JPS6252274B2 - - Google Patents

Info

Publication number
JPS6252274B2
JPS6252274B2 JP54003022A JP302279A JPS6252274B2 JP S6252274 B2 JPS6252274 B2 JP S6252274B2 JP 54003022 A JP54003022 A JP 54003022A JP 302279 A JP302279 A JP 302279A JP S6252274 B2 JPS6252274 B2 JP S6252274B2
Authority
JP
Japan
Prior art keywords
turbine bypass
bypass valve
reactor
turbine
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54003022A
Other languages
Japanese (ja)
Other versions
JPS5595898A (en
Inventor
Katsuo Niizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP302279A priority Critical patent/JPS5595898A/en
Publication of JPS5595898A publication Critical patent/JPS5595898A/en
Publication of JPS6252274B2 publication Critical patent/JPS6252274B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 本発明は、原子力発電所の原子炉出力制御装置
に係り、特に大容量のタービンバイパス系を有す
る原子力発電所の負荷しや断時の出力制御特性を
改良した原子力発電所の出力制御装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reactor power control device for a nuclear power plant, and in particular to a nuclear power plant having improved output control characteristics during load interruption in a nuclear power plant having a large-capacity turbine bypass system. The present invention relates to an output control device.

従来の原子力発電所は、タービンの定格主蒸気
流量の10〜35%のタービンバイパス弁を有してお
り、原子炉圧力又は蒸気発生器の圧力を一定にす
るため、このタービンバイパス弁の開度制御を行
つている。このタービンバイパス弁の容量は一般
に、原子炉起動停止や、電力系統の地絡事故等に
よる瞬間的な負荷変動等を吸収するに必要な容量
であつた。
Conventional nuclear power plants have a turbine bypass valve with a capacity of 10 to 35% of the rated main steam flow rate of the turbine, and in order to keep the reactor pressure or steam generator pressure constant, the opening degree of this turbine bypass valve is adjusted to keep the reactor pressure or steam generator pressure constant. It's under control. The capacity of this turbine bypass valve is generally the capacity necessary to absorb instantaneous load fluctuations caused by nuclear reactor startup/shutdown, ground faults in power systems, and the like.

しかし、昨今の電力系統に占める原子力発電所
の重要性が増すに従い、電力系統の事故に対し
て、原子力発電所の責務が重要視されてるように
なり、このため、タービンバイパス系の容量を大
容量又は、100%容量にして、原子力発電所単独
で運転を継続し電力系統復旧後は速やかに電力を
供給する原子力発電所の出力制御装置が開発され
てきた。
However, as the importance of nuclear power plants in the power system has increased in recent years, the responsibility of nuclear power plants in the event of accidents in the power system has come to be seen as important, and for this reason, the capacity of the turbine bypass system has been increased. Output control devices for nuclear power plants have been developed that allow nuclear power plants to continue operating independently at capacity or 100% capacity, and to promptly supply power after the power grid is restored.

しかしながら、タービンバイパス容量の大容量
化は従来使用しているタービンバイパス弁で構成
すると約20個の弁を必要とする。このため、著し
く、タービンバイパス系の信頼性を低下すること
になる。従つて、タービンバイパス弁が適正量開
かなかつた場合に原子炉を出力運転継続状態にす
ると原子炉の燃料棒が非常に危険な状態になる事
も予想される。又、タービンバイパス弁が1弁開
らかない場合にも原子炉をスクラムさせると原子
力発電所の稼動率が低下し、電力系統より期待さ
れている責務をまつてうしないことになる。
However, increasing the turbine bypass capacity requires approximately 20 valves when constructed from conventionally used turbine bypass valves. Therefore, the reliability of the turbine bypass system is significantly reduced. Therefore, if the turbine bypass valve fails to open by an appropriate amount and the reactor is allowed to continue operating at full power, it is expected that the reactor's fuel rods will be in a very dangerous state. Furthermore, if the nuclear reactor is scrammed even if one turbine bypass valve does not open, the operating rate of the nuclear power plant will decrease, and the nuclear power plant will not be able to fulfill its responsibilities expected from the power system.

本発明は以上の事情に鑑みてなされたもので、
第1の目的は負荷しや断に際して原子炉出力をタ
ービンバイパス弁開度に応じて制御できる原子力
発電所の出力制御装置を得ることにある。他の目
的は、負荷しや断時のタービンバイパス弁開度の
適否を判定できる装置を得ることにある。
The present invention was made in view of the above circumstances, and
The first object is to obtain an output control device for a nuclear power plant that can control the reactor output according to the opening degree of the turbine bypass valve when the load is cut off. Another object is to obtain a device that can determine the appropriateness of the turbine bypass valve opening when the load is interrupted.

以下図面を参照して本発明の一実施例を示す。
第1図に本発明を適用した沸騰水形原子力発電所
の構成ブロツク図を示す。原子炉圧力容器1内に
は、炉心2と冷却材(図示してない)が設けられ
ており、制御棒3の位置を制御棒位置制御装置4
で制御することにより、出力を変化される。原子
炉出力即ち主蒸気は主蒸気配管5よりタービン制
御装置25で制御される、タービン主蒸気止め弁
6とタービン蒸気加減弁7を経て、高圧タービン
8と低圧タービン9,10,11に蒸気を供給し
タービンを回転させ、発電機13で電気出力とし
て、電力系統(図示してない)に電力を供給して
いる。一方、主蒸気配管5は分岐してタービンバ
イパスヘツダ17に連通し、複数のタービンバイ
パス弁を介して復水器14,15,16に接続さ
れている。このタービンバイパス弁18の夫々は
前記タービン制御装置25により、前記原子炉圧
力容器1内の蒸気圧力が一定になる様制御されて
いる。タービンバイパス弁18よりの蒸気は復水
器14,15,16に均等に配分されて流入す
る。タービンバイパス弁18は、1100MWeクラ
スのタービンバイパス系では、約10〜20個設けら
れる。3分割されて復水器14,15,16へ接
続されている。タービンバイパス弁の開動作は、
タービンバイパス弁全開検出リミツトスイツチ1
9を各弁に4個設けて検出している。(図ではそ
のうちの1個づつを示している。)一般にタービ
ンバイパス弁は全閉より全開までに0.1〜0.2秒の
時間を要する。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows a block diagram of a boiling water nuclear power plant to which the present invention is applied. A reactor core 2 and a coolant (not shown) are provided inside the reactor pressure vessel 1, and the position of the control rods 3 is controlled by a control rod position control device 4.
The output can be changed by controlling the The reactor output, that is, the main steam is sent from the main steam piping 5 to the high pressure turbine 8 and low pressure turbines 9, 10, 11 via the turbine main steam stop valve 6 and the turbine steam control valve 7, which are controlled by the turbine control device 25. The power is supplied to rotate a turbine, and the generator 13 supplies electric power to an electric power system (not shown) as an electric output. On the other hand, the main steam pipe 5 branches off and communicates with a turbine bypass header 17, and is connected to condensers 14, 15, and 16 via a plurality of turbine bypass valves. Each of the turbine bypass valves 18 is controlled by the turbine control device 25 so that the steam pressure within the reactor pressure vessel 1 is constant. Steam from the turbine bypass valve 18 is equally distributed and flows into the condensers 14, 15, and 16. Approximately 10 to 20 turbine bypass valves 18 are provided in a 1100 MWe class turbine bypass system. It is divided into three parts and connected to condensers 14, 15, and 16. The opening operation of the turbine bypass valve is
Turbine bypass valve fully open detection limit switch 1
9 is provided in each valve for detection. (One of them is shown in the figure.) Generally, a turbine bypass valve takes 0.1 to 0.2 seconds from fully closing to fully opening.

タービンバイパス弁全開検出リミツトスイツチ
19は出力信号はタービンバイパス弁開度判定装
置24に接続されている。又前記主蒸気配管5に
は流量検出器20が直列に4個(図ではそのうち
の1個を示す)設けられており、その出力は夫々
計装配管21を介して流量−電気信号変換器22
に接続されそこで電気信号23となつて、前記タ
ービンバイパス弁開度判定装置24の入力端子に
接続されている。タービンバイパス弁開度判定装
置24は第2図に1点鎖線で囲んで示す構成を持
つた独立した4組の回路からなつている。4組の
回路の入力端子には第2図に示すように前記ター
ビンバイパス弁全開検出リミツトスイツチ19と
流量−電気信号変換器22とが接続されている。
(即ち第2図の回路は4組設けられている。) このタービンバイパス弁開度判定装置24の出
力信号は前記4組の回路に対応して42A,42
B,42C,42Dの4個出され、前述の制御棒
位置制御装置4の入力信号となつており、タービ
ンバイパス弁開度判定装置24の出力信号の4組
のうちいずれか2組が同動に作動すれば、即ち4
2A,42B,42C,42Dのいずれか2組が
接点をOFFにすれば制御棒3は全挿入即ち原子
炉スクラムになる様構成されている。第2図は、
タービンバイパス弁開度判定装置24の内部回路
である。流量−電気信号変換器22の出力は、記
憶装置30を経て、タービンバイパス弁開度要求
装置31の入力信号となる。記憶装置30は、タ
ービン制御装置25よりの発電機13の負荷しや
断を検出する信号44により動作する補助リレー
の接点49がONになつた時の主蒸気流量を記憶
する。タービンバイパス弁開度要求装置31は、
負荷しや断時主蒸気流量即ちタービン出力に適し
たタービンバイパス弁総合開度を演算する。ター
ビンバイパス弁全開検出リミツトスイツチは、タ
ービンバイパス弁開度判定装置24のシステム電
源の正極に接続されており、他方はタービンバイ
パス弁総合開度演算装置32の演算抵抗器Ra…
…Ri……Rnに接続している。タービンバイパス
弁開度要求装置31の出力も同様に演算抵抗器R
Qに接続している。
The output signal of the turbine bypass valve full open detection limit switch 19 is connected to a turbine bypass valve opening determination device 24 . Further, the main steam pipe 5 is provided with four flow rate detectors 20 in series (one of which is shown in the figure), and the output thereof is sent via an instrumentation pipe 21 to a flow rate-to-electrical signal converter 22.
There, it becomes an electric signal 23 and is connected to an input terminal of the turbine bypass valve opening determination device 24 . The turbine bypass valve opening determining device 24 is composed of four independent circuits having the configuration shown surrounded by a chain line in FIG. 2. As shown in FIG. 2, the turbine bypass valve fully open detection limit switch 19 and the flow rate-to-electrical signal converter 22 are connected to the input terminals of the four sets of circuits.
(In other words, four sets of the circuits shown in FIG. 2 are provided.) The output signals of this turbine bypass valve opening determination device 24 are 42A, 42A and 42A, respectively, corresponding to the four sets of circuits.
B, 42C, and 42D are output, and serve as input signals for the control rod position control device 4 described above, and any two of the four sets of output signals of the turbine bypass valve opening determination device 24 operate simultaneously. If it operates, that is, 4
The control rods 3 are configured so that if any two sets of 2A, 42B, 42C, and 42D turn off their contacts, the control rods 3 are fully inserted, that is, the reactor is scrammed. Figure 2 shows
This is an internal circuit of the turbine bypass valve opening determination device 24. The output of the flow rate/electrical signal converter 22 passes through the storage device 30 and becomes an input signal of the turbine bypass valve opening request device 31 . The storage device 30 stores the main steam flow rate when the contact 49 of the auxiliary relay, which is activated by the signal 44 from the turbine control device 25 that detects the load on the generator 13 or the disconnection, is turned on. The turbine bypass valve opening request device 31 is
Calculate the overall opening of the turbine bypass valve suitable for the main steam flow rate during load interruption, that is, the turbine output. The turbine bypass valve full open detection limit switch is connected to the positive pole of the system power supply of the turbine bypass valve opening determination device 24, and the other end is connected to the calculated resistor Ra of the turbine bypass valve comprehensive opening calculation device 32...
...Ri...Connected to Rn. Similarly, the output of the turbine bypass valve opening request device 31 is also connected to the calculated resistor R.
Connected to Q.

これらの抵抗器は、 Ra+Rb+……+Ri+……+Rn=RQ …(1) Ra=Rb=……=Ri……=Rn …(2) の関係にあり、タービンバイパス弁全開検出のリ
ミツトスイツチが各々ONになつた時演算抵抗器
に各々印加する電圧と、タービンバイパス弁開度
要求装置31の出力信号が演算抵抗器Raに印加
する電圧は、等しくなる。コンパレータ33は、
タービンバイパス弁総合開度演算装置32の出力
が正極の時作動し、出力接点41をOFFにし
て、補助リレー42を無励磁にする。この出力は
第1図の制御棒位置制御装置の入力信号42A,
42B,42C,42Dとなる。又補助リレー4
2は、負荷しや断信号44が動作した後、約0.2
秒後に動作する遅延リレー48の接点43が
OFFになる迄動作を継続している。負荷しや断
信号44は補助リレー45の接点47で記憶回路
を構成しており、リミツトスイツチ46をOFF
にする迄記憶している。
These resistors have the following relationship: Ra + Rb + ... + Ri + ... + Rn = R Q ... (1) Ra = Rb = ... = Ri ... = Rn ... (2) Each limit switch for detecting the turbine bypass valve is fully open. The voltages applied to each calculated resistor when turned ON and the voltage applied to the calculated resistor Ra by the output signal of the turbine bypass valve opening request device 31 become equal. The comparator 33 is
It operates when the output of the turbine bypass valve comprehensive opening calculation device 32 is positive, turns off the output contact 41, and de-energizes the auxiliary relay 42. This output is the input signal 42A of the control rod position control device in FIG.
42B, 42C, and 42D. Also auxiliary relay 4
2 is approximately 0.2 after the load cutoff signal 44 operates.
The contact 43 of the delay relay 48, which operates after seconds,
It continues to operate until it is turned off. The load breakage signal 44 constitutes a memory circuit with the contact 47 of the auxiliary relay 45, and turns off the limit switch 46.
I remember it until I do it.

次に本発明の作用について説明する。発電機の
負荷しや断が発生すると、これをタービン制御装
置25で検出し、タービン蒸気加減弁7を急速に
閉止する。この時タービンバイパス弁18が開か
ないと原子炉圧力が異常に上昇し、そのままでは
炉に正の反応度が加わり、炉出力が異常に上昇し
原子炉停止制限(高中性子束スクラム)に達し、
原子炉のスクラムに至る。この原子炉スクラムを
防止するために、タービンバイパス弁18を急速
開放し、過渡的には最大100%の蒸気を復水器1
4,15,16へバイパスする流量が等しい場合
は、原子炉はスクラムせずにすむが、なんらかの
原因でタービンバイパス弁18が開放しなかつた
場合には、すみやかに原子炉スクラムさせる必要
がある。原子炉は、第3図に示す如く、タービン
へ流入する蒸気に対して、復水器14,15,1
6へバイパスする蒸気量が85%以上であれば健全
な運転を継続できる様になつている。(第3図
は、負荷しや断時の原子炉出力とその時に必要な
タービンバイパス弁開度を示すものである。)従
つて、主蒸気流量を流量検出器22で常に監視し
ておき、負荷しや断が発生すると、その時の主蒸
気流量を記憶装置30で記憶する。この時の主蒸
気流量に対し、タービンバイパス弁開度要求装置
31で必要なバイパス弁開度即ちバイパス弁の容
量は全て等しいので、開放すべきバイパス弁18
の個数をセツトする。一方タービン制御装置25
の制御で、タービンバイパス弁18が全開し、開
度検出用リミツトスイツチ19がONする。ター
ビンバイパス弁総合開度演算装置32で、開放し
たバイパス弁の合計個数とセツト値が比較され、
セツト値より開放したバイパス弁18の数が大き
い場合には、コンパレータ33が不動作になつて
いる。このタイミングは、負荷しや断発生後0.1
秒でタービンバイパス弁が全開するので、その時
迄は遅延リレー48の出力接点がONになつてい
るので、補助リレー42は動作している。0.1秒
後1=出力接点43がOFFし、コンパレータ3
3の出力接点41で補助リレー42は制御され
る。従つて、タービンバイパス弁18の開放個数
が少ない場合には、補助リレー42が復帰し、制
御棒位置制御装置4への出力信号42A,42
B,42C,42Dを復帰させ制御棒3を炉心に
急速挿入して原子炉をスクラムさせる。
Next, the operation of the present invention will be explained. When a load interruption occurs in the generator, the turbine control device 25 detects this and rapidly closes the turbine steam control valve 7. If the turbine bypass valve 18 does not open at this time, the reactor pressure will rise abnormally, and if left as it is, positive reactivity will be added to the reactor, the reactor output will rise abnormally, and the reactor shutdown limit (high neutron flux scram) will be reached.
Leading to a reactor scram. In order to prevent this reactor scram, the turbine bypass valve 18 is rapidly opened and up to 100% of the steam is temporarily transferred to the condenser 1.
If the flow rates bypassed to 4, 15, and 16 are equal, the reactor does not need to be scrammed, but if the turbine bypass valve 18 fails to open for some reason, it is necessary to scram the reactor immediately. As shown in FIG. 3, in the nuclear reactor, condensers 14, 15, 1
If the amount of steam bypassed to 6 is 85% or more, healthy operation can continue. (Figure 3 shows the reactor output when the load is cut off and the required turbine bypass valve opening at that time.) Therefore, the main steam flow rate is constantly monitored by the flow rate detector 22, When a load failure occurs, the main steam flow rate at that time is stored in the storage device 30. For the main steam flow rate at this time, the bypass valve opening required by the turbine bypass valve opening requesting device 31, that is, the bypass valve capacity is all equal, so the bypass valve 18 to be opened is
Set the number of pieces. On the other hand, the turbine control device 25
Under this control, the turbine bypass valve 18 is fully opened and the opening detection limit switch 19 is turned on. The turbine bypass valve comprehensive opening calculation device 32 compares the total number of opened bypass valves with the set value,
If the number of bypass valves 18 that are opened is greater than the set value, the comparator 33 is inactive. This timing is 0.1 after the load failure occurs.
Since the turbine bypass valve will be fully opened in seconds, the output contact of the delay relay 48 will be ON until then, and the auxiliary relay 42 will be in operation. After 0.1 seconds 1 = Output contact 43 turns OFF, comparator 3
The auxiliary relay 42 is controlled by the output contact 41 of No. 3. Therefore, when the number of open turbine bypass valves 18 is small, the auxiliary relay 42 returns to the normal state and outputs signals 42A, 42 to the control rod position control device 4.
B, 42C, and 42D are returned and the control rods 3 are rapidly inserted into the reactor core to scram the reactor.

以上説明のように本発明装置は構成されている
ので次に記す効果を奏する。
Since the apparatus of the present invention is configured as described above, it produces the following effects.

第1の効果は、安全性を損うことなく稼動率を
向上できることである。即ち、主蒸流量とタービ
ンバイパス弁開度を比較しているので、バイパス
弁1弁が故障して開放しないときは無用な原子炉
スクラムを避け運転を継続でき、電力系統が復旧
すると再び円滑にかつ速みやかに電力を供給でき
る。又必要個数のタービンバイパス弁が開放しな
い時にはすみやかにスクラムさせることができ
る。
The first effect is that the operating rate can be improved without compromising safety. In other words, since the main steam flow rate and the turbine bypass valve opening are compared, if one bypass valve fails and does not open, unnecessary reactor scrams can be avoided and operation can be continued, and once the power system is restored, operations can resume smoothly. And power can be supplied quickly. Furthermore, when the required number of turbine bypass valves do not open, it is possible to quickly scram the turbine bypass valves.

第2の効果は、大容量原子力発電所が部分負荷
で運転される場合スクラム回避のチヤンスを大き
くできることにある。即ち、低負荷運転でも数弁
のタービンバイパス弁が開放しない場合やむを得
ずスクラムしていたものを余裕を持つて自動的に
スクラムを回避できる。
The second effect is that when a large-capacity nuclear power plant is operated at partial load, the chance of scram avoidance can be increased. That is, even in low-load operation, if several turbine bypass valves do not open, scrams that would otherwise have been unavoidable can be automatically avoided with some margin.

第3の効果は、タービンバイパス弁のメンテナ
ンスやサーベランステストが容易になつたことで
ある。即ち、1弁をメンテナンスやサーベランス
テストで開放できない場合が生じても安全に原子
炉スクラム又は原子炉運転を継続できる。
The third effect is that maintenance and surveillance tests of the turbine bypass valve have become easier. That is, even if one valve cannot be opened for maintenance or surveillance tests, reactor scram or reactor operation can be safely continued.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一実施例を示すブロツク
図、第2図はタービンバイパス弁開度判定装置を
示すブロツク図、第3図は負荷しや断時に必要な
タービンバイパス弁開度を示す説明図である。 4……制御棒位置制御装置、18……タービン
バイパス弁、19……タービンバイパス弁開度検
出リミツトスイツチ、20……主蒸気流量検出
器、22……蒸気−電気信号変換器、24……タ
ービンバイパス弁開度判定装置、30……記憶装
置、31……タービンバイパス弁開度要求装置、
32……タービンバイパス弁総合開度演算装置、
33……コンパレータ、42,45……補助リレ
ー、42A,42B,42C,42D……スクラ
ム信号、48……遅延リレー。
Fig. 1 is a block diagram showing an embodiment of the device of the present invention, Fig. 2 is a block diagram showing a turbine bypass valve opening determination device, and Fig. 3 shows the turbine bypass valve opening required when the load is interrupted. It is an explanatory diagram. 4... Control rod position control device, 18... Turbine bypass valve, 19... Turbine bypass valve opening detection limit switch, 20... Main steam flow rate detector, 22... Steam-electrical signal converter, 24... Turbine Bypass valve opening determination device, 30... Storage device, 31... Turbine bypass valve opening request device,
32...Turbine bypass valve comprehensive opening calculation device,
33... Comparator, 42, 45... Auxiliary relay, 42A, 42B, 42C, 42D... Scram signal, 48... Delay relay.

Claims (1)

【特許請求の範囲】 1 原子力発電所の負荷しや断時の原子炉出力を
記憶する記憶装置と、復水器へ流入するタービン
バイパス蒸気量を検出する検出装置と、前記記憶
装置のデータと前記タービンバイパス蒸気量の大
小とを比較する比較装置とからなり、前記タービ
ンバイパス蒸気量が負荷しや断時の原子炉出力以
下であるとき原子炉へ制御棒の急速挿入を行うこ
とを特徴とする原子力発電所の出力制御装置。 2 比較装置は、記憶装置に記憶された原子炉出
力から負荷しや断時必要なタービンバイパス弁開
度量を設定しこの値とタービンバイパス蒸気量と
してタービンバイパス弁動作検出器の動作信号か
ら決定した値とを比較することを特徴とする特許
請求の範囲第1項記載の原子力発電所の出力制御
装置。
[Claims] 1. A storage device that stores the reactor output at the time of load interruption in a nuclear power plant, a detection device that detects the amount of turbine bypass steam flowing into the condenser, and data in the storage device. comprising a comparison device that compares the magnitude of the turbine bypass steam amount, and is characterized in that when the turbine bypass steam amount is less than the reactor output at the time of load interruption, rapid insertion of control rods into the reactor is performed. Output control equipment for nuclear power plants. 2 The comparison device sets the amount of opening of the turbine bypass valve required for load and interruption from the reactor output stored in the storage device, and determines the amount of turbine bypass valve opening from this value and the turbine bypass steam amount from the operation signal of the turbine bypass valve operation detector. The output control device for a nuclear power plant according to claim 1, characterized in that the output control device for a nuclear power plant is compared with a value.
JP302279A 1979-01-17 1979-01-17 Atomic power plant power control device Granted JPS5595898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP302279A JPS5595898A (en) 1979-01-17 1979-01-17 Atomic power plant power control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP302279A JPS5595898A (en) 1979-01-17 1979-01-17 Atomic power plant power control device

Publications (2)

Publication Number Publication Date
JPS5595898A JPS5595898A (en) 1980-07-21
JPS6252274B2 true JPS6252274B2 (en) 1987-11-04

Family

ID=11545696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP302279A Granted JPS5595898A (en) 1979-01-17 1979-01-17 Atomic power plant power control device

Country Status (1)

Country Link
JP (1) JPS5595898A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253564A (en) * 1988-02-24 1989-10-09 Outboard Marine Corp Fuel feeder for internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114403A (en) * 1984-06-29 1986-01-22 Hitachi Ltd Controlling method of turbine bypass valve
JP4230638B2 (en) * 2000-04-10 2009-02-25 株式会社東芝 Steam turbine controller for nuclear power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253564A (en) * 1988-02-24 1989-10-09 Outboard Marine Corp Fuel feeder for internal combustion engine

Also Published As

Publication number Publication date
JPS5595898A (en) 1980-07-21

Similar Documents

Publication Publication Date Title
JPH034872B2 (en)
US4584165A (en) Redundant reactivity control system
JPH06201891A (en) Device and method of controlling nuclear reactor
US4832898A (en) Variable delay reactor protection system
JP2625569B2 (en) Signal processing apparatus and method for nuclear power plant
JPS6252274B2 (en)
JPH0241715B2 (en)
JPS6027882B2 (en) Automatic rearrangement device for water supply for steam generators
JPS6217121B2 (en)
Burchill Insights from the Three
JP2815591B2 (en) Recirculation pump protector
JPH0156716B2 (en)
JPH0226755B2 (en)
JPS61223697A (en) Output controller for nuclear reactor in nuclear power plant
JPS6134115B2 (en)
JPS6239788A (en) Controller for output from nuclear reactor
JPS62214202A (en) Load cutting-off device for power generation plant
Leger-Barter Systematic evaluation program review of NRC Safety Topic VI-10. A associated with the electrical, instrumentation and control portions of the testing of reactor trip system and engineered safety features, including response time for the Dresden station, Unit II nuclear power plant
JPS61262695A (en) Nuclear power plant
JPH0566292A (en) Suppressing device for nuclear reactor scram
JPS6338677B2 (en)
JPS61282705A (en) Feed water controller for nuclear reactor
JPS59131707A (en) Control device of turbine by-pass valve
JPS637142A (en) Protector of generator
JPH0666411A (en) Double instrumentation detection circuit for steam temperature at outlet of superheater of boiler