JPH0480356B2 - - Google Patents

Info

Publication number
JPH0480356B2
JPH0480356B2 JP55097850A JP9785080A JPH0480356B2 JP H0480356 B2 JPH0480356 B2 JP H0480356B2 JP 55097850 A JP55097850 A JP 55097850A JP 9785080 A JP9785080 A JP 9785080A JP H0480356 B2 JPH0480356 B2 JP H0480356B2
Authority
JP
Japan
Prior art keywords
reactor
control
control rod
control rods
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55097850A
Other languages
Japanese (ja)
Other versions
JPS5722587A (en
Inventor
Jiro Ootsuji
Jiro Hamano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP9785080A priority Critical patent/JPS5722587A/en
Publication of JPS5722587A publication Critical patent/JPS5722587A/en
Publication of JPH0480356B2 publication Critical patent/JPH0480356B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、原子炉出力低下要求を引き起す故障
発生時に、あらかじめ選択された制御棒を緊急挿
入することにより発電所または原子炉の継続運転
を可能とする沸騰水形原子力発電所の原子炉出力
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention] (Industrial Field of Application) The present invention provides a means for reducing the power plant or This invention relates to a reactor power control device for a boiling water nuclear power plant that enables continuous operation of a nuclear reactor.

(従来の技術) 一般に、沸騰水形原子力発電所においては、プ
ラント外の電力系統事故発生時に所内単独運転を
継続することを目的として、事故発生と同時に原
子炉再循環ポンプをトリツプさせるとともに、選
択制御棒を緊急挿入して原子炉出力を低下させ、
一方タービンバイパス弁を急開させて原子炉から
発生する蒸気を復水器へ逃がすことにより、原子
炉を停止することなく継続運転を行なうことがで
きるようにしてある。
(Prior art) In general, in a boiling water nuclear power plant, in order to continue isolated operation within the plant in the event of an accident in the power system outside the plant, the reactor recirculation pump is tripped at the same time as the accident occurs, and the reactor recirculation pump is Emergency insertion of control rods reduces reactor power,
On the other hand, by rapidly opening the turbine bypass valve and allowing steam generated from the reactor to escape to the condenser, it is possible to continue operation without stopping the reactor.

第6図は、従来の沸騰水形原子力発電所の原子
炉出力制御装置の概略系統図である。
FIG. 6 is a schematic system diagram of a reactor power control device for a conventional boiling water nuclear power plant.

原子炉1から発生した蒸気は主蒸気管2を通つ
て主蒸気加減弁3を介してタービン4に送給さ
れ、タービン4の駆動が行なわれる。タービン4
の回転は発電機5に伝えられそこで電気に変換さ
れ、主変圧器6、主しや断器7を介して系統8へ
と送電される。一方、タービン4で仕事を行なつ
た蒸気は復水器9で復水せしめられ、その後原子
炉給水ポンプ10によつて原子炉1へ還流され
る。また、主蒸気管2と復水器9との間には、主
蒸気加減弁3およびタービン4をバイパスすると
ともにバイパス弁11を有するバイパス導管12
が接続されており、このバイパス導管12は経た
蒸気も復水器9で復水せしめられる。
Steam generated from the nuclear reactor 1 is fed through a main steam pipe 2 to a turbine 4 via a main steam control valve 3, and the turbine 4 is driven. turbine 4
The rotation is transmitted to the generator 5, where it is converted into electricity, and the electricity is transmitted to the grid 8 via the main transformer 6 and the main disconnector 7. On the other hand, the steam that has performed work in the turbine 4 is condensed in a condenser 9, and then returned to the reactor 1 by a reactor feed water pump 10. Further, between the main steam pipe 2 and the condenser 9, there is a bypass conduit 12 that bypasses the main steam control valve 3 and the turbine 4 and has a bypass valve 11.
The steam passing through the bypass conduit 12 is also condensed in the condenser 9.

このように構成された沸騰水形原子力発電所に
おいては、系統8または発電機5に何らかの故障
が発生すると、主しや断器7、主変圧器6が開
き、主変圧器6の開信号が負荷しや断検出回路1
3に送られる。このようにして主変圧器6の開信
号が負荷しや断検出回路13によつて検出される
と、負荷しや断検出回路13から負荷しや断信号
が発生せしめられ主蒸気加減弁3が急閉されると
ともにバイパス弁11が急開される。しかして、
原子炉1からタービン4に送られる蒸気は、主蒸
気加減弁3によつて急速しや断され、バイパス弁
11を経て復水器9へと送給される。
In the boiling water nuclear power plant configured in this way, if any failure occurs in the system 8 or the generator 5, the main disconnector 7 and the main transformer 6 will open, and the open signal for the main transformer 6 will be activated. Load breakage detection circuit 1
Sent to 3. When the open signal of the main transformer 6 is detected by the load shedding detection circuit 13 in this way, the load shedding detection circuit 13 generates a load shedding signal and the main steam control valve 3 is activated. At the same time as the bypass valve 11 is suddenly closed, the bypass valve 11 is suddenly opened. However,
Steam sent from the nuclear reactor 1 to the turbine 4 is quickly cut off by the main steam control valve 3 and sent to the condenser 9 via the bypass valve 11.

一方、主蒸気加減弁3の急閉は主蒸気加減弁急
閉検出装置14で検出され、主蒸気加減弁3の急
閉に応じて原子炉再循環ポンプ15の駆動モータ
16が急速停止せしめられるとともに、選択制御
棒挿入装置17aが作動せしめられ、一部の選択
された制御棒18が炉心19内に緊急挿入され、
原子炉1の出力が低下せしめられる。また、主蒸
気加減弁急閉装置14からの信号は給水ポンプ制
御装置20に送られ、その給水ポンプ制御装置2
0によつて原子炉給水ポンプ10の1台または複
数台の停止が行なわれ、原子炉の所内単独運転へ
の移行が行なわれる。また、原子炉1の安全性を
確保するため、例えば炉内の水位Lが低下して設
定値に達すると、水位検出器21が作動して水位
低信号が発せられ、緊急停止回路22が作動せし
められ、すべての制御棒23が炉心19内に緊急
挿入され、原子炉の停止が行なわれる。
On the other hand, the sudden closing of the main steam regulating valve 3 is detected by the main steam regulating valve sudden closing detection device 14, and the drive motor 16 of the reactor recirculation pump 15 is quickly stopped in response to the sudden closing of the main steam regulating valve 3. At the same time, the selective control rod insertion device 17a is activated, and some selected control rods 18 are urgently inserted into the reactor core 19.
The output of the nuclear reactor 1 is reduced. Further, the signal from the main steam control valve quick closing device 14 is sent to the feed water pump control device 20, and the signal from the main steam control valve quick closing device 14 is sent to the feed water pump control device
0, one or more reactor feed water pumps 10 are stopped, and the reactor is shifted to in-station independent operation. In order to ensure the safety of the reactor 1, for example, when the water level L in the reactor decreases and reaches a set value, the water level detector 21 is activated to issue a low water level signal, and the emergency shutdown circuit 22 is activated. All the control rods 23 are inserted into the reactor core 19, and the reactor is shut down.

このように、一般の沸騰水形原子炉では、系統
8または発電機5で故障が発生すると、バイパス
弁11が急開され、原子炉再循環ポンプ15が停
止せしめられ、さらに選択制御棒挿入回路17a
が作動し選択された制御棒18が炉心内に緊急挿
入され原子炉の出力が低下されるとともに、原子
炉再循環ポンプ15の停止による原子炉の水位の
上昇を原子炉給水ポンプ10の停止で抑制させる
ことによつて、原子炉の所内単独運転への移行が
安定的に行なわれている。
In this way, in a typical boiling water reactor, when a failure occurs in the system 8 or the generator 5, the bypass valve 11 is suddenly opened, the reactor recirculation pump 15 is stopped, and the selective control rod insertion circuit is closed. 17a
is activated, the selected control rod 18 is urgently inserted into the reactor core, the output of the reactor is reduced, and the reactor water level rises due to the stoppage of the reactor recirculation pump 15 by stopping the reactor feed water pump 10. By suppressing this, the transition to isolated operation of the nuclear reactor is carried out stably.

(発明が解決しようとする課題) 第2図は、炉心の径方向断面の1/4を示したも
ので、1つの四角は1本の制御棒を示している。
また、この四角の中の数字はその制御棒の所属す
るグループを示している。このグループは予め炉
心内の全制御棒を複数のグループに分けておき、
このグループ毎に制御棒の操作を行う。また、第
2図の下側と左側の数列は、制御棒の炉心内での
径方向位置を座標(I、J)で示すためのI座標
とJ座標を示している。この座標番号は燃料集合
体と、燃料集合体と燃料集合体との間つまり制御
棒または核計装機器が配置される位置にそれぞれ
1つずつの番号が与えられており、第2図を全炉
心に展開した時の左下が原点である。
(Problems to be Solved by the Invention) Figure 2 shows one quarter of the radial cross section of the core, and each square represents one control rod.
Also, the number inside this square indicates the group to which the control rod belongs. This group divides all the control rods in the core into multiple groups in advance,
The control rods are operated for each group. Further, the number columns on the lower and left side of FIG. 2 indicate I coordinates and J coordinates for indicating the radial position of the control rod in the reactor core using coordinates (I, J). These coordinate numbers are given to each fuel assembly and the position between the fuel assemblies, that is, the position where the control rods or nuclear instrumentation equipment are placed. The origin is at the bottom left when expanded to .

このような構成の制御棒のグループ分けによれ
ば、緊急に挿入すべき制御棒は、燃料の燃焼サイ
クル毎にあらかじめ核熱解析を行なつた結果に応
じて運転員が燃焼サイクル毎に人為的操作により
選択する必要があり、運転操作が繁雑となつてい
た。
According to the grouping of control rods with such a configuration, the control rods that should be inserted urgently are determined by the operator who performs an artificial nuclear thermal analysis for each fuel combustion cycle. It was necessary to make a selection by operation, making driving operations complicated.

さらに事故後の発電所の出力復旧の際には、燃
料の調整のための運転手順に従うため原子炉出力
をさらに一旦低下させてから緊急挿入された制御
棒を引き抜かねばならないため、原子炉出力分布
を歪ませて燃料に有害な影響を与えるとともに、
運転操作を繁雑にし、発電所の稼動率を低下させ
る等の問題点があつた。
Furthermore, when restoring the power plant's output after an accident, the reactor power must be lowered further and the emergency inserted control rods must be pulled out in order to follow the operating procedures for fuel adjustment, resulting in a change in the reactor power distribution. as well as distorting the fuel and having a detrimental effect on the fuel.
There were problems such as making operation complicated and reducing the operating rate of the power plant.

本発明の目的は、発電所外の電力系統の故障発
生時に急速に所内単独運転に移行せしめる場合、
選択制御棒の緊急挿入操作の運転員の負担を軽減
でき、上記所内単独運転から上記事故の復旧に伴
う原子炉出力回復を燃料に熱的な悪影響を及ぼす
ことなくスムーズに行なうことができる沸騰水形
原子力発電所の原子炉出力制御装置を得ることに
ある。
The purpose of the present invention is to quickly shift to isolated operation within the power plant when a failure occurs in the power system outside the power plant.
Boiling water can reduce the burden on operators when performing emergency insertion operations of selected control rods, and can smoothly restore reactor power from the above-mentioned isolated operation to recovery from the above-mentioned accident without adversely affecting the fuel. The objective is to obtain a reactor output control device for a nuclear power plant.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために、本発明において
は、原子力発電所外の電力系統の故障発生時に急
速に単独運転に移行せしめる場合、炉心の最外周
部に配設された制御棒の一部又は全部から構成さ
れる選択制御棒を炉心に緊急挿入する選択制御棒
挿入回路を有することを特徴とする沸騰水形原子
力発電所の原子炉出力制御装置を提供する。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, when a failure occurs in the power system outside a nuclear power plant and the system is rapidly transitioned to standalone operation, a The present invention provides a reactor power control device for a boiling water nuclear power plant, characterized by having a selective control rod insertion circuit for urgently inserting selective control rods made up of some or all of the control rods that have been removed into the reactor core.

(作用) このように構成された装置においては、電力系
統事故発生時において原子炉を所内単独運転に急
速に移行させるため炉心内に緊急挿入されるべき
選択制御棒を、炉心の最外周部に配設された制御
棒の一部もしくは全部によつて構成したので、常
にほほ一定の制御棒価値を得ることができ、燃料
の燃焼サイクルの進行に伴つて上記緊急挿入すべ
き選択制御棒の選択変更を行なう必要がない。
(Function) In a device configured as described above, the selective control rods that should be inserted into the reactor core in an emergency manner are placed in the outermost part of the reactor core in order to quickly shift the reactor to isolated operation in the event of a power system accident. Since the configuration is made up of part or all of the installed control rods, it is possible to always obtain a nearly constant control rod value, and as the fuel combustion cycle progresses, the selection of the selected control rod to be urgently inserted is possible. No changes need to be made.

また故障復旧後の出力回復時、選択制御棒を引
抜く際に炉心出力分布を歪ませることを低減で
き、燃料の熱的余裕を確保することが可能とな
る。
Furthermore, it is possible to reduce the distortion of the core power distribution when withdrawing the selected control rod during power recovery after failure recovery, and it is possible to secure thermal margin for the fuel.

(実施例) 以下、本発明の一実施例を図面を参照して説明
する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、一実施例の概略系統図である。尚、
ここで第6図と同一の部品、箇所には同一の符号
を付し、その構成の説明は省略する。この実施例
では、給水ポンプ制御装置20に、給水ポンプ異
常検出回路25が接続されており、給水ポンプ1
0のいずれかが故障し原子炉の出力に見合つた給
水量が確保できなくなつた場合、この異常を検知
するようにしてある。この異常が発生すると給水
ポンプ異常検出回路25を介して選択制御棒挿入
回路17が作動され、制御棒の一部が炉心19内
へ緊急挿入されるように構成され、さらに原子炉
水位の低下その他の緊急停止検出回路26が作動
すると緊急停止回路22が作動して、全部の制御
棒の炉内への緊急挿入が行なわれるように構成さ
れている。
FIG. 1 is a schematic system diagram of one embodiment. still,
Here, the same parts and locations as in FIG. 6 are denoted by the same reference numerals, and explanations of their configurations will be omitted. In this embodiment, a water pump abnormality detection circuit 25 is connected to the water pump control device 20.
If any one of the reactors fails and a water supply volume commensurate with the output of the reactor cannot be secured, this abnormality is detected. When this abnormality occurs, the selective control rod insertion circuit 17 is activated via the feedwater pump abnormality detection circuit 25, and a part of the control rods is inserted into the reactor core 19 in an emergency manner. When the emergency shutdown detection circuit 26 is activated, the emergency shutdown circuit 22 is activated and all control rods are inserted into the reactor in an emergency manner.

また、第3図に本発明の一実施例における制御
棒のグループ分けを示す。なお図中、第2図と同
一の部分には同一の符号を付し説明は省略する。
第3図において、炉心最外周の5グループ及び6
グループで表される制御棒30は、最外周以外の
グループからは独立したグループ分けとなつてい
る。この実施例では、制御棒の緊急挿入グループ
のグループ分けを、第3図に示すように行なうと
ともに、炉心最外周の制御棒30を1つまたは複
数に分割し、これらの最外周制御棒30の一部ま
たは全部を選択制御棒とし、選択制御棒挿入回路
17によつて作動するように構成してある。
Further, FIG. 3 shows grouping of control rods in an embodiment of the present invention. In the figure, the same parts as in FIG. 2 are denoted by the same reference numerals, and explanations thereof will be omitted.
In Figure 3, 5 groups and 6 groups at the outermost periphery of the core
The control rods 30 represented by groups are grouped independently from groups other than the outermost periphery. In this embodiment, the emergency insertion groups of control rods are divided into groups as shown in FIG. 3, and the outermost control rods 30 of the core are divided into one or more, A part or all of the control rods are selective control rods, and are configured to be operated by a selective control rod insertion circuit 17.

しかして、今系統8または発電機5等が故障
し、主変圧器6等が開かれると、負荷しや断検出
回路13を介して主蒸気加減弁3が急閉されると
ともにバイパス弁11が急開され、原子炉1から
の蒸気は復水器9へ放出される。一方、主蒸気加
減弁3の急閉に応じて原子炉再循環ポンプ15が
停止し、約30秒後には原子炉1の出力は50〜60%
定格出力まで低下する。さらに主蒸気加減弁3の
急閉に対応して、選択制御棒挿入回路17が作動
し、数秒で最外周制御棒30の一部または全部が
緊急挿入され、約30%定格出力相当分だけ原子炉
1の出力は低下せしめられる。このように原子炉
再循環ポンプ15の停止と最外周制御棒30の緊
急挿入により、原子炉1の出力は20〜30%定格出
力まで低下し、原子炉1で発生した蒸気はバイパ
ス弁11を介して復水器9へ放出され、原子炉1
は系統8と分離した状態の所内単独運転状態とな
る。このとき所定の給水ポンプ10の運転停止に
よつて原子炉再循環ポンプ15の停止に伴う水位
Lの上昇は抑制され、緊急停止回路22が作動す
ることはない。
However, if the system 8 or the generator 5 etc. breaks down and the main transformer 6 etc. is opened, the main steam control valve 3 is suddenly closed via the load failure detection circuit 13 and the bypass valve 11 is closed. It is suddenly opened and the steam from the reactor 1 is released to the condenser 9. Meanwhile, the reactor recirculation pump 15 stops in response to the sudden closing of the main steam control valve 3, and approximately 30 seconds later, the output of the reactor 1 decreases to 50-60%.
The output drops to the rated output. In addition, in response to the sudden closing of the main steam control valve 3, the selective control rod insertion circuit 17 is activated, and in a few seconds, part or all of the outermost control rods 30 are urgently inserted, and the atomic force is increased by approximately 30% of the rated output. The power of the furnace 1 is reduced. In this way, by stopping the reactor recirculation pump 15 and urgently inserting the outermost control rod 30, the output of the reactor 1 is reduced to 20 to 30% of the rated output, and the steam generated in the reactor 1 is forced to pass through the bypass valve 11. is discharged to the condenser 9 through the reactor 1.
The system is separated from the system 8 and becomes an isolated operating state within the station. At this time, by stopping the operation of the predetermined water supply pump 10, the rise in the water level L due to the stopping of the reactor recirculation pump 15 is suppressed, and the emergency stop circuit 22 is not activated.

第4図に、定格出力運転時の制御パターンを示
す。第4図は、第2図及び第3図と同様に炉心の
径方向断面の1/4を示し、1つの四角は1本の制
御棒を示す。四角の中の数字はその制御棒軸方向
挿入割合を示し、軸方向の高さ(燃料有効部)を
48分割し、全挿入を0、全引き抜きを48で表して
いる。例えば、第4図中、I=30、J=31の位置
の制御棒は4であるが、これは軸方向下部から4
4/48まで挿入されていることを示す。なお、全引
き抜きの制御棒については本来48と示すべきであ
るが、第4図ではこれを省略し空白としている。
FIG. 4 shows the control pattern during rated output operation. Similar to FIGS. 2 and 3, FIG. 4 shows 1/4 of the radial cross section of the core, and each square represents one control rod. The number inside the square indicates the control rod's insertion ratio in the axial direction, and the height in the axial direction (fuel effective part).
It is divided into 48 parts, with 0 representing total insertion and 48 representing total withdrawal. For example, in Fig. 4, the control rod at the position I=30, J=31 is 4, which is 4 from the bottom in the axial direction.
It shows that it has been inserted up to 4/48. Note that the control rod for full withdrawal should originally be indicated as 48, but this is omitted in Fig. 4 and is left blank.

ところで、原子炉が定格出力での運転中の制御
棒パターンは、第4図に示すように、最外周制御
棒30は通常常に全引き抜き位置である。したが
つて原子炉の運転期間に応じてその制御棒の中性
子吸収能力が低下することは殆どなく、選択制御
棒挿入回路17において、従来のように燃料の燃
焼サイクルに応じて緊急に挿入すべき制御棒の選
択を変更することなく、最外周制御棒30の挿入
によつて所定の負の反応度を常に原子炉1に印加
することができる。
Incidentally, when the reactor is operating at the rated output, the control rod pattern is such that the outermost control rod 30 is normally always at the fully withdrawn position, as shown in FIG. Therefore, the neutron absorption capacity of the control rods hardly decreases depending on the operating period of the nuclear reactor, and the selective control rod insertion circuit 17 allows the control rods to be inserted urgently according to the fuel combustion cycle, as in the past. A predetermined negative reactivity can always be applied to the reactor 1 by inserting the outermost control rod 30 without changing the selection of control rods.

さらに、最外周制御棒30の周囲の燃料チヤン
ネルの出力分布は、炉心外への中性子漏洩により
低い値となるため、第5図の実線aで示すような
状態となり、その値は燃料調整のための運転手順
におけるしきい値(第5図点線b)を上回ること
はない。したがつて、系統8等の故障が復旧し、
所内単独運転から出力運転へ移行する際に、燃料
の熱的制限値や上記しきい値に余裕をもつて、緊
急挿入された最外周制御棒の引き抜きを行なうこ
とができ、初期出力へ出力上昇することができ
る。
Furthermore, the power distribution of the fuel channel around the outermost control rod 30 becomes a low value due to neutron leakage outside the core, resulting in a state as shown by the solid line a in Figure 5, and that value is changed due to fuel adjustment. The threshold value (dotted line b in Figure 5) in the operating procedure is not exceeded. Therefore, the failure of system 8 etc. is restored,
When transitioning from in-house isolated operation to output operation, the emergency inserted outermost control rod can be withdrawn with a margin within the thermal limit value of the fuel and the above threshold, and the output increases to the initial output. can do.

ところで、従来の選択制御挿入装置は、プラン
ト外の事故時にのみ動作し、プラント内の事故、
例えば原子炉給水ポンプの故障停止発生時等に
は、原子炉出力を緊急に低下させてタービン発電
機等の継続運転を行なわせることができない等の
不都合があつた。この実施例では、原子炉1の出
力運転中に給水ポンプの一部が故障したような場
合、異常検出回路25によつてその異常が検出さ
れ、選択制御棒挿入回路17が作動し、最外周制
御棒30の一部または全部が炉心19に緊急挿入
され、原子炉1の出力は約30%定格出力だけ低下
し、故障した給水ポンプを除外した分の給水能力
で出力運転が継続される。しかして、上記給水ポ
ンプの故障復旧後は、所内単独運転からの復旧時
と同様に最外周制御棒の引き抜きによつて、燃料
の熱的制限値等に何ら左右されることなく出力回
復を行なわせることができる。
By the way, the conventional selection control insertion device operates only in the event of an accident outside the plant;
For example, when a reactor feedwater pump malfunctions and stops, there are inconveniences such as the inability to urgently reduce the reactor output to continue operating the turbine generator and the like. In this embodiment, when a part of the feed water pump fails during power operation of the reactor 1, the abnormality is detected by the abnormality detection circuit 25, the selective control rod insertion circuit 17 is activated, and the Part or all of the control rods 30 are urgently inserted into the reactor core 19, the output of the reactor 1 is reduced by about 30% of the rated output, and output operation is continued with the water supply capacity excluding the failed water supply pump. Therefore, after the above-mentioned water pump failure is restored, the output is restored without being affected by the thermal limit value of the fuel, etc. by withdrawing the outermost control rod, just as when restoring from isolated operation within the station. can be set.

〔発明の効果〕〔Effect of the invention〕

本発明においては、電力系統事故発生時におい
て原子炉を所内単独運転に急速に移行させるため
炉心内に緊急挿入されるべき選択制御棒を、炉心
の最外周部に配設された制御棒の一部もしくは全
部によつて構成したので、常にほぼ一定の制御棒
価値を得ることができ、燃料の燃焼サイクルの進
行に伴つて上記緊急挿入すべき選択制御棒の選択
変更を行なう必要がなく、選択制御棒の緊急挿入
操作を簡単に行なうことができる。
In the present invention, in order to rapidly shift the reactor to isolated operation in the event of a power system accident, the selective control rods that should be inserted into the reactor core in an emergency manner are selected from among the control rods located at the outermost part of the reactor core. Since the control rod value is always almost constant, there is no need to change the selection of the selected control rod to be inserted urgently as the fuel combustion cycle progresses. Emergency control rod insertion operations can be performed easily.

また故障復旧後の出力回復時、選択制御棒を引
抜く際に炉心出力分布を歪ませることを低減で
き、燃料の熱的余裕を確保することが可能とな
る。
Furthermore, it is possible to reduce the distortion of the core power distribution when withdrawing the selected control rod during power recovery after failure recovery, and it is possible to secure thermal margin for the fuel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る沸騰水形原子力発電所の
原子炉出力制御装置の一実施例の概略系統図、第
2図は従来の制御棒緊急挿入グループ分けの一例
を1/4炉心について示す説明図、第3図は本発明
一実施例の選択制御棒のグループ分けの一例を示
す図、第4図は原子炉出力運転時の制御棒パター
ンの一例を示す図、第5図は最外周制御棒周辺の
燃料チヤンネルの出力分布を示す図、第6図は従
来の沸騰水形原子力発電所の原子炉出力制御装置
の概略系統図である。 1……原子炉、3……主蒸気加減弁、4……タ
ービン、8……系統、9……復水器、10……原
子炉給水ポンプ、11……バイパス弁、13……
負荷しや断検出回路、14……主蒸気加減弁急閉
検出装置、15……原子炉再循環ポンプ、17…
…選択制御棒挿入装置、18……制御棒、19…
…炉心、20……給水ポンプ制御装置、30……
最外周制御棒。
Fig. 1 is a schematic system diagram of an embodiment of the reactor power control device for a boiling water nuclear power plant according to the present invention, and Fig. 2 shows an example of conventional control rod emergency insertion grouping for a 1/4 core. Explanatory drawings, FIG. 3 is a diagram showing an example of grouping of selected control rods according to an embodiment of the present invention, FIG. 4 is a diagram showing an example of a control rod pattern during reactor power operation, and FIG. FIG. 6, which is a diagram showing the power distribution of the fuel channel around the control rods, is a schematic system diagram of a reactor power control device for a conventional boiling water nuclear power plant. 1... Nuclear reactor, 3... Main steam control valve, 4... Turbine, 8... System, 9... Condenser, 10... Reactor feed water pump, 11... Bypass valve, 13...
Load breakage detection circuit, 14...Main steam control valve sudden closing detection device, 15...Reactor recirculation pump, 17...
...Selective control rod insertion device, 18...Control rod, 19...
... Core, 20 ... Water pump control device, 30 ...
Outermost control rod.

Claims (1)

【特許請求の範囲】[Claims] 1 原子力発電所外の電力系統の故障発生時に急
速に単独運転に移行せしめる場合、炉心の最外周
部に配設された制御棒の一部又は全部から構成さ
れる選択制御棒を炉心に緊急挿入する選択制御棒
挿入回路を有することを特徴とする沸騰水形原子
力発電所の原子炉出力制御装置。
1. In the event of a failure in the power system outside a nuclear power plant, in order to rapidly transition to isolated operation, selective control rods consisting of part or all of the control rods installed at the outermost part of the reactor core may be urgently inserted into the reactor core. 1. A reactor power control device for a boiling water nuclear power plant, characterized by having a selective control rod insertion circuit.
JP9785080A 1980-07-17 1980-07-17 Nuclear reactor power control device Granted JPS5722587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9785080A JPS5722587A (en) 1980-07-17 1980-07-17 Nuclear reactor power control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9785080A JPS5722587A (en) 1980-07-17 1980-07-17 Nuclear reactor power control device

Publications (2)

Publication Number Publication Date
JPS5722587A JPS5722587A (en) 1982-02-05
JPH0480356B2 true JPH0480356B2 (en) 1992-12-18

Family

ID=14203206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9785080A Granted JPS5722587A (en) 1980-07-17 1980-07-17 Nuclear reactor power control device

Country Status (1)

Country Link
JP (1) JPS5722587A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191989A (en) * 1982-05-04 1983-11-09 株式会社東芝 Reactor power control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132295A (en) * 1976-04-28 1977-11-05 Combustion Eng Method of operating and controlling reactor system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132295A (en) * 1976-04-28 1977-11-05 Combustion Eng Method of operating and controlling reactor system

Also Published As

Publication number Publication date
JPS5722587A (en) 1982-02-05

Similar Documents

Publication Publication Date Title
US5106571A (en) Containment heat removal system
US4399095A (en) Protection and control system for a nuclear reactor
EP3667678B1 (en) Depressurisation valve
US4605530A (en) Operating method for nuclear power plants
EP0696032B2 (en) Transient adjusted overpower protection system
US4129475A (en) Method of operating a nuclear reactor
KR930011109B1 (en) Method of controlling a pwr to prevent overpressure in the event of feed water loss
JPH0480356B2 (en)
US3930937A (en) Steam relief valve control system for a nuclear reactor
JP6606005B2 (en) Control rod operation monitoring system
JP2008157944A (en) Protection system for and method of operating nuclear boiling water reactor
Chaplin Nuclear Plant Operation
JPS6049278B2 (en) Boiling water reactor safety protection method
JPS63285495A (en) Controlling apparatus of reactor
Bittermann et al. Reliability Analysis of the Decay Heat Removal System of a 1000-MW (e) Gas-Cooled Fast Breeder Reactor
Chao et al. Reducing scram frequency by modifying reactor setpoints for a Westinghouse Four-Loop Plant
JPH0156716B2 (en)
JPS61223697A (en) Output controller for nuclear reactor in nuclear power plant
KR860000760B1 (en) The water supply system and method of the p.w.r.reactor
JPS6217121B2 (en)
Wenhui et al. PSA Application in the Diverse Actuation System Design
JPS6248993A (en) Device for preventing cavitation of recirculating system pump for reactor
Kazakov et al. Improving dynamic stability of VVER-1000 plants
Frisch et al. Loss of Preferred Power Events in German BWRs and PWRs
Kondo et al. Actual Operation Control of Boiling Water Reactor