JPS61262695A - Nuclear power plant - Google Patents

Nuclear power plant

Info

Publication number
JPS61262695A
JPS61262695A JP60103914A JP10391485A JPS61262695A JP S61262695 A JPS61262695 A JP S61262695A JP 60103914 A JP60103914 A JP 60103914A JP 10391485 A JP10391485 A JP 10391485A JP S61262695 A JPS61262695 A JP S61262695A
Authority
JP
Japan
Prior art keywords
control rod
reactor
output
generator
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60103914A
Other languages
Japanese (ja)
Inventor
津田 昌彦
小田 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60103914A priority Critical patent/JPS61262695A/en
Publication of JPS61262695A publication Critical patent/JPS61262695A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Saccharide Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Steroid Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は主蒸気流路にバイパス路を(=l設する沸騰水
型の原子力発電プラントに係り、特に、発電機負荷遮断
時の原子炉出力の調整方法を改良した原子力発電プラン
トに関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a boiling water type nuclear power plant in which a bypass path is installed in the main steam flow path, and in particular, the present invention relates to a boiling water type nuclear power plant in which a bypass path is installed in the main steam flow path. This invention relates to a nuclear power plant with an improved adjustment method.

〔発明の技術的前頭〕[Technical front of invention]

一般に、沸騰水型原子力発電プラントは第3図の系統図
に示すように構成され、原子炉1を主蒸気流路2を介し
てタービン3に接続し、原子炉1にて発生した主蒸気を
タービン3に送気して図示しない発電機を駆動する。タ
ービン3にて仕事をした蒸気は復水器4へ排出され、こ
こで冷却凝縮されて、復水として給水ポンプ5により復
水系6を介して原子炉1内へ再び戻される。原子炉1内
の冷却材は複数系統、例えば2系統の再循環系7の再循
環ポンプ8により強制循環され、炉心流量を調整するこ
とにより発生蒸気は(炉熱出力)が制御される。
Generally, a boiling water nuclear power plant is configured as shown in the system diagram in Figure 3, in which a nuclear reactor 1 is connected to a turbine 3 via a main steam passage 2, and the main steam generated in the reactor 1 is Air is supplied to the turbine 3 to drive a generator (not shown). The steam that has done work in the turbine 3 is discharged to a condenser 4, where it is cooled and condensed, and is returned to the reactor 1 as condensate via a condensate system 6 by a water supply pump 5. The coolant inside the nuclear reactor 1 is forcedly circulated by recirculation pumps 8 in a plurality of systems, for example, two recirculation systems 7, and the generated steam (reactor heat output) is controlled by adjusting the core flow rate.

上記主蒸気流路2は主蒸気加減弁9の上流側より分岐し
て復水器4に接続される100%バイパイ容量のバイパ
ス路10を付設している。このバイパス路10を通して
主蒸気はタービン3をバイパスさせて、直接復水器4へ
案内するようになっている。すなわち、原子炉出力が例
えば80%以上であるときに、発電機負荷遮断が発生す
ると、外部負荷の喪失を検出するパワーロードアンバラ
ンスリレーが動作し、主蒸気加減弁9が急r!3、バイ
パス弁11が急開される。このために、主蒸気はバイパ
ス路10に案内されて復水器4へ直接排出される。また
、バイパス弁11の急開と共に、再循環ポンプ8の2台
と給水ポンプ5とがそれぞれトリップし、選択制御棒が
制御棒駆動装置12により原子炉1の炉心へ挿入される
。この3つの保i[!7J作により原子力発電プラント
は所内の単独運転に移行する。
The main steam passage 2 is provided with a bypass passage 10 having a 100% bypass capacity, which branches from the upstream side of the main steam control valve 9 and is connected to the condenser 4. Main steam bypasses the turbine 3 through this bypass passage 10 and is guided directly to the condenser 4. That is, if a generator load cutoff occurs when the reactor output is, for example, 80% or more, the power load unbalance relay that detects the loss of external load is activated, and the main steam control valve 9 is suddenly turned on. 3. Bypass valve 11 is suddenly opened. For this purpose, the main steam is guided into the bypass line 10 and discharged directly to the condenser 4. In addition, with the sudden opening of the bypass valve 11, the two recirculation pumps 8 and the water supply pump 5 are tripped, and the selected control rods are inserted into the core of the reactor 1 by the control rod drive device 12. These three protection i [! As a result of the 7J project, nuclear power plants will shift to isolated operation within the plant.

ところで、再循環ポンプ8の2台がトリップされると、
原子炉1内の冷却材は第2図のグラフに示ず自然循環状
態のm [JJf 13に移行する。これは主蒸気加減
弁9の急開とバイパス弁11の急開とにより主蒸気流量
のミスマツチを生じるので、このミスマツチに起因覆る
原子炉1内の圧力上昇と、その圧力上背の結果生ずる中
性子束上昇を自然循環状態で抑制しようとりるものであ
る。また、給水ポンプ6の]・リップは原子炉1内への
給水を停止して、過給水を防止しようとするものである
By the way, when two of the recirculation pumps 8 are tripped,
The coolant in the reactor 1 is not shown in the graph of FIG. 2 and moves to a state of natural circulation m [JJf 13. This causes a mismatch in the main steam flow rate due to the sudden opening of the main steam control valve 9 and the sudden opening of the bypass valve 11, so the pressure inside the reactor 1 increases due to this mismatch, and the neutrons generated as a result of this pressure increase. This is an attempt to suppress the rise of the bundle in a state of natural circulation. Furthermore, the lip of the water supply pump 6 is intended to stop the water supply into the reactor 1 and prevent overfeeding of water.

上記選択制御棒の挿入は、予め選択されである選択制御
棒を予め設定された挿入位置まで挿入するものであり、
所内単独運転時にタービン抽気蒸気が喪失し、給水温度
が低下することにより生ずる出力上昇を抑制すると共に
、自然循環状態での出力を安定運転範囲に保持しようと
するものである。
The insertion of the selected control rod is performed by inserting a selected control rod that has been selected in advance to a preset insertion position,
The purpose is to suppress the increase in output caused by the loss of turbine bleed steam and decrease in feed water temperature during isolated operation within the plant, and to maintain the output within a stable operating range under natural circulation conditions.

(背景技術の問題点〕 しかしながら、このような従来例では、再循環ポンプ8
および給水ポンプ5の1−リップと、選択制御棒挿入の
3つの保護動作がほぼ同時に行なわれる。
(Problems in the background art) However, in such a conventional example, the recirculation pump 8
The three protective operations of 1-rip of the water supply pump 5 and selective control rod insertion are performed almost simultaneously.

したがって、原子炉出力が第2図に示す出力降下直線1
4に沿って出力設定点15迄、急激に降下し、過渡解析
上燃料の健全性は十分に保護されるが、種々の問題があ
った。すなわち、原子炉1内のボイド率の急激な減少に
より著しい水位の低下と、選択制御棒の一斉挿入による
燃料反応度の急激変化とを発生させ、原子炉1に大ぎな
外乱を与える原因の1つとなっていた。このために、所
内単独運転時の原子炉出力を発電機負荷遮断時の設定値
に制御することが困難であるという問題があった。
Therefore, the reactor output is the output drop line 1 shown in Figure 2.
4 to the output set point 15, and although the integrity of the fuel was sufficiently protected in transient analysis, there were various problems. In other words, a rapid decrease in the void fraction within the reactor 1 causes a significant drop in water level, and simultaneous insertion of selective control rods causes a sudden change in fuel reactivity, which is one of the causes of large disturbances in the reactor 1. They were one. For this reason, there was a problem in that it was difficult to control the reactor output during isolated operation within the station to the set value when the generator load was cut off.

〔発明の目的〕[Purpose of the invention]

本発明は上述の事情に鑑みてなされたもので、発電機負
荷遮断時には、その遮断時の設定値に原子炉出力を安定
的かつ容易に制御できる原子力発電プラントを提供する
ことを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a nuclear power plant that can stably and easily control the reactor output to the set value at the time of power cutoff when the generator load is cut off.

〔発明の概要〕[Summary of the invention]

上述した目的を達成するために本発明は、発電機を駆動
するタービンに原子炉を接続する主蒸気流路の途中から
分岐してタービン復水器に接続するバイパス路を有する
原子力発電プラントにおいて、発電機遮断器および再循
環ポンプのトリップを検出したときに起動信号を出力す
るトリップ検出器と、このトリップ検出器からの起動信
号を入力して起動し、上記原子炉内の中性子束を検出す
る中性子束検出器からの検出値と発電機負荷遮断時の原
子炉出力の設定値とを比較演粋して両省の偏差を出力す
る制御器と、この制ill器からの偏差信号を制御棒操
作信号に変換り“る制御棒シーケンサ−と、この制御棒
シーケンリレからの制御棒操作信号を受けて選択制御棒
の挿入もしくは引抜操作を行なう制御棒駆動装rとを右
することを特徴とする。
In order to achieve the above-mentioned object, the present invention provides a nuclear power plant having a bypass passage branching from the middle of a main steam flow passage connecting a nuclear reactor to a turbine that drives a generator and connecting to a turbine condenser. A trip detector that outputs a start signal when a trip of the generator circuit breaker and recirculation pump is detected, and a start signal from this trip detector is input to start up and detect the neutron flux in the reactor. A controller that compares the detected value from the neutron flux detector and the set value of the reactor output at the time of generator load interruption and outputs the deviation between the two, and a deviation signal from this suppressor that operates the control rods. The present invention is characterized by a control rod sequencer that converts signals into signals, and a control rod drive device r that receives control rod operation signals from the control rod sequence relay and inserts or withdraws selected control rods.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について第1図および第2図に
ついて説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

なお、第1図中、第3図で示すものと同一部材について
は同一符号を付している。
In FIG. 1, the same members as those shown in FIG. 3 are designated by the same reference numerals.

第1図は本発明の一実施例の全体構成を示しており、原
子炉1の炉心に設けた中性子束検出V!h20に炉外の
中性子束指示器21を介して制御器22を接続している
。制御器22は発電機負荷遮断時の原子炉出ノJを設定
する設定器23と、図示しない発電機遮断器のトリップ
および再循環ポンプ8の全数、例えば2台のトリップを
検出するトリップ検出器24とに接続されている。この
制御器22は中性子束検出器20からの中性子束フィー
ドバック信号SFと、設定器23にて設定された発電機
負荷遮断時の原子炉出力の設定値S1とを比較演算して
両者の偏差を出力するものであり、トリップ検出器24
からの起動信号S2を入力して起動する。
FIG. 1 shows the overall configuration of an embodiment of the present invention, in which neutron flux detection V! is provided in the core of a nuclear reactor 1. A controller 22 is connected to h20 via a neutron flux indicator 21 outside the reactor. The controller 22 includes a setting device 23 that sets the reactor output J when the generator load is cut off, and a trip detector that detects the trip of the generator circuit breaker (not shown) and the trip of all the recirculation pumps 8, for example, two units. 24. This controller 22 compares and calculates the neutron flux feedback signal SF from the neutron flux detector 20 and the set value S1 of the reactor output at the time of generator load cutoff, which is set by the setting device 23, and calculates the deviation between the two. The trip detector 24
It is activated by inputting the activation signal S2 from .

上記設定値S1は第2図の出力設定点15に設定されて
おり、制御器22は選択操作ずべき制御棒25およびそ
の挿入・用法位置を設定したυJlll棒シーケフシ−
ケンスている制御棒シーケンサ−26を介して制御棒駆
動装置27に接続されている。すなわち、ill il
l器22からの偏差信号S3は制御棒シーケンサ−26
にて制御棒操作信@S4に換算され、制御棒駆動装置2
7にて制tII器22からの偏差信号S3が零になるよ
うに、選択制御棒25の挿入・引抜操作を行なうように
なっている。
The above set value S1 is set at the output set point 15 in FIG.
The control rod drive unit 27 is connected to a control rod drive unit 27 via a control rod sequencer 26 that is connected to the control rod drive unit 27 . That is, ill ill
The deviation signal S3 from the controller 22 is sent to the control rod sequencer 26.
It is converted into control rod operation signal @S4, and the control rod drive device 2
At step 7, the selection control rod 25 is inserted and withdrawn so that the deviation signal S3 from the tII controller 22 becomes zero.

次に本実施例の作用について述べる。Next, the operation of this embodiment will be described.

ここで今、図示しない発電機の負荷!!断が発生すると
、図示しない発電器遮断器と再循環ポンプ8の2台がト
リップする。これらのトリップはトリップ検出器24に
て検出されて、起動信号S2が制m+器22へ出力され
る。制御器22は起動信号S2を受けて起動し、発電機
負荷遮断時における中性子束フィードバック信号SFを
その設定値S1に比較し、両者の偏差である偏差信号S
3を制御棒シーケンサ−26に出力する。制御棒シーケ
ンサ−26は偏差信号S3を制御棒操作信@S4に換算
してから!、If Illll動駆動装置27力し、上
記偏差信号S3が零となるように選択制御棒25の挿入
もしくは引抜操作を行なう。これにより、発電機負荷遮
断時の原子炉出力が設定1ii1!81に制御される。
Now, the load of the generator (not shown)! ! When a failure occurs, two units, a generator circuit breaker and recirculation pump 8 (not shown), trip. These trips are detected by the trip detector 24, and a start signal S2 is output to the controller 22. The controller 22 is activated upon receiving the activation signal S2, compares the neutron flux feedback signal SF at the time of generator load cut-off with its set value S1, and generates a deviation signal S which is the deviation between the two.
3 is output to the control rod sequencer 26. The control rod sequencer 26 converts the deviation signal S3 into a control rod operation signal @S4! , If Illll dynamic drive device 27 is activated, and the selection control rod 25 is inserted or withdrawn so that the deviation signal S3 becomes zero. As a result, the reactor output at the time of generator load interruption is controlled to the setting 1ii1!81.

第2図はこのような本実施例の炉熱出力の変動を示して
おり、発電機負荷遮断により再循環ポンプ8の2台およ
び給水ポンプ5(第3図参照)の1台がトリップすると
、炉心流ff1W低下と共に炉熱出力Sが100%流石
制御直線30に沿って緩慢に降下し、出力降下点31迄
低下したきに選択f、II御棒25が炉心へ段階的に挿
入され、出力設定点(設定値31)15へ炉出力が抑制
される。これにより、発電機負荷遮断時の炉出力は設定
値S1に制御される。
FIG. 2 shows such fluctuations in the furnace heat output in this embodiment, and when two recirculation pumps 8 and one of the feed water pumps 5 (see FIG. 3) trip due to generator load cutoff, As the core flow ff1W decreases, the reactor heat output S slowly decreases to 100% along the control straight line 30, and when it decreases to the output drop point 31, the selection f, II control rod 25 is inserted into the core in stages, and the output Furnace power is reduced to setpoint (setpoint 31) 15. Thereby, the furnace output at the time of generator load cutoff is controlled to the set value S1.

しかも、本実施例では発電機負荷遮断時より出力降下点
31まで降下する100%流出制御直線30の降下度が
従来例のもの14よりも緩慢であるので、再循環ポンプ
トリップ後の原子炉1内の外乱を緩和し、自然循環状態
における炉出力調整を容易にした。
Moreover, in this embodiment, since the degree of descent of the 100% outflow control straight line 30 that drops to the output drop point 31 from the time of generator load cutoff is slower than that of the conventional example 14, the reactor 1 after the recirculation pump trip This alleviates internal disturbances and facilitates adjustment of reactor output under natural circulation conditions.

また、原子炉出力が出力設定点15に到達した後に、給
水温度の低下による出力上昇、あるいはゼノンの蓄積に
よる出力低下等により出力変動が発生した場合において
も、その出力変動を解消するように制御棒操作が行なわ
れるので、常に炉出力を出力設定点に調整することがで
きる。
In addition, even if output fluctuations occur after the reactor output reaches the output set point 15 due to an increase in output due to a drop in feed water temperature or a decrease in output due to accumulation of Zenon, control is performed to eliminate the output fluctuations. Because of the rod operation, the furnace power can always be adjusted to the power set point.

(発明の効果〕 以上説明したように本発明は、発電機を駆動するタービ
ンに原子炉を接続する主蒸気流の途中から分岐してター
ビン復水器に接続するバイパス路を有する原子力発電プ
ラントにおいて、発電機遮断器および発電プラントにお
いて、発電器遮断器および再循環ポンプのトリップを検
出したとぎに起動信号を出力するトリップ検出器と、こ
のトリップ検出器からの起動信号を入力して起動し、上
記原子炉内の中性子束を検出する中性子束検出器からの
検出値と発電機負荷遮断時の原子炉出力の設定値とを比
較演算して両者の偏差を出力する制御器と、この制御器
からの偏差信号をit、11御棒操作信号に変換する制
御棒シーケンサ−と、この制御棒操作信号を受けて選択
制御棒の挿入もしくは引抜操作を行なう制御棒駆動装置
とを有する。
(Effects of the Invention) As explained above, the present invention is applicable to a nuclear power plant having a bypass path that branches off from the middle of the main steam flow that connects the reactor to the turbine that drives the generator and connects to the turbine condenser. , in the generator breaker and power generation plant, a trip detector outputs a start signal upon detecting tripping of the generator breaker and the recirculation pump, and starts by inputting the start signal from the trip detector; A controller that compares and calculates the detected value from the neutron flux detector that detects the neutron flux in the reactor and the set value of the reactor output at the time of generator load interruption and outputs the deviation between the two; It has a control rod sequencer that converts a deviation signal from IT, 11 into a control rod operation signal, and a control rod drive device that receives this control rod operation signal and inserts or withdraws a selected control rod.

したがって、本発明によれば、発電機負荷遮断時には再
LAyAポンプのトリップ後に、選択制御棒の挿入・引
抜操作を行なうので、発電機負荷遮断後の炉出力の急激
な降下を防止することができ、原子炉に対する外乱を低
減することができる。その結果、原子炉出力を自然循環
状態で安定かつ容易に自動調整することができる効果を
奏する。
Therefore, according to the present invention, when the generator load is cut off, the selected control rod is inserted and withdrawn after the LAyA pump is tripped again, so that it is possible to prevent a sudden drop in the reactor output after the generator load cutoff. , disturbances to the reactor can be reduced. As a result, the reactor output can be stably and easily automatically adjusted in a natural circulation state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の全体構成を示ず系統図、第
2図は第1図で示す実施例における炉熱出力の変動を従
来例のものと比較して示すグラフ、第3図は一般的な沸
騰水型原子力発電プラントの要部系統図である。 1・・・原子炉、8・・・再循環ポンプ、20・・・中
性子束検出器、Sl・・・設定値、S2・・・起動信号
、S3・・・偏差信号、S4・・・制御棒操作信号。 代理人弁理士  則 近 憲 佑(ばか1名)早2 図
Fig. 1 is a system diagram showing the overall configuration of an embodiment of the present invention, Fig. 2 is a graph showing fluctuations in furnace heat output in the embodiment shown in Fig. 1 in comparison with that of a conventional example, and Fig. 3 The figure is a system diagram of the main parts of a typical boiling water nuclear power plant. DESCRIPTION OF SYMBOLS 1... Nuclear reactor, 8... Recirculation pump, 20... Neutron flux detector, Sl... Setting value, S2... Starting signal, S3... Deviation signal, S4... Control Bar operation signal. Representative Patent Attorney Nori Chika Kensuke (1 idiot) Haya 2 Diagram

Claims (1)

【特許請求の範囲】[Claims] 発電機を駆動するタービンに原子炉を接続する主蒸気流
路の途中から分岐してタービン復水器に接続するバイパ
ス路を有する原子力発電プラントにおいて、発電機遮断
器および再循環ポンプのトリップを検出したときに起動
信号を出力するトリップ検出器と、このトリップ検出器
からの起動信号を入力して起動し、上記原子炉内の中性
子束を検出する中性子束検出器からの検出値と発電機負
荷遮断時の原子炉出力の設定値とを比較演算して両者の
偏差を出力する制御器と、この制御器からの偏差信号を
制御棒操作信号に変換する制御棒シーケンサーと、この
制御棒操作信号を受けて選択制御棒の挿入もしくは引抜
操作を行なう制御棒駆動装置とを有することを特徴とす
る原子力発電プラント。
Detects trips of generator circuit breakers and recirculation pumps in nuclear power plants that have a bypass path that branches off from the middle of the main steam flow path that connects the reactor to the turbine that drives the generator and connects to the turbine condenser. A trip detector that outputs a start signal when the trip detector outputs a start signal, and a neutron flux detector that starts by inputting the start signal from this trip detector and detects the neutron flux inside the reactor and the generator load. A controller that compares and calculates the set value of the reactor output at the time of shutdown and outputs the deviation between the two, a control rod sequencer that converts the deviation signal from this controller into a control rod operation signal, and this control rod operation signal. A nuclear power generation plant comprising: a control rod drive device that inserts or withdraws a selected control rod in accordance with the received control rods.
JP60103914A 1985-05-17 1985-05-17 Nuclear power plant Pending JPS61262695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60103914A JPS61262695A (en) 1985-05-17 1985-05-17 Nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60103914A JPS61262695A (en) 1985-05-17 1985-05-17 Nuclear power plant

Publications (1)

Publication Number Publication Date
JPS61262695A true JPS61262695A (en) 1986-11-20

Family

ID=14366692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60103914A Pending JPS61262695A (en) 1985-05-17 1985-05-17 Nuclear power plant

Country Status (1)

Country Link
JP (1) JPS61262695A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256099A (en) * 2009-04-23 2010-11-11 Hitachi-Ge Nuclear Energy Ltd Method and device for controlling selected control rod

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256099A (en) * 2009-04-23 2010-11-11 Hitachi-Ge Nuclear Energy Ltd Method and device for controlling selected control rod

Similar Documents

Publication Publication Date Title
JPS58191989A (en) Reactor power control device
JPH0631814B2 (en) Variable delay device for reactor trip
JPS61262695A (en) Nuclear power plant
EP0228857B1 (en) Dropped control rod protection insensitive to large load loss
JPS5828689A (en) Method and device for controlling reactor power at load loss
JPS61282705A (en) Feed water controller for nuclear reactor
JPS6239788A (en) Controller for output from nuclear reactor
JPS6217121B2 (en)
JPH0156716B2 (en)
JPS6273004A (en) Flow controller for feedwater of nuclear reactor
JPS6134115B2 (en)
JPS6252274B2 (en)
JPH0566292A (en) Suppressing device for nuclear reactor scram
JPS62214202A (en) Load cutting-off device for power generation plant
JPS61223697A (en) Output controller for nuclear reactor in nuclear power plant
JPS6050318B2 (en) Reactor control device
JPS61282706A (en) Feed water controller for steam generating plant
JPH03215791A (en) Nuclear reactor output controller
JPH06109892A (en) Reactor power control equipment
JPS6390797A (en) Nuclear reactor protection system logic circuit
JPS5912395A (en) Method of controlling recirculation flow rate in bwr type reactor
JPH0480356B2 (en)
JPS60210796A (en) Device for monitoring and controlling region of operation
JPH0843590A (en) Controlling method for boiling water reactor power plant
JPS623920B2 (en)