JPS6114403A - Controlling method of turbine bypass valve - Google Patents

Controlling method of turbine bypass valve

Info

Publication number
JPS6114403A
JPS6114403A JP13481984A JP13481984A JPS6114403A JP S6114403 A JPS6114403 A JP S6114403A JP 13481984 A JP13481984 A JP 13481984A JP 13481984 A JP13481984 A JP 13481984A JP S6114403 A JPS6114403 A JP S6114403A
Authority
JP
Japan
Prior art keywords
bypass valve
boiler
turbine
pressure
pressure steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13481984A
Other languages
Japanese (ja)
Other versions
JPH0429921B2 (en
Inventor
Takatoshi Kodaira
高敏 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13481984A priority Critical patent/JPS6114403A/en
Publication of JPS6114403A publication Critical patent/JPS6114403A/en
Publication of JPH0429921B2 publication Critical patent/JPH0429921B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To prevent a variation in main steam pressure and a drum water level, a boiler trip, etc. from occurring, by controlling the opening of a high-pressure steam turbine bypass valve in a manner conformable to a boilder surplus energy value in time of a sudden drop in turbine load. CONSTITUTION:A bypass valve control parameter arithmetic unit 32 is installed in a control system which controls the opening of a high-pressure turbine bypass valve on the basis of a pressure setting signal 18 and a main steam pressure signal 19, and with this device 32, a second selector 25 and a constant generator 31 are controlled. In time of a sudden drop in turbine load, the arithemetic unit 32 takes in turbine output, boiler output, a boiler drum level, etc., then calculates boiler surplus energy, and generates an opening signal 26 for the specified time characteristic of the bypass valve so as to cause the bypass output to approximate to the surplus energy. With this constitution, a variation in the drum water level and a boiler trip are preventable from occuring.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、蒸気タービン式火力発電システムにおける高
圧蒸気タービンに並列設置された高圧蒸気タービンバイ
パス弁の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for controlling high pressure steam turbine bypass valves installed in parallel to high pressure steam turbines in a steam turbine type thermal power generation system.

〔発明の背景〕[Background of the invention]

一般に、蒸気タービン式火力発電システムにおいては、
送電系統の主遮断器開等によってタービン負荷(発電負
荷)が急激に減少した場合に生じるタービンの過回転を
防止する目的で主塞止弁を急閉する。しかし、この場合
、ボイラから発生した蒸気エネルギーがタービンに導か
れなくなり、 □かつ、ボイラ発生エネルギーが急減し
ないので、ボイラ保有エネルギーが過多となり、その寸
ま放置17たのではボイラ圧力高等によるボイラトリッ
プが発生することとなる。この事態を回避するため、従
来から高圧蒸気タービンに並列に設置された高圧蒸気タ
ービンバイパス弁を急開することにより余剰エネルギー
を逃す方式がとられている。
Generally, in steam turbine thermal power generation systems,
The main shutoff valve is suddenly closed in order to prevent turbine overspeed that occurs when the turbine load (power generation load) suddenly decreases due to the opening of the main circuit breaker in the power transmission system. However, in this case, the steam energy generated from the boiler is no longer guided to the turbine, and the energy generated by the boiler does not decrease rapidly, so the boiler's retained energy becomes excessive, and if left as is, the boiler may trip due to high boiler pressure. will occur. In order to avoid this situation, a method has conventionally been adopted in which surplus energy is released by suddenly opening a high-pressure steam turbine bypass valve installed in parallel with the high-pressure steam turbine.

しかしながら、この方式では、バイパス弁の急開を一律
に全開状態寸で行い、その後、PI(比例積分)制御系
により、一定開度を一定時間保持したのち、主蒸気圧力
と主蒸気圧力設定値の偏差に基づ<PI制御に移行する
。この場合、バイパス弁の急開およびその後の制御’I
Cよるボイラエネルギーのバイパス量がボイラ余剰エネ
ルギーと正確に対応しないためボイラ状態すなわちドラ
ムレベル、主蒸気圧の変動が過多となり、ボイラトリッ
プとなることが多かった。
However, in this method, the bypass valve is suddenly opened uniformly at the fully open state, and then a PI (proportional integral) control system is used to maintain a constant opening for a certain period of time, and then the main steam pressure and the main steam pressure set value are Based on the deviation of <PI control. In this case, the rapid opening of the bypass valve and the subsequent control 'I
Since the bypass amount of boiler energy due to C does not correspond accurately to the boiler surplus energy, the boiler condition, that is, the drum level, and the main steam pressure fluctuate excessively, often resulting in boiler trips.

ここで、”上記従来の高圧蒸気タービンバイパス弁の制
御方法の例について詳細に説明する。第5図に一般的な
蒸気タービン式火力発電システムの系統図を示す。第5
図において、ボイラの過熱器1により発生された主蒸気
は主塞止弁9、主制御弁10を経て高圧蒸気タービン3
に導かれ、回転エネルギーに変換された後、再熱器2で
再度加熱され、次いで再熱塞止弁12、インタセプト弁
11を経て中低圧蒸気タービン4に導かれ、回転エネル
ギーに変換された後、復水器5に放出される。ベンチレ
ータ弁16は通常全閉状態にある。
Here, an example of the above-mentioned conventional high-pressure steam turbine bypass valve control method will be explained in detail. Fig. 5 shows a system diagram of a general steam turbine type thermal power generation system.
In the figure, main steam generated by a boiler superheater 1 passes through a main blocking valve 9 and a main control valve 10 to a high-pressure steam turbine 3.
After being converted into rotational energy, it is heated again in the reheater 2, and then guided to the medium and low pressure steam turbine 4 via the reheat blocking valve 12 and the intercept valve 11, where it is converted into rotational energy. , is discharged to the condenser 5. The ventilator valve 16 is normally in a fully closed state.

主遮断器開等により、発電機6の出力が急減した場合、
主塞止弁9を急閉し、高圧蒸気タービン3への蒸気を断
ちタービン過回転を防ぐ。この際、ボイラ出力は急速に
は減少しないので高圧蒸気タービンバイパス弁7を急開
して、高圧蒸気タービン3に供給されていたエネルギー
をバイパスして逃−す。
If the output of the generator 6 suddenly decreases due to the opening of the main circuit breaker, etc.
The main blocking valve 9 is quickly closed to cut off steam to the high-pressure steam turbine 3 and prevent the turbine from over-rotating. At this time, since the boiler output does not decrease rapidly, the high pressure steam turbine bypass valve 7 is suddenly opened to bypass and release the energy supplied to the high pressure steam turbine 3.

次に、第6図に、従来の高圧蒸気タービンバイパス弁の
制御系統図を示す。主蒸気圧力19は、比較演算器20
によりボイラマスタ制御装置よりの圧力設定信号18と
比較され、両信号の偏差が求められる。求められた偏差
に基づきPI演算器21によりバイパス弁開度指令値が
計算される。
Next, FIG. 6 shows a control system diagram of a conventional high pressure steam turbine bypass valve. The main steam pressure 19 is determined by the comparison calculator 20
This is compared with the pressure setting signal 18 from the boiler master control device, and the deviation between both signals is determined. A bypass valve opening command value is calculated by the PI calculator 21 based on the obtained deviation.

第一切替器24は、2のPI演算器21による指令値と
手動による増減指令23によるアナログメモリ内指令値
22とを切替える。第2切替器25は第一切替ゲート2
4の出力値と定数発生器31による出力値の切替を行う
。定数発生器31出力値は、バイパス弁急開後のPI定
値制御を行うための目標値を設定するものである。この
ようにして求められたバイパス弁開度指令値26に基づ
きバルブ位置検出器27出力と指令値26を位置比較器
28で比較し、偏差がOとなるようサーボ機構29によ
り高圧蒸気タービンバイパス弁7を駆動する。なお、1
7は係数器、30はクイバック      、。
The first switch 24 switches between the command value from the second PI calculator 21 and the command value 22 in the analog memory based on the manual increase/decrease command 23 . The second switch 25 is the first switch gate 2
4 and the output value of the constant generator 31 are switched. The output value of the constant generator 31 is used to set a target value for performing PI constant value control after the bypass valve is suddenly opened. Based on the bypass valve opening command value 26 obtained in this way, the position comparator 28 compares the output of the valve position detector 27 with the command value 26, and the servo mechanism 29 controls the high-pressure steam turbine bypass valve so that the deviation becomes O. Drive 7. In addition, 1
7 is a coefficient unit, 30 is a Quiback, .

信号発生装置を示している。A signal generator is shown.

以上の制御系による時間的応答特性を第7図に示す。第
7図において、タービン負荷36が急減してOとなると
(第7図(a))、高圧蒸気タービンバイパス弁7を急
閉すべくバイパス弁開指令信号26が発生される(第7
図(b))。このバイパス弁開指令信号26により、第
8図に示すタービンバイパス弁駆動機構にて、バイパス
弁49を全開し、開方向、駆動用油圧室48と閉方向駆
動用油圧室53を連結し、バネ51により全開とする。
FIG. 7 shows the temporal response characteristics of the above control system. In FIG. 7, when the turbine load 36 suddenly decreases to O (FIG. 7(a)), a bypass valve opening command signal 26 is generated to quickly close the high-pressure steam turbine bypass valve 7 (see FIG. 7(a)).
Figure (b)). In response to this bypass valve opening command signal 26, the turbine bypass valve drive mechanism shown in FIG. 51 to fully open.

なお、47は油圧バイパス部、50け閉方向駆動用油圧
管、52は油圧ピストン、54は閉方向駆動用油圧管を
示している。
In addition, 47 is a hydraulic bypass part, 50 is a hydraulic pipe for driving in the closing direction, 52 is a hydraulic piston, and 54 is a hydraulic pipe for driving in the closing direction.

さて、バイパス弁開信号26の発生中、バイパス弁開度
39は、バイパス弁開指令保持時間T1の時間をかけて
全開に向は急速開する(第7図(C))。T1時間経過
後は信号発生器31の発生する信号を第2切替器25に
て選択し、バイパス弁開度指令値26として出力する。
Now, while the bypass valve opening signal 26 is being generated, the bypass valve opening degree 39 rapidly opens to the full open position over the bypass valve opening command holding time T1 (FIG. 7(C)). After the time T1 has elapsed, the signal generated by the signal generator 31 is selected by the second switch 25 and output as the bypass valve opening command value 26.

この信号発生器31の出力は12時間の間保持され、そ
れ以降は主蒸気圧力19と圧力設定信号18の偏差にも
とづ<PI制御に移行する。この間のプラント挙動は第
7図に示されており、バイパス弁開度39は、T1゛時
間経過陵、バイパス弁開度定値制御値Aに向けて近づい
て行き(第7図(C))、時間T2の間定値制御が行わ
れる。主要制御変数である主蒸気圧力19はタービン負
荷36急減後、ボイラ保有エネルギーが過剰となるため
上昇し、バイパス弁開指令保持時間T1の間も上昇を続
けるが、やがて過剰エネルギーが放出され、低下してい
く(第7図(a))。一方、ボイラドラム水位41は第
7図(e)に示すようにバイパス弁の開度39がボイラ
過剰エネルギーの放出に必要な量よシ多く開かれ続ける
と、ボイラからの放出エネルギーが過多、すなわち、ド
ラムよりの放出蒸気が過多となり、ボイラドラム水位4
1がボイラドラム水位低トリップレベル42以下となっ
て、ボイラトリツー16号43が発せられる(第7図(
f))。以上の現象は、タービン負荷急減時ボイラ出力
の低下が間に合わぬため、高圧蒸気タービンバイパス弁
7を一時的に開き、過剰エネルギーを放出させ、ボイラ
トリップを回避するという本来の目的を実現していない
ことになる。
The output of the signal generator 31 is maintained for 12 hours, after which the control shifts to <PI control based on the deviation between the main steam pressure 19 and the pressure setting signal 18. The behavior of the plant during this period is shown in FIG. 7, where the bypass valve opening 39 approaches the bypass valve opening constant control value A over time T1 (FIG. 7 (C)). Fixed value control is performed during time T2. The main steam pressure 19, which is the main control variable, rises after the turbine load 36 suddenly decreases because the energy retained in the boiler becomes excessive, and continues to rise during the bypass valve opening command holding time T1, but eventually the excess energy is released and it falls. (Figure 7(a)). On the other hand, as shown in FIG. 7(e), the boiler drum water level 41 will be affected by excessive energy being released from the boiler if the bypass valve opening 39 continues to be opened more than the amount required to release excess energy from the boiler, i.e. , too much steam was released from the drum, and the boiler drum water level was 4.
1 becomes the boiler drum water level low trip level 42 or lower, and boiler tri-tu No. 16 43 is issued (Fig. 7 (
f)). The above phenomenon does not realize the original purpose of temporarily opening the high-pressure steam turbine bypass valve 7 to release excess energy and avoid a boiler trip because the boiler output does not decrease in time when the turbine load suddenly decreases. It turns out.

以上の従来11il制御方式の欠点を改善するために、
「特願昭43−29882タービンバイパス減圧装請の
制御方法」による方法があるが、この方法は、タービン
トリップ以前の蒸気流紙を記憶しておき、その値に対応
したバイパス弁開度を指令する方式であり、機械的制御
方式を示している。かかる制御方式は、タービントリッ
プ後のボイラトリップを回避するために効果があるが、
主機気流量のみの関数としてバイパス弁開度を設定する
ため、近年の変圧運転方式あるいは、ドラム式ボイラの
場付、タービントリップ直前のドラム水圧が基準値より
ずれている場合には、タービントリップ後にボイラトリ
ップを回避する能力に限界があった。
In order to improve the above drawbacks of the conventional 11il control system,
There is a method based on "Japanese Patent Application No. 43-29882 Turbine Bypass Pressure Reducing Control Method", but this method stores the steam flow before the turbine trip and commands the bypass valve opening corresponding to that value. This is a mechanical control method. Although such a control method is effective in avoiding boiler trip after turbine trip,
Since the bypass valve opening degree is set as a function only of the main engine air flow rate, it is possible to set the bypass valve opening degree as a function only of the main engine air flow rate. There were limits to the ability to avoid boiler trips.

址だ、タービンのランバック発生と同時にその時の諸条
件によりタービンバイパス蒸気鼠と主蒸気力を計算によ
り求め、これらの算出値によジタービンバイパス制御弁
開度を算出し、この算出されたタービンバイパス制御弁
開度値によりランバック発生時のタービンバイパス弁急
速開指令を行うことによりプラントの安定を図るように
したものがある(特開昭57−173509号公報)。
As soon as the turbine runback occurs, the turbine bypass steam power and main steam power are calculated based on the various conditions at that time, and the turbine bypass control valve opening degree is calculated based on these calculated values. There is a system that attempts to stabilize the plant by issuing a command to quickly open the turbine bypass valve when a runback occurs based on the bypass control valve opening value (Japanese Patent Application Laid-open No. 173509/1983).

この制御方式も先に示したル1]御方式と同様、タービ
ントリップ以前の蒸気流量を記憶しておき、その値に対
応したバイパス弁開度を指令するという点で基本的な面
において似たものであり、その制御を行う構成が電気的
なものとなっている点が異なる。
This control method is basically similar to the control method shown earlier in that it stores the steam flow rate before the turbine trip and commands the bypass valve opening corresponding to that value. The difference is that the configuration that controls it is electrical.

さらに、タービンバイパス弁の開度を検出し、この検出
信号と主蒸気止め弁才たは蒸気加減弁の急開信号とを比
較し、タービンバイパス弁開度が主蒸気l」−め弁才た
け蒸気加減弁の急開時のタービン発電機出力に見合った
開度である場合に、原子炉スクラム信号すなわちトリッ
プ信号をバイパスさせることにより不要なスクラムの発
生を回避したものがある(特開昭56−150397号
公報)。
Furthermore, the opening degree of the turbine bypass valve is detected, and this detection signal is compared with the sudden opening signal of the main steam stop valve or steam control valve. There is a device that avoids the occurrence of unnecessary scram by bypassing the reactor scram signal, that is, the trip signal, when the opening degree is commensurate with the turbine generator output when the valve is suddenly opened (Japanese Patent Application Laid-Open No. 56-150397 Publication No.).

この例はタービンバイパス弁の開度に基づいて制御する
ものである。
In this example, control is performed based on the opening degree of the turbine bypass valve.

このように、いずれの従来の例も、タービン負荷減少時
に発生するボイラ保有エネルギー過多また過少に起因す
るトリップを防止する場合に、本来エネルギーで把握す
べき現象を検出するのに有効な手段がなく、蒸気流量や
弁開度をもって近似的に制御するものであった。
In this way, in all of the conventional examples, there is no effective means for detecting phenomena that should originally be understood using energy when preventing trips caused by too much or too little energy held in the boiler that occurs when the turbine load is reduced. , which was approximately controlled using the steam flow rate and valve opening degree.

〔発明の目的〕[Purpose of the invention]

本発明は高圧蒸気タービンバイパス系にて、タービン負
荷急減時に、ボイラ保有エネルギーの過多または過少に
起因するドラムの水位レベル高、ドラムの水位レベル低
、主蒸気圧力高または低等の要因に起因するボイラトリ
ップを防止し、発電システムの稼働率と運転性能の向−
にを目的とする〔発明の概要〕 上記目的を達成するために、本発明によるタービンバイ
パス弁の制御方法は、高圧蒸気タービンと、中低圧蒸気
タービンと、タービン負荷の急減時に前記高圧蒸気ター
ビンに並列に設置された高圧蒸気タービンバイパス弁と
を備えた発電システムにおける前記高圧蒸気タービンバ
イパス弁の制御方法において、前記高圧蒸気タービンバ
イパス弁の開度量をタービン負荷減少量の関数として決
定し、時間的に変化させる点に特徴を有する。
The present invention applies to a high-pressure steam turbine bypass system, when the turbine load suddenly decreases due to factors such as high or low water level in the drum due to too much or too little energy in the boiler, low water level in the drum, or high or low main steam pressure. Prevent boiler trips and improve power generation system availability and operational performance.
[Summary of the Invention] In order to achieve the above object, a method for controlling a turbine bypass valve according to the present invention provides a method for controlling a turbine bypass valve in a high-pressure steam turbine, an intermediate-low pressure steam turbine, and a control method for controlling a high-pressure steam turbine in the case of a sudden decrease in turbine load. In the method for controlling the high-pressure steam turbine bypass valve in a power generation system including a high-pressure steam turbine bypass valve installed in parallel, an opening amount of the high-pressure steam turbine bypass valve is determined as a function of a turbine load reduction amount, and It is characterized by the fact that it changes.

このように、高圧蒸気タービンバイパス弁の開度量をタ
ービン負荷減少量の関数として決定し、時間的に変化さ
せることにより、タービン負荷の急減に伴なって発生す
るボイラの保有するエネルギーの過多または過少に起因
するドラムの水位レヘルの異常変動を抑制し、それによ
ってボイラトリップを防止しうるものである。
In this way, by determining the degree of opening of the high-pressure steam turbine bypass valve as a function of the amount of turbine load reduction and changing it over time, it is possible to prevent excessive or insufficient energy held by the boiler that occurs due to a sudden decrease in turbine load. It is possible to suppress abnormal fluctuations in the water level of the drum caused by this, thereby preventing boiler trips.

タービン負荷減少量に対応実るエネルギー量であるボイ
ラの余剰エネルギーとしてタービントリップ直前の主蒸
気h1.主蒸気圧力、ボイラドラム水位により総合的に
とらえ、これらの諸量の関数として高圧蒸気タービンバ
イパス弁の開度を制御しようとするものである。
As the surplus energy of the boiler, which is the amount of energy generated corresponding to the amount of turbine load reduction, the main steam h1. The aim is to control the opening degree of the high-pressure steam turbine bypass valve as a function of the main steam pressure and boiler drum water level in a comprehensive manner.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明によるタービンバイパス弁の制御方法の実
施例を図面に基づいて説明する。
Next, an embodiment of a method for controlling a turbine bypass valve according to the present invention will be described based on the drawings.

第1図に本発明による制御方法を実行するだめの制御系
統のブロック図を示す。第1図において、第6図と重複
する部分には同一の符号を附してその詳細な説明を省略
する。なお、制御対象となる高圧蒸気タービンバイパス
弁を含む発電システム自体の構成は第5図のものと同様
として以下説明する。
FIG. 1 shows a block diagram of a control system for carrying out the control method according to the present invention. In FIG. 1, parts that overlap with those in FIG. 6 are given the same reference numerals, and detailed explanation thereof will be omitted. Note that the configuration of the power generation system itself including the high-pressure steam turbine bypass valve to be controlled will be described below as being similar to that shown in FIG. 5.

本発明に係る第1図の制御系統と第6図のものとの比較
において異るところは、バイパス弁制御パラメータ演算
装置(以下、パラメータ演算装置と略記する。)32を
設け、このパラメータ演算装置32により、第2切替器
25および定数発生器31を制御するようにした点にあ
る。
The difference between the control system of FIG. 1 and the one of FIG. 6 according to the present invention is that a bypass valve control parameter calculation device (hereinafter abbreviated as parameter calculation device) 32 is provided, and this parameter calculation device 32 controls the second switch 25 and constant generator 31.

すなわち、本発明によるタービンバイパス制御方法は、
タービン負荷急減によるボイラ過剰エネルギーに見合っ
たエネルギー分を高圧電気タービンバイパス弁7より放
出する手段を提供するもので、バイパス制御パラメータ
演算装置32によりボイラ過剰エネルギーに対応して高
速弁開指令保持時間TI  (第4図(b))を調整し
、高圧蒸気タービンバイパス弁7をどの開度まで急開す
べきか判断し、さらに、高速急開後、弁開度目標値をど
の値に設定し、どれだけの時間、その弁開度目標値に保
持するか求め、それぞれ定数発生器31に弁開度安値制
御設定値Aを、第2切替器25に定値制御保持時間T2
をそれぞれ指令するものである。
That is, the turbine bypass control method according to the present invention includes:
This system provides a means for releasing energy from the high-pressure electric turbine bypass valve 7 corresponding to the boiler excess energy due to a sudden decrease in the turbine load. (Fig. 4 (b)), determine to which opening degree the high-pressure steam turbine bypass valve 7 should be suddenly opened, and furthermore, after the high-speed sudden opening, to what value should the valve opening target value be set? determine whether the valve opening target value is to be maintained for a period of
These are the commands for each.

いま、タービン負荷36が急減した場合(第4図(a)
)、パラメータ演算装置32は以下に示す手順でデータ
を処理する(第2図参照)。
Now, if the turbine load 36 suddenly decreases (Fig. 4(a)
), the parameter calculation device 32 processes the data in the following procedure (see FIG. 2).

A、タービン負荷急激の開始時間TをT=Oとし、制御
パラメータ演算のだめの入力信号35として、タービン
出力PT(t)、ボイラ出力PR(t)、タービンバイ
パス弁通過出力をPBy(t)、ボイラ圧力をp、n(
t) 、ボイラ出力蒸気流量をTB(t)、  ボイラ
出力蒸気温度をTn(t)、ボイラドラムレベル’& 
L (t)を取込む。
A. The start time T of sudden turbine load is T=O, and the input signal 35 for control parameter calculation is the turbine output PT (t), boiler output PR (t), turbine bypass valve passing output PBy (t), Let the boiler pressure be p, n(
t), Boiler output steam flow rate is TB(t), Boiler output steam temperature is Tn(t), Boiler drum level'&
Take in L (t).

B、ボイラ余剰エネルギーPBXの計算タービン出力p
、r(t)、ボイラ出力P II (t)は、いずれも
時間tとともに減少するがタービン出力Pt(t)の減
少の方が急峻であるので余剰エネルギP#X(t)は、
次の式で与えられ、正の値をとる。
B. Calculated turbine output p of boiler surplus energy PBX
, r(t), and boiler output P II (t) all decrease with time t, but the turbine output Pt(t) decreases more steeply, so the surplus energy P#X(t) is
It is given by the following formula and takes a positive value.

Pgx(t)= pH(t)  PT(t) > 0 
     ・・・・・・・・・(1)p−e:yAイ/
<20(7)□1j工1.イウェヵ1,6.。、   
′ボイラドラムレベルL(t)に対し、下記の制約の下
にバイパス出力p BF (t)を余剰エネルギーP−
x(t)に近づけることである。
Pgx(t) = pH(t) PT(t) > 0
・・・・・・・・・(1) p-e:yAi/
<20(7)□1j 1. Iweka 1, 6. . ,
'With respect to the boiler drum level L(t), the bypass output p BF (t) is converted to the surplus energy P- under the following constraints.
The goal is to bring it closer to x(t).

P rB(t)<P、BUL        ・・・・
・・−旧−(2)LLL <L(t)<LUL    
  ・・団・・・・・・・(3)但し、22でPrsτ
ILはボイラ圧力上限値、IjLLはボイラドラムレベ
ル下限値、LoLはボイラドラムレベル上限値である。
P rB(t)<P, BUL...
...-Old-(2) LLL <L(t)<LUL
...Dan... (3) However, at 22, Prsτ
IL is the boiler pressure upper limit, IjLL is the boiler drum level lower limit, and LoL is the boiler drum level upper limit.

C0高速弁開指令時間TIの計算 次に、高速弁開指令時間T1すなわち、バイパス弁をど
こまで開(べきかを次式にょシ決定する。
Calculation of C0 high-speed valve opening command time TI Next, the high-speed valve opening command time T1, that is, how far the bypass valve should be opened is determined using the following formula.

TI= f (P−x (0)、 L (0)、 P−
B (0)、 P” B(0)、 L(0) ) −−
(4)関数fの定め方は、上記各パラメータの値に対し
、ボイラ圧力P、++(t)、が上限リミットを、L(
t)がリミット値を越えぬよう高速弁開指令時間Tlを
求める多項式、又は近似関数を求める。
TI= f (P-x (0), L (0), P-
B (0), P'' B (0), L (0) ) --
(4) The method of determining the function f is that for the values of each of the above parameters, the boiler pressure P, ++(t) is the upper limit, and L(
A polynomial or an approximation function is found to determine the high-speed valve opening command time Tl so that t) does not exceed the limit value.

このようにして決定されたバイパス弁開指令保持時間T
Iの間、バイパス弁開度指令値26が出力される(第4
図(b))。このバイパス弁開度指令値26は位置比較
器28に入力され、パルプ位置検出器27の検出値と比
較され、その偏差が0となるようにサーボ機構29によ
り高圧蒸気タービンバイパス弁7が駆動される。この高
圧蒸気タービンバイパス弁7は第4図(C)に示すよう
に全開される、一方、主蒸気圧力19はタービン負荷3
6の急減によってボイラ保有エネルギーが過剰となるた
めに上昇し、所定の時定数で上昇を続けるが、やがて高
圧蒸気タービンバイパス弁7の急開によって余剰エネル
ギーがバイパスされるので順次低下してゆく(第4図(
d))。
Bypass valve opening command holding time T determined in this way
During I, bypass valve opening command value 26 is output (4th
Figure (b)). This bypass valve opening command value 26 is input to a position comparator 28 and compared with the detected value of the pulp position detector 27, and the high pressure steam turbine bypass valve 7 is driven by the servo mechanism 29 so that the deviation becomes 0. Ru. This high pressure steam turbine bypass valve 7 is fully opened as shown in FIG. 4(C), while the main steam pressure 19 is
Due to the sudden decrease in 6, the energy retained in the boiler becomes excessive, so it rises and continues to rise with a predetermined time constant, but eventually the surplus energy is bypassed by the sudden opening of the high-pressure steam turbine bypass valve 7, so it gradually decreases ( Figure 4 (
d)).

かくして、高速弁開指令時間TIの経過とともに高圧蒸
気タービンバイパス弁7の急開が完了するが、その後も
高圧蒸気タービンバイパス弁7を開放したまま放置しだ
のでは、逆にボイラエネルギーの放出過多となり、ドラ
ム水位レベル41が低下してしまう。そこで、次に示す
手順により弁開度安値制御設定値Aおよび定値制御保持
時間T2を決定し、高圧蒸気タービンバイパス弁7を徐
々に絞り込む制御が必要となる。
In this way, the rapid opening of the high-pressure steam turbine bypass valve 7 is completed as the high-speed valve opening command time TI elapses, but if the high-pressure steam turbine bypass valve 7 is left open even after that, excessive boiler energy will be released. As a result, the drum water level 41 decreases. Therefore, it is necessary to determine the valve opening low value control setting value A and the constant value control holding time T2 by the following procedure, and control to gradually narrow down the high pressure steam turbine bypass valve 7.

D、ボイラ圧力Pry、ボ1゛う出口蒸気流量FB。D, boiler pressure Pry, boiler outlet steam flow rate FB.

ドラムレベルL、ボイラ出口蒸気温1fTB、バイパス
弁開度39をパラメータ演算71麦置32に取込む。
The drum level L, the boiler outlet steam temperature 1fTB, and the bypass valve opening 39 are taken into the parameter calculation 71 and the wheat rack 32.

E、タービン負荷急減時以降のボイラ余剰エネルギー積
分値 S P’=x (= fTP−x(t)旧)を読み出す
E, read out the boiler surplus energy integral value S P'=x (= fTP-x(t) old) after the sudden decrease in turbine load.

F、定値制御設定値への計算 A=g (f ” P、x(t)dt 、 L (Tt
 )、 Prn (’r+ )、 Fi (T1)。
F, calculation to fixed value control set value A = g (f ” P, x (t) dt , L (Tt
), Prn ('r+), Fi (T1).

L (’rt ) 、 Pos (rll、 ) ) 
       −・−・−−−−−(s>G、定値制御
保持時間T2の計算 Tz=h (、/”P−x(t)d t 、 L (T
+ )、 Prn (Tt )、 FB(Tl)。
L ('rt), Pos (rll, ))
−・−・−−−−(s>G, calculation of constant value control holding time T2 Tz=h (,/”P−x(t)d t , L (T
+), Prn (Tt), FB (Tl).

L (T1)、 Pos (Tt) )       
 −−−(6)関数g、hの定め方は高速弁開指令時間
T1におけるボイラ過剰エネルギーFax(t)の積算
値と、高速弁開指令時間T1における、ドラムレベルL
(tt)、ボイラ圧力P・x(tt)、ボイラ主蒸気流
量Fn(t)、バイパス弁開度より、弁開度安値制御設
定値A (t) 、定値制御保持時間T2をボイラドラ
ムレベルL (t) 、ボイラ出力PrB(t)がリミ
ット領内に納寸り、バイパス出力Paア(1)と余剰エ
ネルギーr’ 、 x (t)が等しくなるように、す
なわち、1Tp、x(t)旧−fTPお、 (1)旧 
 ・・・・・・・・・(7)となるよう近似関数を設定
する。
L (T1), Pos (Tt))
---(6) The functions g and h are determined based on the integrated value of the boiler excess energy Fax(t) at the high-speed valve opening command time T1 and the drum level L at the high-speed valve opening command time T1.
(tt), boiler pressure P・x(tt), boiler main steam flow rate Fn(t), bypass valve opening, valve opening low value control setting value A (t), constant value control holding time T2, boiler drum level L (t), the boiler output PrB(t) is within the limit area, and the bypass output Pa(1) and the surplus energy r', x(t) are equal, that is, 1Tp, x(t) -fTP, (1) Old
......Set the approximation function so that it becomes (7).

このように制御を行うことにより、第4図(e)に示す
ように、ボイラドラム水位41は若干の変動はあるもの
のほとんど影響はなく、シたがって第4図(f)に示す
ようにボイラー、 IJツブ信号が発生しない。
By performing control in this way, the boiler drum water level 41 fluctuates slightly, as shown in FIG. 4(e), but has almost no effect, and therefore, as shown in FIG. , IJ knob signal is not generated.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明の制御方法によれば、1情圧蒸
気タービンバイパス弁の開度を、タービン負荷急減時に
、ボイラ余剰エネルギー量に対応して制御しうるだめ、
バイパス弁を通って放出されるボイラエネルギーが過大
又は過少であることに起因する主蒸気圧力、ドラム水位
の変動と、該変動に起因するボイラトリップを防止し、
発電システムの稼動率と運転性能を向上しつる。
As described above, according to the control method of the present invention, the opening degree of the one-pressure steam turbine bypass valve can be controlled in accordance with the amount of boiler surplus energy when the turbine load suddenly decreases.
Preventing fluctuations in main steam pressure and drum water level caused by too much or too little boiler energy released through the bypass valve, and preventing boiler trips caused by the fluctuations,
Improves the availability and operational performance of power generation systems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるタービンノくイノくス弁の制御系
統を示すブロック図、第2図は本発明の制御方法におけ
るタービン負荷急変時におけるデータ処理手順を示すフ
ローチャー)、193図は同制御方法におけるバイパス
弁急開完了時におけるデータ処理手順を示すフローチャ
ート、第4図は本発明に係る制御系統の各部信号波形を
示すタイムチャート、第5図は一般的な蒸気タービン式
火力発電システムの概要を示す系統図、第6図は従来の
タービンバ・「ハス弁の制御系統を示すブロック図、第
7図は従来の制御系統の各部信号波形を示すタイムチャ
ート、第8図は高圧蒸気タービンバイパス弁の駆動機 1・・・過熱器、2・・・再熱器、3・・・高圧蒸気タ
ービン、4・・・中低圧蒸気タービン、5・・・復水器
、6・・・発電機、7・・・高圧蒸気タービンバイパス
jpsi8・・・圧力設定信号、19・・・主蒸気圧力
、20・・・比較演算器、21・・・PI演算器、22
・・・アナログメモリ、23・・・手動増減指令値、2
4・・・第1切替器、25・・・第2切替器、26・・
・バイパス弁開度指令値、27・・・位置検出器、28
・・・位置比較器、29・・・サーボ機構、30・・・
タイバツク信号発生装置、31・・・定数発生器、32
・・・バイパス制御パラメータ演算装置、35・・・バ
イパス制御パラメータ演算装置入力信号、36・・・タ
ービン負荷、39・・・バイパス弁開度、41・・・ボ
・イラドラム水位、42・・・ボイラドラム水位低l・
リップレベル、43・・・ボイラトリップ伍号、T1・
・・高速弁開指令保持時間、T2・・・バイパス弁開度
定値制御保持時間、A・・・バイパスブト開度定値制御
値。
Fig. 1 is a block diagram showing the control system of the turbine exhaust valve according to the present invention, Fig. 2 is a flowchart showing the data processing procedure when the turbine load suddenly changes in the control method of the present invention), and Fig. 193 is the same control system. A flowchart showing the data processing procedure when the bypass valve is suddenly opened in the method, FIG. 4 is a time chart showing signal waveforms of each part of the control system according to the present invention, and FIG. 5 is an overview of a general steam turbine thermal power generation system. Fig. 6 is a block diagram showing the control system of the conventional turbine valve, Fig. 7 is a time chart showing the signal waveforms of each part of the conventional control system, and Fig. 8 is the high-pressure steam turbine bypass valve. Drive unit 1... superheater, 2... reheater, 3... high pressure steam turbine, 4... medium and low pressure steam turbine, 5... condenser, 6... generator, 7... High pressure steam turbine bypass jpsi8... Pressure setting signal, 19... Main steam pressure, 20... Comparison calculator, 21... PI calculator, 22
...Analog memory, 23...Manual increase/decrease command value, 2
4...first switch, 25...second switch, 26...
・Bypass valve opening command value, 27...Position detector, 28
...Position comparator, 29...Servo mechanism, 30...
Tieback signal generator, 31...constant generator, 32
... Bypass control parameter calculation device, 35 ... Bypass control parameter calculation device input signal, 36 ... Turbine load, 39 ... Bypass valve opening degree, 41 ... Boira drum water level, 42 ... Boiler drum water level low
Lip level, 43...Boiler trip No. 5, T1.
...High-speed valve opening command holding time, T2...Bypass valve opening constant value control holding time, A...Bypass valve opening constant value control value.

Claims (1)

【特許請求の範囲】[Claims] 1、高圧蒸気タービンと、中低圧蒸気タービンと、ター
ビン負荷の急減時に前記高圧蒸気タービンへの蒸気流量
をバイパスして急減させるために前記高圧蒸気タービン
に並列に設置された高圧蒸気タービンバイパス弁とを備
えた発電システムにおける前記高圧蒸気タービンバイパ
ス弁の制御方法において、当該高圧蒸気タービンバイパ
ス弁の開度量をタービン負荷減少量の関数として決定し
、時間的に変化させることを特徴とするタービンバイパ
ス弁の制御方法。
1. A high-pressure steam turbine, a medium-low pressure steam turbine, and a high-pressure steam turbine bypass valve installed in parallel with the high-pressure steam turbine to bypass and rapidly reduce the steam flow rate to the high-pressure steam turbine when the turbine load suddenly decreases. The method for controlling the high pressure steam turbine bypass valve in a power generation system comprising: determining an opening amount of the high pressure steam turbine bypass valve as a function of a turbine load reduction amount and changing the amount over time; control method.
JP13481984A 1984-06-29 1984-06-29 Controlling method of turbine bypass valve Granted JPS6114403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13481984A JPS6114403A (en) 1984-06-29 1984-06-29 Controlling method of turbine bypass valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13481984A JPS6114403A (en) 1984-06-29 1984-06-29 Controlling method of turbine bypass valve

Publications (2)

Publication Number Publication Date
JPS6114403A true JPS6114403A (en) 1986-01-22
JPH0429921B2 JPH0429921B2 (en) 1992-05-20

Family

ID=15137219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13481984A Granted JPS6114403A (en) 1984-06-29 1984-06-29 Controlling method of turbine bypass valve

Country Status (1)

Country Link
JP (1) JPS6114403A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134204A (en) * 1989-10-20 1991-06-07 Toshiba Corp Combined cycle power plant
JP2007224883A (en) * 2006-02-27 2007-09-06 Toshiba Corp Over speed prevention device for steam turbine
CN104632302A (en) * 2015-01-05 2015-05-20 广东电网有限责任公司电力科学研究院 Condensing steam turbine sliding pressure operation curve testing/implementation method
CN105041397A (en) * 2015-07-16 2015-11-11 中国神华能源股份有限公司 Interlock protection device and method of turbine united tripping boiler of CFB boiler generator set

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101084A (en) * 1978-01-25 1979-08-09 Hitachi Ltd Control method of atomic power turbine plant and their system
JPS5595898A (en) * 1979-01-17 1980-07-21 Tokyo Shibaura Electric Co Atomic power plant power control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101084A (en) * 1978-01-25 1979-08-09 Hitachi Ltd Control method of atomic power turbine plant and their system
JPS5595898A (en) * 1979-01-17 1980-07-21 Tokyo Shibaura Electric Co Atomic power plant power control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134204A (en) * 1989-10-20 1991-06-07 Toshiba Corp Combined cycle power plant
JP2007224883A (en) * 2006-02-27 2007-09-06 Toshiba Corp Over speed prevention device for steam turbine
JP4643470B2 (en) * 2006-02-27 2011-03-02 株式会社東芝 Steam turbine overspeed prevention device
CN104632302A (en) * 2015-01-05 2015-05-20 广东电网有限责任公司电力科学研究院 Condensing steam turbine sliding pressure operation curve testing/implementation method
CN104632302B (en) * 2015-01-05 2016-01-20 广东电网有限责任公司电力科学研究院 A kind of condensing steam turbine sliding pressure operation curve test/implementation methods
CN105041397A (en) * 2015-07-16 2015-11-11 中国神华能源股份有限公司 Interlock protection device and method of turbine united tripping boiler of CFB boiler generator set

Also Published As

Publication number Publication date
JPH0429921B2 (en) 1992-05-20

Similar Documents

Publication Publication Date Title
JPS61107004A (en) Controller for temperature of outlet of heat recovery steam generator for complex cycle generation plant
JPH11352284A (en) Reactor system pressure control method through core power control
EP0594384A1 (en) System and method for controlling a nuclear reactor upon steam flow control valve failure
JPH0454802B2 (en)
JPS6114403A (en) Controlling method of turbine bypass valve
US6606366B2 (en) Nuclear power plant having steam turbine controller
JPS628603B2 (en)
JPS6239919B2 (en)
US5960624A (en) Process for regulating gas pressures of catalyst regenerator expansion turbines
JPH11257018A (en) Steam by-pass system for steam turbine
JPS60228711A (en) Turbine bypass control device for combined cycle electric power plant
JP3881762B2 (en) Gas turbine steam cooling system
JP2645103B2 (en) Geothermal steam turbine bypass controller
JPS6053762B2 (en) Turbine control method
JP2870039B2 (en) Water turbine speed control method
JPS6227322B2 (en)
JPH10103020A (en) Controller and control method for turbine bypass valve in combined plant
JPS6022318B2 (en) Coolant flow control device in nuclear equipment after reactor shutdown
JP2523493B2 (en) Turbin bypass system
JPH0270906A (en) Control of bleeding turbine and device thereof
JPH04342806A (en) Steam turbine control device for combined power plant
JPH07103808B2 (en) Load back-up method when the system frequency drops sharply
JPS6056110A (en) Control method of ventilator
JPS6198904A (en) Control device for nuclear power plant
JPH0486305A (en) Steam turbine control device