JPS6217121B2 - - Google Patents

Info

Publication number
JPS6217121B2
JPS6217121B2 JP55047193A JP4719380A JPS6217121B2 JP S6217121 B2 JPS6217121 B2 JP S6217121B2 JP 55047193 A JP55047193 A JP 55047193A JP 4719380 A JP4719380 A JP 4719380A JP S6217121 B2 JPS6217121 B2 JP S6217121B2
Authority
JP
Japan
Prior art keywords
reactor
flow rate
water supply
signal
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55047193A
Other languages
Japanese (ja)
Other versions
JPS56143998A (en
Inventor
Akira Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP4719380A priority Critical patent/JPS56143998A/en
Publication of JPS56143998A publication Critical patent/JPS56143998A/en
Publication of JPS6217121B2 publication Critical patent/JPS6217121B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Description

【発明の詳細な説明】 本発明は原子炉給水制御装置に係り、特に沸騰
水形原子力プラントにおいて原子炉を水位低下に
よるスクラムから救済するのに好適な原子炉給水
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reactor feed water control system, and more particularly to a reactor water supply system suitable for rescuing a nuclear reactor from a scram caused by a drop in water level in a boiling water nuclear power plant.

従来の、沸騰水形(BWR)原子力プラントに
おける給水および復水系(以下給復水系と称す)
は、主タービンの復水器を水源として低圧復水ポ
ンプ(以下LPCPと称す)および高圧復水ポンプ
(以下HPCPと称す)で段階的に昇圧し、最終的
に給水ポンプ(以下RFPと称す)を通して給水
流量制御装置によつて流量が制御されて原子炉に
給水されるようになつている。給水流量制御装置
には原子炉の水位、給水流量および主蒸気流量が
プロセス検出信号として入力され、ここで演算さ
れてRFPに対して給水流量要求信号を与えるよ
うになつており、RFPの流量制御範囲は、復水
ポンプの設計最大流量以内に納まるように設計さ
れている。
Feedwater and condensate systems (hereinafter referred to as feedwater and condensate systems) in conventional boiling water (BWR) nuclear power plants
The main turbine condenser is used as a water source, and the pressure is increased step by step using a low pressure condensate pump (hereinafter referred to as LPCP) and a high pressure condensate pump (hereinafter referred to as HPCP), and finally the feed water pump (hereinafter referred to as RFP) is used. Through the reactor, water is supplied to the reactor with the flow rate controlled by a water supply flow rate control device. The reactor water level, feed water flow rate, and main steam flow rate are input as process detection signals to the feed water flow rate control device, which calculates them and provides a feed water flow rate request signal to the RFP, which controls the flow rate of the RFP. The range is designed to be within the design maximum flow rate of the condensate pump.

ところが、プラントの過渡変化でRFPに復水
ポンプの設計容量を上廻る給水要求が出た場合、
あるいは給復水系のバイパスライン(給復水系の
途中から復水器に戻るラインで通常運転時には閉
止されている)が誤動作または誤操作により流路
が形成された場合には、LPCP吐出流量、すなわ
ち復水流量がLPCPの設計容量を上廻り、給復水
系の系統圧は急激に低下するため、HPCP,RFP
のポンプ保護機能が働いてHPCP,RFPが全台ト
リツプする。
However, if the RFP receives a water supply request that exceeds the design capacity of the condensate pump due to transient changes in the plant,
Alternatively, if a bypass line of the water supply and condensate system (a line that returns from the middle of the water supply and condensate system to the condenser and is closed during normal operation) is formed due to malfunction or operation, the LPCP discharge flow rate, that is, the Since the water flow rate exceeds the design capacity of LPCP and the system pressure of the water supply and condensate system decreases rapidly, HPCP, RFP
The pump protection function works and all HPCP and RFP units trip.

また、LPCP,HPCP等のうちの1台が運転支
障によりトリツプした場合には予備機が自動起動
するが、この間原子炉水位の過渡変化で給水要求
が過大となり、給復水系の系統圧力がポンプ保護
のトリツプ点に接近することになる。給復水系の
系統圧力がトリツプ点以下に下がつた場合には、
HPCP、RFPは全台トリツプとなり、いわゆる給
水喪失に到るので原子炉水位の低下は大巾とな
り、非常用炉心冷却系(以下ECCSと称す)が作
動して原子炉圧力容器に不必要な熱応力が加わる
ことになる。これを防止することは原子炉の安全
性向上の上でも重要なことである。
In addition, if one of the LPCP, HPCP, etc. trips due to an operational problem, the standby unit will automatically start up, but during this time, the water supply demand will become excessive due to transient changes in the reactor water level, and the system pressure of the water supply and condensate system will increase. The trip point of protection will be approached. If the system pressure of the water supply and condensate system falls below the trip point,
All HPCP and RFP units trip, resulting in what is called a loss of water supply, resulting in a drastic drop in the reactor water level, and the emergency core cooling system (hereinafter referred to as ECCS) is activated, reducing unnecessary heat to the reactor pressure vessel. This will add stress. Preventing this is also important in improving the safety of nuclear reactors.

本発明はかかる現況に鑑みなされたもので、そ
の目的とするところは、給復水ポンプトリツプに
よる原子炉スクラムを回避することができるとと
もに、全給水喪失に伴なう炉水位の大巾低下によ
るECCSの不必要な作動を防止することができ
る。原子炉給水制御装置を提供するにある。
The present invention was developed in view of the current situation, and its purpose is to avoid reactor scrams caused by water supply and condensate pump tripping, and to avoid ECCS caused by a large drop in reactor water level due to loss of all water supply water. Unnecessary operation of the system can be prevented. To provide reactor water supply control equipment.

本発明は、給水流量を制御する給水要求信号の
最大値を給水系および復水系の状態に合わせてそ
の許容値内に制限する最大給水流量制限手段と、
この制限値が原子炉出力を下廻つた場合に制限値
に対応させて原子炉出力を減少させる原子炉出力
追従手段とを備え、給復水ポンプの吸込圧力がト
リツプ点以下になることを防止するとともに、原
子炉水位制御が円滑に行なわれるようにしたもの
である。
The present invention includes a maximum water supply flow rate limiting means that limits the maximum value of a water supply request signal that controls the water supply flow rate to within an allowable value according to the conditions of the water supply system and the condensate system;
A reactor output tracking means is provided to reduce the reactor output in accordance with the limit value when this limit value falls below the reactor output, thereby preventing the suction pressure of the feed and condensate pump from falling below the trip point. At the same time, the reactor water level control was carried out smoothly.

以下本発明を図示する一実施例に基づいて説明
する。
The present invention will be described below based on an illustrated embodiment.

第1図において1は原子炉であり、この原子炉
1からの蒸気は、主蒸気管2を介して主タービン
3に供給され、ここで仕事をした後、復水器4で
冷却されて復水となるようになつている。
In Fig. 1, 1 is a nuclear reactor, and steam from this reactor 1 is supplied to a main turbine 3 via a main steam pipe 2, and after doing work there, it is cooled in a condenser 4 and condensed. It is becoming like water.

復水器4からの復水は、LPCP5およびHPCP
6をそれぞれ介して段階的に昇圧され、本発明に
係る給水制御装置7で制御されたRFP8を最終
的に通つて前記原子炉1に供給されるようになつ
ている。LPCP5とHPCP6との間には、第1図
に示すように補機復水器9および脱塩器10が、
またHPCP6とRFP8との間には給水ヒータ11
がそれぞれ設けられている。前記給水制御装置7
には、第1図に示すように主蒸気管2に設けられ
た主蒸気流量検出器12からの主蒸気流量信号1
3、原子炉1に設けられた炉水位検出器14から
の炉水位信号15、給水系に設けられた給水流量
検出器16からの給水流量信号17、給復水系の
系統圧力としてのHPCP吸込圧力検出信号18お
よび原子炉1内に設けられた原子炉出力検出器1
9からの原子炉出力信号20がそれぞれ入力され
るようになつており、また給水制御装置7から
は、RFP8を制御する給水要求信号21および
原子炉再循環流量制御装置(以下PLRと称す)に
対するPLRランバツク信号22がそれぞれ出力さ
れるようになつている。
Condensate from condenser 4 is LPCP5 and HPCP
6, and is supplied to the nuclear reactor 1 through the RFP 8, which is controlled by the water supply control device 7 according to the present invention. Between the LPCP 5 and HPCP 6, as shown in FIG. 1, an auxiliary condenser 9 and a demineralizer 10 are installed.
In addition, a water heater 11 is installed between HPCP6 and RFP8.
are provided for each. The water supply control device 7
1, the main steam flow rate signal 1 from the main steam flow rate detector 12 provided in the main steam pipe 2 is detected.
3. Reactor water level signal 15 from the reactor water level detector 14 provided in the reactor 1, feed water flow rate signal 17 from the feed water flow rate detector 16 provided in the water supply system, HPCP suction pressure as system pressure of the water supply and condensate system Detection signal 18 and reactor power detector 1 provided in the reactor 1
Reactor output signals 20 from 9 are respectively inputted, and from the water supply control device 7, a water supply request signal 21 that controls the RFP 8 and a reactor recirculation flow rate control device (hereinafter referred to as PLR) are input. PLR runback signals 22 are output respectively.

給水制御装置7は、第2図に示すように原子炉
水位制御回路(以下FWCと称す)23、最大給
水流量制限回路(以下MFWLと称す)24、低
値優先器(以下LVGと称す)25および原子炉
出力追従回路(以下LFCと称す)26から構成
されており、FWC23には主蒸気流量信号1
3、炉水位信号15および給水流量信号17がプ
ロセス検出信号としてそれぞれ入力され、また
MFWL24にはHPCP吸込圧力検出信号18が入
力され、、さらにLFC26には原子炉出力信号2
0が入力されるようになつている。そして、
FWC23からの出力信号27とMFWL24から
の出力信号28とはLVG25に入力され、ここ
で両信号27,28が比較され、そのうちの低値
信号27または28が給水要求信号21として
LVG25から出力されるうになつている。
MFWL24の出力信号28はまた、第1図に示
すように原子炉出力信号20とともにLFC26
に入力されて原子炉出力信号20と比較され、前
記出力信号28が原子炉出力信号20の値を下廻
つた場合にはLFC26からPLRランバツク信号
22が出力され、原子炉1の出力が減少するよう
になつている。
As shown in FIG. 2, the feed water control device 7 includes a reactor water level control circuit (hereinafter referred to as FWC) 23, a maximum feed water flow rate limiting circuit (hereinafter referred to as MFWL) 24, and a low value priority device (hereinafter referred to as LVG) 25. and a reactor power follow-up circuit (hereinafter referred to as LFC) 26, and the FWC 23 includes a main steam flow rate signal 1.
3. The reactor water level signal 15 and the feed water flow rate signal 17 are respectively input as process detection signals, and
The HPCP suction pressure detection signal 18 is input to the MFWL24, and the reactor output signal 2 is input to the LFC26.
0 is now entered. and,
The output signal 27 from the FWC 23 and the output signal 28 from the MFWL 24 are input to the LVG 25, where both signals 27 and 28 are compared, and the low value signal 27 or 28 is selected as the water supply request signal 21.
It is set to be output from LVG25.
The output signal 28 of the MFWL 24 is also coupled to the LFC 26 along with the reactor power signal 20 as shown in FIG.
When the output signal 28 is less than the value of the reactor output signal 20, the PLR runback signal 22 is output from the LFC 26, and the output of the reactor 1 is reduced. It's becoming like that.

前記MFWL24は、第3図に示すように関数
発生器(以下F/Gと称す)29が内蔵され、こ
のF/G29には、HPCP吸込圧力検出信号18
と設定圧力信号30とが比較された後の偏差信号
31が入力され、F/G29からはMFWL24
の出力信号28が出力されるようになつている。
The MFWL 24 has a built-in function generator (hereinafter referred to as F/G) 29 as shown in FIG.
The deviation signal 31 after comparing the set pressure signal 30 is inputted, and the MFWL24 is input from the F/G29.
An output signal 28 is output.

次に本発明の作用について説明する。 Next, the operation of the present invention will be explained.

MFWL24のF/G29は、系統圧力が設定
圧力を上廻つている場合、すなわち正の入力偏差
信号に対してはLPCP5、HPCP6の設計流量相
当の一定信号を出力し、また系統圧力が設定圧力
以下の場合、すなわち負の入力偏差信号に対して
は、偏差信号に応じて給復水系の系統最大流量を
第4図に示す特性を補償する値に制限する。これ
により、系統流量がLPCP5、HPCP6の設計流
量以内であれば、MFWL24の出力は一定で
FWC23の出力の方が小さいので、LVG25か
らの給水要求信号21はFWC23の出力信号2
7により規定され、給水流量は従来と同様に制御
される。
F/G29 of MFWL24 outputs a constant signal equivalent to the design flow rate of LPCP5 and HPCP6 when the system pressure exceeds the set pressure, that is, for a positive input deviation signal, and when the system pressure is below the set pressure. In other words, for a negative input deviation signal, the maximum flow rate of the water supply and condensate system is limited to a value that compensates for the characteristics shown in FIG. 4 in accordance with the deviation signal. As a result, if the system flow rate is within the design flow rate of LPCP5 and HPCP6, the output of MFWL24 is constant.
Since the output of FWC23 is smaller, the water supply request signal 21 from LVG25 is the output signal 2 of FWC23.
7, and the water supply flow rate is controlled in the same manner as before.

プラントの過渡状態で給水要求がLPCP5、
HPCP6の設計流量を上廻つた場合、あるいは給
復水系のバイパスラインが誤動作、誤操作によつ
て流路が形成された場合には、復水流量がLPCP
5、HPCP6の設計流量を上廻ることがあり得
る。この場合には、MFWL24のHPCP吸込圧力
検出信号18は設定圧力信号30を下廻り、その
偏差に応じてF/G29の特性によりMFWL2
4の出力は絞られる。
In the transient state of the plant, the water supply request is LPCP5,
If the flow rate exceeds the design flow rate of HPCP6, or if the bypass line of the water supply and condensate system malfunctions or a flow path is formed due to incorrect operation, the condensate flow rate
5. The design flow rate of HPCP6 may be exceeded. In this case, the HPCP suction pressure detection signal 18 of the MFWL24 falls below the set pressure signal 30, and depending on the deviation, the MFWL2
The output of 4 is throttled.

MFWL24の出力信号28がFWC23からの
出力信号27の値を下廻ると、LVG25からの
給水要求信号21は出力信号28に規制されて絞
られ、復水流量を減少させるようにRFP8に作
用する。
When the output signal 28 of the MFWL 24 falls below the value of the output signal 27 from the FWC 23, the water supply request signal 21 from the LVG 25 is regulated and throttled by the output signal 28, and acts on the RFP 8 to reduce the condensate flow rate.

一方、給水要求信号21に応答して給水流量が
原子炉出力を下廻ると、原子炉1の水位が低下し
て原子炉水位制御が不能となる。これを解決する
ため、MFWL24の出力信号28が原子炉出力
信号20の値を下廻つた場合には、LFC26が
これを検知し、PLRに対してPLRランバツク信号
22を出力して原子炉出力を減少させる。
On the other hand, when the water supply flow rate falls below the reactor output in response to the water supply request signal 21, the water level in the reactor 1 decreases and reactor water level control becomes impossible. To solve this problem, when the output signal 28 of the MFWL 24 falls below the value of the reactor output signal 20, the LFC 26 detects this and outputs a PLR runback signal 22 to the PLR to increase the reactor output. reduce

給水流量が絞られるとHPCP吸込圧力は回復
し、MFWL24の出力は増加する。そして、
PLRがランバツクすると、原子炉水位は上昇して
FWC23の出力が減少するので、再びFWC23
の出力が原子炉給水流量を制御することになる。
When the water supply flow rate is throttled, the HPCP suction pressure is restored and the output of the MFWL 24 increases. and,
When the PLR runs back, the reactor water level rises.
Since the output of FWC23 decreases, FWC23
The output of the reactor will control the reactor feed water flow rate.

しかして、何らかの原因で復水流量がLPCP
5、HPCP6の設計流量を上廻ることが起きて
も、これをMFWL24が検知して給水流量を絞
り、復水流量をLPCP5、HPCP6の設計流量以
下に抑え、HPCP6、RFP8の吸込圧力がトリツ
プ点に到るのを防止する。また、MFWL24は
給水流量を絞ると同時にPLRをランバツクして原
子炉1の出力を減少させ、その後の原子炉水位制
御が円滑に行なわれるように機能する。
However, for some reason, the condensate flow rate may become LPCP.
5. Even if the design flow rate of HPCP6 is exceeded, the MFWL24 detects this and throttles the water supply flow rate to keep the condensate flow rate below the design flow rate of LPCP5 and HPCP6, and the suction pressure of HPCP6 and RFP8 reaches the trip point. Prevent this from happening. Furthermore, the MFWL 24 functions to reduce the output of the reactor 1 by throttling the water supply flow rate and at the same time runback the PLR, so that subsequent reactor water level control is performed smoothly.

以上説明したように本実施例によれば、復水流
量を自動的に制御してプラントの過渡状態あるい
は給復水系の誤動作等により、給復水ポンプの吸
込圧力がトリツプ点以下に低下して給復水ポンプ
が全台トリツプすることが防止できる。そしてこ
れにより、プラントの稼動率を向上させることが
できるとともに、原子炉水位が大巾に低下して
ECCS系が作動し原作炉圧力容器に不必要な熱応
力が加わることを防止することができる。
As explained above, according to this embodiment, the condensate flow rate is automatically controlled to prevent the suction pressure of the feed and condensate pump from dropping below the trip point due to transient conditions of the plant or malfunction of the feed and condensate system. It is possible to prevent all water supply and condensate pumps from tripping. This will not only improve the plant's operating efficiency, but also allow the reactor water level to drop significantly.
The ECCS system is activated to prevent unnecessary thermal stress from being applied to the original reactor pressure vessel.

以上本発明を好適な実施例に基づいて説明した
が、本発明によれば、給復水ポンプトリツプによ
る原子炉スクラムを回避することができるととも
に、全給水喪失に伴なう炉水位の大巾低下による
ECCSの不必要な作動を防止することができる。
The present invention has been described above based on the preferred embodiments. According to the present invention, it is possible to avoid a reactor scram caused by a feed water pump trip, and a large drop in reactor water level due to loss of all feed water. by
Unnecessary activation of ECCS can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す系統図、第2
図は本発明の係る給水制御装置の構成を示すブロ
ツク線図、第3図はMFWLの構成を示すブロツ
ク線図、第4図は給復水系の系統圧力特性図であ
る。 1…原子炉、4…復水器、7…給水制御装置、
8…RFP、13…主蒸気流量信号、15…炉水
位信号、17…給水流量信号、18…HPCP吸込
圧力検出信号、20…原子炉出力信号、21…給
水要求信号、22…PLRランバツク信号、23…
FWC、24…MFWL、25…LVG、26…
LFC、29…F/G、30…設定圧力信号、3
1…偏差信号。
Figure 1 is a system diagram showing one embodiment of the present invention, Figure 2 is a system diagram showing an embodiment of the present invention.
The figure is a block diagram showing the configuration of the water supply control device according to the present invention, FIG. 3 is a block diagram showing the configuration of the MFWL, and FIG. 4 is a system pressure characteristic diagram of the water supply and condensate system. 1... Nuclear reactor, 4... Condenser, 7... Water supply control device,
8... RFP, 13... Main steam flow rate signal, 15... Reactor water level signal, 17... Feed water flow rate signal, 18... HPCP suction pressure detection signal, 20... Reactor output signal, 21... Water supply request signal, 22... PLR runback signal, 23...
FWC, 24...MFWL, 25...LVG, 26...
LFC, 29...F/G, 30...Setting pressure signal, 3
1... Deviation signal.

Claims (1)

【特許請求の範囲】[Claims] 1 復水器から給水ポンプを介して原子炉に供給
される給水を制御する原子炉給水制御装置におい
て、給水流量を制御する給水要求信号の最大値を
給水系および復水系の状態に合わせてその許容値
内に制限する最大給水流量制限手段と、この制限
値が原子炉出力を下廻つた場合に制限値に対応さ
せて原子炉出力を減少させる原子炉出力追従手段
とを備えたことを特徴とする原子炉給水制御装
置。
1. In the reactor feed water control system that controls the water supplied from the condenser to the reactor via the feed water pump, the maximum value of the water supply request signal that controls the feed water flow rate is adjusted according to the conditions of the water supply system and the condensate system. It is characterized by comprising a maximum water supply flow rate limiting means for limiting the flow rate to within a permissible value, and a reactor output follower means for reducing the reactor output in accordance with the limit value when this limit value falls below the reactor output. Reactor water supply control system.
JP4719380A 1980-04-10 1980-04-10 Feedwater control device of nuclear reactor Granted JPS56143998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4719380A JPS56143998A (en) 1980-04-10 1980-04-10 Feedwater control device of nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4719380A JPS56143998A (en) 1980-04-10 1980-04-10 Feedwater control device of nuclear reactor

Publications (2)

Publication Number Publication Date
JPS56143998A JPS56143998A (en) 1981-11-10
JPS6217121B2 true JPS6217121B2 (en) 1987-04-16

Family

ID=12768269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4719380A Granted JPS56143998A (en) 1980-04-10 1980-04-10 Feedwater control device of nuclear reactor

Country Status (1)

Country Link
JP (1) JPS56143998A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899603A (en) * 1981-12-09 1983-06-14 株式会社日立製作所 Feed pump device for boiler
JPS61110096A (en) * 1984-11-02 1986-05-28 株式会社日立製作所 Method and device for controlling water level in nuclear reactor
JP2726697B2 (en) * 1989-04-12 1998-03-11 株式会社日立製作所 Water supply equipment and water supply control method thereof

Also Published As

Publication number Publication date
JPS56143998A (en) 1981-11-10

Similar Documents

Publication Publication Date Title
US4440715A (en) Method of controlling nuclear power plant
US4832898A (en) Variable delay reactor protection system
JPS6217121B2 (en)
US3997767A (en) Reactor trip on turbine trip inhibit control system for nuclear power generating system
JPS6050318B2 (en) Reactor control device
JPH0511092A (en) Method of protecting nuclear reactor
US3985613A (en) Reactor trip on turbine trip inhibit control system for nuclear power generating system
JP2519282B2 (en) Deaerator water level control system
JPS6134115B2 (en)
JPH0135244B2 (en)
JPS6158903A (en) Turbine controller for nuclear reactor
JPS5897697A (en) Feedwater recirculation flow rate cooperation control device
JPS58165096A (en) Fbr power plant control device
JPH0113080B2 (en)
JPS6252274B2 (en)
JPH0241720B2 (en)
JPS6029916B2 (en) Boiling water reactor water supply control device
JPS5927293A (en) Reactor power control device
JPH04113298A (en) Controlling of nuclear reactor pressure
JPS63686B2 (en)
JPS58100796A (en) Bwr type reactor power plant
JPS6390797A (en) Nuclear reactor protection system logic circuit
JPH0566292A (en) Suppressing device for nuclear reactor scram
JPS6394194A (en) Power plant controller
JPS61262695A (en) Nuclear power plant