出力する。21b.

次に、本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

原子炉1で発生した蒸気は、主蒸気管2および複数の加
減弁3,3′を介してタービン4に送られ1発電機5を
駆動する。
Steam generated in the nuclear reactor 1 is sent to a turbine 4 via a main steam pipe 2 and a plurality of control valves 3, 3' to drive a generator 5.

原子炉の熱出力は、中性子束検出器11で検出され、そ
の検出信号11aは、蒸気流量算出回路12に入力され
る。この蒸気流量算出回路12から出力される蒸気流量
要求信号12aは、第2図に示すように、周波数制御信
号14aとともに低値優先回路15に入力され、この低
値優先回路15の出力信号15aは、開度要求補償回路
1Gに入力される。すると、開度要求補償回路16から
は、各加減弁3,3′に対し開度要求信号13a、 1
3a’ が出力され、タービン蒸気流量が制御される。
The thermal output of the nuclear reactor is detected by a neutron flux detector 11, and its detection signal 11a is input to a steam flow rate calculation circuit 12. As shown in FIG. 2, the steam flow rate request signal 12a output from the steam flow rate calculation circuit 12 is input to the low value priority circuit 15 together with the frequency control signal 14a, and the output signal 15a of this low value priority circuit 15 is , is input to the opening request compensation circuit 1G. Then, the opening request compensation circuit 16 sends opening request signals 13a, 1 to each control valve 3, 3'.
3a' is output to control the turbine steam flow rate.

一方、各加減弁3,3′の開度信号3a、 3a’は、
第2図に示すように、各加減弁流量算出回路17゜17
′にそれぞれ入力され、加減弁3,3′の運転台数によ
る加減弁3,3′の流量特性の補正が行なわれて蒸気流
量信号17a、 17a’ がそれぞれ出力される。
On the other hand, the opening signals 3a and 3a' of each control valve 3 and 3' are as follows:
As shown in Fig. 2, each control valve flow rate calculation circuit 17°17
The steam flow rate signals 17a and 17a' are outputted after the flow characteristics of the regulator valves 3 and 3' are corrected depending on the number of regulator valves 3 and 3' in operation.

これらの蒸気流量信号17a、 17a’は、加算器1
8に入力されて加算さ九、加算器18からは、タービン
総蒸気流量信号18aが出力される。このタービン総蒸
気流量信号18aは、加算器19において、蒸気流量要
求信号12aおよびバイパス信号20とともに演算され
、この加算器19から出力される開度要求信号13bに
より、バイパス弁7が制御される。
These steam flow signals 17a, 17a' are sent to the adder 1.
The adder 18 outputs a turbine total steam flow rate signal 18a. This turbine total steam flow rate signal 18a is calculated together with the steam flow rate request signal 12a and the bypass signal 20 in an adder 19, and the bypass valve 7 is controlled by the opening request signal 13b outputted from the adder 19.

第3図は、系統周波数変動時の加減弁・バイパス弁の時
間特性図、第4図は中性子束および原子炉圧力の過渡応
答図であり1図中、実線グラフは本発明を、また破線グ
ラフは従来例をそれぞれ示す。
Figure 3 is a time characteristic diagram of control valves and bypass valves during system frequency fluctuations, and Figure 4 is a transient response diagram of neutron flux and reactor pressure. show conventional examples.

従来の場合、バイパス弁開度要求信号は、第2図におけ
る低値優先回路15の出力信号15aと、圧力調整器1
2からの蒸気流量要求信号12aとの差分により制御さ
れる。このため、各弁の要求信号が急速な場合には、加
減弁とバイパス弁との応答特性にミスマツチが生じ、原
子炉圧力が上昇するおそれがある。
In the conventional case, the bypass valve opening request signal is the output signal 15a of the low value priority circuit 15 in FIG.
It is controlled by the difference between the steam flow rate request signal 12a and the steam flow rate request signal 12a. Therefore, if the request signal for each valve is rapid, there is a possibility that a mismatch will occur in the response characteristics of the control valve and the bypass valve, and the reactor pressure will increase.

これに対して、本実施例の場合には、実際の加減弁開度
に基づきバイパス弁開度要求信号13bを算出している
ため、前記ミスマツチは生ぜず、原子炉圧力の上昇に伴
なうスクラムを回避することができる。
On the other hand, in the case of this embodiment, the bypass valve opening request signal 13b is calculated based on the actual control valve opening, so the mismatch does not occur and Scrum can be avoided.

ま球、従来は、加減弁開度を直接監視していないため、
加減弁自体の故障による誤閉鎖や誤開放事故が発生した
場合、バイパス弁等による補償動作が遅れ、スクラム等
の可能性が高くなる。
Well, in the past, the adjustment valve opening was not directly monitored.
In the event of an erroneous closing or opening accident due to a failure of the control valve itself, the compensatory action by the bypass valve or the like will be delayed, increasing the possibility of a scram.

これに対して1本実施例の場合には、加減弁3゜3′の
誤動作を直接検出でき、また各加減弁蒸気流量算出回路
17.17’により、運転加減弁数の変化を考慮して各
加減弁流量を精度よく計算できるので、バイパス弁6に
対し適切な開度要求信号13bを出力することができ、
原子炉圧力変化に起因するスクラムのリスクを回避でき
る。又、万一バイパス弁への要求信号が著しく大きい場
合には炉出力制御回路21により炉出力の降下が行なわ
れるため原子炉の健全性は十分確保することができる。
On the other hand, in the case of this embodiment, malfunctions of the regulating valves 3゜3' can be directly detected, and each regulating valve steam flow rate calculation circuit 17, 17' takes into account changes in the number of operating regulating valves. Since the flow rate of each control valve can be calculated with high precision, an appropriate opening request signal 13b can be output to the bypass valve 6.
The risk of scram caused by reactor pressure changes can be avoided. Furthermore, in the unlikely event that the request signal to the bypass valve is extremely large, the reactor power control circuit 21 lowers the reactor power, so that the reactor's health can be sufficiently ensured.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、実際の加減弁開度に基づ
きバイパス弁開度要求信号を算出するようにしているの
で、原子炉圧力変化に起因するスクラムを有効に回避で
き、原子炉炉心の健全性およびプラント稼動率を向上さ
せることができる。
As explained above, the present invention calculates the bypass valve opening request signal based on the actual control valve opening, so it is possible to effectively avoid scrams caused by changes in reactor pressure, and Health and plant availability can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る原子炉圧力制御装置を
示す全体構成図、第2図は蒸気流量制御回路の構成図、
第3図は系統周波数変動時の加減弁、バイパス弁の時間
特性図、第4図は中性子束および原子炉圧力の過渡応答
図である。 1・・・原子炉、      3,3′・・・加減弁、
3a、 3a’・・・加減弁開度信号、4・・・タービ
ン、     5・・・発電機、7・・・バイパス弁、
    9・・・再循環ポンプ、10・・・制御棒駆動
系、  12・・・蒸気流量算出回路、12a・・・蒸
気流量要求信号、 13・・・蒸気流量制御回路、 13a、 13a’ 、 13b−開度要求信号、14
a・・・周波数制御信号、15・・・低値優先回路。 16・・・開度要求補償回路、 17、17’・・・加減弁流量算出回路、17a、 1
7a’・・・蒸気流量信号、18、19・・・加算器、 18a・・・タービン総蒸気流量信号、20・・・バイ
パス信号、  21・・・炉出力制御回路、21a、 
21b・・・炉出力降下信号。 代理人 弁理士 則 近 憲 佑 第 図 時間 (秒) 時間 (秒)
FIG. 1 is an overall configuration diagram showing a nuclear reactor pressure control device according to an embodiment of the present invention, FIG. 2 is a configuration diagram of a steam flow rate control circuit,
FIG. 3 is a time characteristic diagram of the control valve and bypass valve when the system frequency fluctuates, and FIG. 4 is a transient response diagram of neutron flux and reactor pressure. 1... Nuclear reactor, 3,3'... Adjustment valve,
3a, 3a'... Adjustment valve opening signal, 4... Turbine, 5... Generator, 7... Bypass valve,
9... Recirculation pump, 10... Control rod drive system, 12... Steam flow rate calculation circuit, 12a... Steam flow rate request signal, 13... Steam flow rate control circuit, 13a, 13a', 13b -Opening request signal, 14
a... Frequency control signal, 15... Low value priority circuit. 16...Opening degree compensation circuit, 17, 17'...Adjustment valve flow rate calculation circuit, 17a, 1
7a'...Steam flow rate signal, 18, 19...Adder, 18a...Turbine total steam flow rate signal, 20...Bypass signal, 21...Furnace output control circuit, 21a,
21b... Furnace output drop signal. Agent Patent Attorney Noriyuki Chika Diagram Time (Seconds) Time (Seconds)

Claims (2)

【特許請求の範囲】[Claims] (1)沸騰水型原子炉における圧力を制御する原子炉圧
力制御装置において、主蒸気をタービンに導びく主蒸気
管に配設されたタービン加減弁の弁開度にもとづき総加
減弁流量を求める加減弁蒸気流量算出回路と、原子炉の
出力を求める原子炉出力算出回路と、前記総加減弁流量
と原子炉出力の偏差信号によりタービンをバイパスする
バイパス管に配設されたバイパス弁の開度を決定するバ
イパス弁制御回路と、このバイパス弁制御回路の出力信
号があるしきい値を超える場合には炉心流量を制御する
再循環ポンプ及び制御棒を駆動させる制御棒駆動系へ原
子炉出力の降下信号を出力する炉出力制御回路を具備し
て成ることを特徴とする原子炉圧力制御装置。
(1) In a reactor pressure control device that controls the pressure in a boiling water reactor, the total flow rate of the regulator valve is determined based on the valve opening of the turbine regulator valve installed in the main steam pipe that leads main steam to the turbine. A control valve steam flow rate calculation circuit, a reactor output calculation circuit that calculates the reactor output, and an opening degree of a bypass valve disposed in a bypass pipe that bypasses the turbine based on a deviation signal between the total control valve flow rate and the reactor output. A bypass valve control circuit that determines the reactor output, and when the output signal of this bypass valve control circuit exceeds a certain threshold, the reactor output is sent to the recirculation pump that controls the reactor core flow rate and the control rod drive system that drives the control rods. A nuclear reactor pressure control device comprising a reactor power control circuit that outputs a drop signal.
(2)前記原子炉出力算出回路は、原子炉の中性子束信
号に基づき原子炉の熱出力を求めて成ることを特徴とす
る請求項1記載の原子炉圧力制御装置。
(2) The reactor pressure control device according to claim 1, wherein the reactor power calculation circuit calculates the thermal power of the reactor based on a neutron flux signal of the reactor.
JP2232512A 1990-09-04 1990-09-04 Controlling of nuclear reactor pressure Pending JPH04113298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2232512A JPH04113298A (en) 1990-09-04 1990-09-04 Controlling of nuclear reactor pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2232512A JPH04113298A (en) 1990-09-04 1990-09-04 Controlling of nuclear reactor pressure

Publications (1)

Publication Number Publication Date
JPH04113298A true JPH04113298A (en) 1992-04-14

Family

ID=16940496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2232512A Pending JPH04113298A (en) 1990-09-04 1990-09-04 Controlling of nuclear reactor pressure

Country Status (1)

Country Link
JP (1) JPH04113298A (en)

Similar Documents

Publication Publication Date Title
JPH06201891A (en) Device and method of controlling nuclear reactor
US4440715A (en) Method of controlling nuclear power plant
KR100584835B1 (en) Feedwater control system for steam generator in nuclear power plant and control method thereof
JPH04113298A (en) Controlling of nuclear reactor pressure
JPH03225298A (en) Nuclear reactor pressure controller
JPS6038522B2 (en) Turbine control device
JPS6029699A (en) Controller for recycle flow rate
JPS59107298A (en) Recirculation flow rate control device
JPS6180095A (en) Controller for water level of nuclear reactor
JPH0410040B2 (en)
JPS6217121B2 (en)
JPS6069215A (en) Apparatus for controlling steam pressure at inlet side of turbine
JPS6158903A (en) Turbine controller for nuclear reactor
JPS63277804A (en) Turbine control device for steam generating plant
JPH06230176A (en) Turbine controller
JPS60129694A (en) Controller for pressure of nuclear power plant
JPH01110813A (en) Turbine controller
JPS62162703A (en) Turbine control device
JPH0241720B2 (en)
JPH0245601A (en) Turbine control device
JPH0441798B2 (en)
JPH01299497A (en) Nuclear reactor pressure controller
JPS62131903A (en) Speed control device for steam turbine
JPS63285205A (en) Load setting device for turbine control device
JPS61295401A (en) Controller for feed pump