JPH03225298A - Nuclear reactor pressure controller - Google Patents

Nuclear reactor pressure controller

Info

Publication number
JPH03225298A
JPH03225298A JP2020817A JP2081790A JPH03225298A JP H03225298 A JPH03225298 A JP H03225298A JP 2020817 A JP2020817 A JP 2020817A JP 2081790 A JP2081790 A JP 2081790A JP H03225298 A JPH03225298 A JP H03225298A
Authority
JP
Japan
Prior art keywords
signal
flow rate
steam flow
valve
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020817A
Other languages
Japanese (ja)
Inventor
Yuuji Koshi
古志 裕司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2020817A priority Critical patent/JPH03225298A/en
Publication of JPH03225298A publication Critical patent/JPH03225298A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To prevent the contingent nuclear reactor scram by providing a bypass valve control circuit which makes control by the difference between the output signal f a circuit for calculating the steam flow of governar valves and the signal corresponding to the steam flow of the reactor. CONSTITUTION:The opening degree signals 3a, 3a' of the plural governar valves 3, 3' are respectively inputted to respective circuits 17, 17' for calculating the flow of the governar valves, by which the correction of the flow characteristics of the valves 3, 3' by the number of the operating units of the valves 3, 3' is executed and from which steam flow signals 17a, 17a' are respectively outputted. These signals 17a, 17a' are inputted to an adder 18 and are added. A turbine total steam flow signal 18a is outputted from the adder 18. This signal 18a is computed together with a steam flow request signal 12a and a bias signal 20 in an adder 19. A bypass valve is controlled by an opening degree request signal 13b outputted from this adder 19. The scram occurring in a change in the nuclear reactor pressure is effectively averted in this way.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は原子炉圧力制御装置に係り、特に不用意な原子
炉スクラムを回避することができる原子炉圧力制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a nuclear reactor pressure control system, and particularly to a nuclear reactor pressure control system that can avoid inadvertent reactor scrams.

(従来の技術) 一般に、沸騰水型原子カプラントにおいては、原子炉で
発生した蒸気を、複数の加減弁を介しタービンに供給し
て発電機を駆動するともに、バイパス弁の開度を制御し
て圧力調節を行なう原子炉圧力制御装置を設けるのが通
例である。
(Prior art) Generally, in a boiling water nuclear coupler, steam generated in the reactor is supplied to a turbine via multiple control valves to drive a generator, and the opening degree of a bypass valve is controlled. It is customary to provide a reactor pressure control device for pressure regulation.

ところで、従来の原子炉圧力制御装置では、加減弁蒸気
流量要求信号と圧力制御系の圧力調整器出力信号との差
分により、バイパス弁の開度および流量を制御するよう
にしている。
By the way, in a conventional nuclear reactor pressure control device, the opening degree and flow rate of a bypass valve are controlled based on the difference between a regulating valve steam flow rate request signal and a pressure regulator output signal of a pressure control system.

(発明が解決しようとする課題) 前記従来の原子炉圧力制御装置においては、バイパス弁
の開度および流量制御に、加減弁蒸気流量要求信号を用
いているため、電力系統外乱や主蒸気系昇順の不具合等
により、加減弁およびバイパス弁が急速に作動した場合
、6弁の作動特性のミスマツチにより、タービン蒸気流
量が変動することがあり、この場合には、原子炉圧力お
よび中性子束が上昇して原子炉スクラムに至るおそれが
ある。
(Problems to be Solved by the Invention) In the conventional reactor pressure control device, a regulating valve steam flow rate request signal is used to control the opening degree and flow rate of the bypass valve. If the control valve and bypass valve operate rapidly due to a malfunction, etc., the turbine steam flow rate may fluctuate due to a mismatch in the operating characteristics of the six valves, and in this case, the reactor pressure and neutron flux will increase. This could lead to a reactor scram.

本発明は、このような点を考慮してなされたもので、加
減弁およびバイパス弁が急速に作動した場合でも、原子
炉圧力および中性子束の上昇を抑制し、不用意な原子炉
スクラムを防止することができる原子炉圧力制御装置を
提供することを目的とする。
The present invention was made with these points in mind, and even if the moderation valve and bypass valve operate rapidly, the rise in reactor pressure and neutron flux is suppressed, and inadvertent reactor scrams are prevented. The purpose of the present invention is to provide a nuclear reactor pressure control device that can perform

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、前記目的を達成する手段として、各加減弁の
弁開度に基づき総加減弁流量を算出する加減弁蒸気流量
算出回路と、この加減弁蒸気流量算出回路からの出力信
号と原子炉から送られてくる蒸気量に対応する信号との
差分によりバイパス弁の開度および流量を制御するバイ
パス弁制御回路とを有する蒸気流量制御回路を設けるよ
うにしたことを特徴とする。
(Means for Solving the Problems) As a means for achieving the above object, the present invention provides a control valve steam flow rate calculation circuit that calculates a total control valve flow rate based on the valve opening degree of each control valve, and a control valve steam flow rate calculation circuit that calculates a total control valve flow rate based on the valve opening degree of each control valve. A steam flow rate control circuit is provided, which includes a bypass valve control circuit that controls the opening degree and flow rate of the bypass valve based on the difference between the output signal from the calculation circuit and the signal corresponding to the amount of steam sent from the reactor. It is characterized by

(作 用) 本発明に係る原子炉圧力制御装置においては、従来の加
減弁蒸気流量要求信号に代えて、個々の加減弁開度に基
づき求められた総加減弁蒸気流量信号が用いられ、この
信号と原子炉から送られてくる蒸気量に対応する信号と
の差分から、バイパス弁に流すべき流量が求められる。
(Function) In the reactor pressure control device according to the present invention, a total control valve steam flow rate signal obtained based on the individual control valve opening degree is used in place of the conventional control valve steam flow rate request signal. The flow rate that should flow through the bypass valve is determined from the difference between the signal and the signal corresponding to the amount of steam sent from the reactor.

このため、加減弁とバイパス弁との応答特性のずれが補
正され、原子炉圧力および中性子束の上昇に伴なう原子
炉スクラムを回避して運転を継続することが可能となる
Therefore, the difference in response characteristics between the control valve and the bypass valve is corrected, and it becomes possible to continue operation while avoiding reactor scram caused by increases in reactor pressure and neutron flux.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明に係る原子炉圧力制御装置の一例を示
すもので、図中、符号1は原子炉であり、この原子炉1
で発生した蒸気は、主蒸気管2および複数の加減弁3.
3′を介してタービン4に導かれ、発電機5を駆動する
ようになっている。また、原子炉1で発生した蒸気の一
部は、第1図に示すように、バイパス管6およびバイパ
ス弁7を介して直接復水器8に導かれ、原子炉圧力が制
御されるようになっている。
FIG. 1 shows an example of a nuclear reactor pressure control system according to the present invention, and in the figure, reference numeral 1 indicates a nuclear reactor.
The steam generated in the main steam pipe 2 and a plurality of control valves 3.
3' to the turbine 4, which drives the generator 5. Also, as shown in FIG. 1, a part of the steam generated in the reactor 1 is directly led to the condenser 8 via the bypass pipe 6 and the bypass valve 7, so that the reactor pressure is controlled. It has become.

タービン4の入口圧力は、第1図に示すように、タービ
ン入口圧力検出器11により検出され、その検出信号1
1aは、圧力調整器12に人力されるようになっており
、この圧力調整器12からは、原子炉出力に見合った、
すなわち原子炉熱出力に対応する蒸気流量要求信号12
aが出力され、この蒸気流量要求信号12aは、各加減
弁3.3′からの加減弁開度信号3a、3a’ ととも
に、蒸気流量制御回路13に入力されるようになってい
る。そして、この蒸気流量制御回路13は、第1図に示
すように、各加減弁3.3′およびバイパス弁7に対し
、適切な開度要求信号13a。
The inlet pressure of the turbine 4 is detected by a turbine inlet pressure detector 11, as shown in FIG.
1a is manually powered by a pressure regulator 12, and from this pressure regulator 12, a pressure commensurate with the reactor output,
That is, the steam flow rate request signal 12 corresponding to the reactor thermal output
a is output, and this steam flow rate request signal 12a is input to the steam flow rate control circuit 13 together with the control valve opening signals 3a, 3a' from each control valve 3.3'. As shown in FIG. 1, this steam flow rate control circuit 13 sends an appropriate opening request signal 13a to each control valve 3,3' and bypass valve 7.

13a′および13bを出力し、それらの開度制御を行
なうようになっている。
13a' and 13b are output to control their opening degrees.

蒸気流量制御回路13は、第2図に示すように、圧力調
整器12からの蒸気流量要求信号12aと系統側からの
周波数制御信号14aとが入力される低値優先回路15
を備えており、したがって、通常は圧力調整器12から
の蒸気流量要求信号12aにより弁制御が行なわれるが
、系統周波数変動時には、周波数制御信号14aが優先
されるようになっている。
As shown in FIG. 2, the steam flow rate control circuit 13 includes a low value priority circuit 15 into which a steam flow rate request signal 12a from the pressure regulator 12 and a frequency control signal 14a from the system side are input.
Therefore, valve control is normally performed by the steam flow rate request signal 12a from the pressure regulator 12, but when the system frequency fluctuates, the frequency control signal 14a is given priority.

低値優先回路15からの出力信号15aは、第2図に示
すように、開度要求補償回路16に入力されるようにな
っており、この開度要求補償回路16からは、各加減弁
3.3′に対して開度要求信号13a、  13B’を
出力し、タービン蒸気流量を制御するようになっている
As shown in FIG. 2, the output signal 15a from the low value priority circuit 15 is input to an opening request compensation circuit 16, and from this opening request compensation circuit 16, each control valve 3 .3', opening request signals 13a and 13B' are outputted to control the turbine steam flow rate.

また、各加減弁3.3′からの各加減弁開度信号3a、
3a’ は、第2図に示すように、加減弁流量算出回路
17.17’ にそれぞれ人力されるようになっており
、これら各加減弁流量算出回路17.17’から出力さ
れる各蒸気流量信号17a、17a’ は、加算器18
に人力されて加算されるようになっている。そして、こ
の加算器18から出力されるタービン総蒸気流量信号1
8aは、第2図に示すように、加算器19において、圧
力調整器12からの蒸気流量要求信号12aおよび若干
のバイアス信号20とともに演算され、加算器19から
は、バイパス弁7で処理すべき蒸気流量要求信号として
のバイパス弁開度要求信号13bが出力されるようにな
っている。
In addition, each control valve opening signal 3a from each control valve 3.3',
3a', as shown in Fig. 2, is manually inputted to the control valve flow rate calculation circuits 17 and 17', and each steam flow rate outputted from each of these control valve flow rate calculation circuits 17 and 17'. The signals 17a, 17a' are sent to the adder 18.
The amount is added manually. Then, the turbine total steam flow rate signal 1 output from this adder 18
8a, as shown in FIG. A bypass valve opening request signal 13b is output as a steam flow rate request signal.

次に、本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

原子炉1で発生した蒸気は、主蒸気管2および複数の加
減弁3.3′を介してタービン4に送られ、発電機5を
駆動する。
Steam generated in the nuclear reactor 1 is sent to a turbine 4 via a main steam pipe 2 and a plurality of control valves 3,3' to drive a generator 5.

このタービン4の入口圧力は、タービン入口圧力検出器
11で検出され、その検出信号11aは、圧力調整器1
2に入力される。この圧力調整器12から出力される蒸
気流全要求信号12aは、第2図に示すように、周波数
制御信号14aとともに低値優先回路15に人力され、
この低値優先回路15の出力信号15aは、開度要求補
償回路16に人力される。すると、開度要求補償回路1
6からは、各加減弁3.3′に対し開度要求信号13a
、13a’が出力され、タービン蒸気流量が制御される
The inlet pressure of the turbine 4 is detected by a turbine inlet pressure detector 11, and its detection signal 11a is transmitted to the pressure regulator 1.
2 is input. As shown in FIG. 2, the steam flow total request signal 12a output from the pressure regulator 12 is input to the low value priority circuit 15 together with the frequency control signal 14a.
The output signal 15a of the low value priority circuit 15 is input to the opening request compensation circuit 16. Then, the opening request compensation circuit 1
From 6 onwards, an opening request signal 13a is sent to each control valve 3.3'.
, 13a' are output, and the turbine steam flow rate is controlled.

一方、各加減弁3,3′の開度信号3a。On the other hand, the opening signal 3a of each control valve 3, 3'.

3a’は、第2図に示すように、各加減弁流量算出回路
17.17’にそれぞれ入力され、加減弁3.3′の運
転台数による加減弁3,3′の流量特性の補正が行なわ
れて蒸気流量信号17a。
As shown in FIG. 2, 3a' is input to each regulator valve flow rate calculation circuit 17, 17', and the flow characteristics of the regulator valves 3, 3' are corrected depending on the number of operating regulator valves 3, 3'. steam flow rate signal 17a.

17a′がそれぞれ出力される。17a' are output respectively.

これらの蒸気流量信号17a、17a’は、第2図に示
すように、加算器18に入力されて加算され、加算器1
8からは、タービン総蒸気流量信号18aが出力される
。この信号18aは、第2図に示すように、加算器19
において、蒸気流量要求信号12aおよびバイアス信号
20とともに演算され、この加算器19から出力される
開度要求信号13bにより、バイパス弁7が制御される
These steam flow rate signals 17a, 17a' are input to an adder 18 and added, as shown in FIG.
8 outputs a turbine total steam flow rate signal 18a. This signal 18a is sent to an adder 19 as shown in FIG.
The bypass valve 7 is controlled by the opening request signal 13b which is calculated together with the steam flow rate request signal 12a and the bias signal 20 and output from the adder 19.

第3図は、系統周波数変動時の加減弁・バイパス弁の時
間特性図、第4図は中性子束および原子炉圧力の過渡応
答図であり、図中、実線グラフは本発明を、また破線グ
ラフは従来例をそれぞれ示す。
Figure 3 is a time characteristic diagram of control valves and bypass valves during system frequency fluctuations, and Figure 4 is a transient response diagram of neutron flux and reactor pressure. show conventional examples.

従来の場合、バイパス弁開度要求信号は、第2図におけ
る低値優先回路15の出力信号15aと、圧力調整器1
2からの蒸気流量要求信号12aとの差分により制御さ
れる。このため、各弁の要求信号が急速な場合には、加
減弁とバイパス弁との応答特性にミスマツチが生じ、原
子炉圧力が上昇するおそれがある。
In the conventional case, the bypass valve opening request signal is the output signal 15a of the low value priority circuit 15 in FIG.
It is controlled by the difference between the steam flow rate request signal 12a and the steam flow rate request signal 12a. Therefore, if the request signal for each valve is rapid, there is a possibility that a mismatch will occur in the response characteristics of the control valve and the bypass valve, and the reactor pressure will increase.

これに対して、本実施例の場合には、実際の加減弁開度
に基づきバイパス弁開度要求信号13bを算出している
ため、前記ミスマツチは生ぜず、原子炉圧力の上昇に伴
なうスクラムを回避することができる。
On the other hand, in the case of this embodiment, the bypass valve opening request signal 13b is calculated based on the actual control valve opening, so the mismatch does not occur and Scrum can be avoided.

また、従来は、加減弁開度を直接監視していないため、
加減弁口体の故障による誤閉鎖や誤開放事故が発生した
場合、バイパス弁等による補償動作が遅れ、スクラム等
の可能性が高くなる。
In addition, conventionally, the opening degree of the adjusting valve was not directly monitored.
If an erroneous closing or opening accident occurs due to a failure of the regulating valve port body, the compensatory action by the bypass valve etc. will be delayed and the possibility of scram etc. will increase.

これに対して、本実施例の場合には、加減弁3゜3′の
誤動作を直接検出でき、また各加減弁蒸気流m算出回路
17.17’により、運転加減弁数の変化を考慮して各
加減弁流量を精度よ(計算できるので、バイパス弁6に
対し適切な開度要求信号13bを出力することができ、
原子炉圧力変化に起因するスクラムのリスクを回避でき
る。
In contrast, in the case of this embodiment, malfunctions of the regulating valves 3゜3' can be directly detected, and changes in the number of operating regulating valves are taken into account by the respective regulating valve steam flow m calculation circuits 17 and 17'. Since the flow rate of each control valve can be calculated accurately, an appropriate opening request signal 13b can be output to the bypass valve 6.
The risk of scram caused by reactor pressure changes can be avoided.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、実際の加減弁開度に基づ
きバイパス弁開度要求信号を算出するようにしているの
で、原子炉圧力変化に起因するスクラムを有効に回避で
き、原子炉炉心の健全性およびプラント稼動率を向上さ
せることができる。
As explained above, the present invention calculates the bypass valve opening request signal based on the actual control valve opening, so it is possible to effectively avoid scrams caused by changes in reactor pressure, and Health and plant availability can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る原子炉圧力制御装置を
示す全体構成図、第2図は蒸気流量制御回路の構成図、
第3図は系統周波数変動時の加減弁、バイパス弁の時間
特性図、第4図は中性子束および原子炉圧力の過渡応答
図である。 1・・・原子炉、3.3′・・・加減弁、3a、3a’
・・・加減弁開度信号、4・・・タービン、5・・・発
電機、7・・・バイパス弁、11・・・タービン入口圧
力検出器、12・・・圧力調整器、12a・・・蒸気流
量要求信号、13・・・蒸気流量制御回路、13a、 
 13B’13b・・・開度要求信号、14a・・・周
波数制御信号、15・・・低値優先回路、16・・・開
度要求補償回路、17.17’・・・加減弁流量算出回
路、17a。 17a′・・・蒸気流量信号、18.19・・・加算器
、18a・・・タービン総蒸気流量信号、20・・・バ
イパス信号。
FIG. 1 is an overall configuration diagram showing a nuclear reactor pressure control device according to an embodiment of the present invention, FIG. 2 is a configuration diagram of a steam flow rate control circuit,
FIG. 3 is a time characteristic diagram of the control valve and bypass valve when the system frequency fluctuates, and FIG. 4 is a transient response diagram of neutron flux and reactor pressure. 1...Nuclear reactor, 3.3'...Adjustment valve, 3a, 3a'
... Adjustment valve opening signal, 4... Turbine, 5... Generator, 7... Bypass valve, 11... Turbine inlet pressure detector, 12... Pressure regulator, 12a... - Steam flow rate request signal, 13... Steam flow rate control circuit, 13a,
13B'13b...Opening request signal, 14a...Frequency control signal, 15...Low value priority circuit, 16...Opening request compensation circuit, 17.17'...Adjustment valve flow rate calculation circuit , 17a. 17a'...Steam flow rate signal, 18.19...Adder, 18a...Turbine total steam flow rate signal, 20...Bypass signal.

Claims (1)

【特許請求の範囲】[Claims] 原子炉で発生した蒸気を、複数の加減弁を介しタービン
に供給して発電機を駆動するとともに、バイパス弁の開
度を制御して圧力調節を行なう原子炉圧力制御装置にお
いて、前記各加減弁の弁開度に基づき総加減弁流量を算
出する加減弁蒸気流量算出回路と、この加減弁蒸気算出
回路からの出力信号と原子炉から送られてくる蒸気量に
対応する信号との差分により前記バイパス弁の開度およ
び流量を決定するバイパス弁制御回路とを有する蒸気流
量制御回路を設けたことを特徴とする原子炉圧力制御装
置。
In a reactor pressure control device that supplies steam generated in a nuclear reactor to a turbine via a plurality of control valves to drive a generator, and also controls the opening degree of a bypass valve to adjust pressure, each of the control valves The control valve steam flow rate calculation circuit calculates the total control valve flow rate based on the valve opening degree of the control valve, and the difference between the output signal from the control valve steam calculation circuit and the signal corresponding to the steam amount sent from the reactor is used to 1. A nuclear reactor pressure control device comprising a steam flow rate control circuit having a bypass valve control circuit that determines the opening degree and flow rate of a bypass valve.
JP2020817A 1990-01-31 1990-01-31 Nuclear reactor pressure controller Pending JPH03225298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020817A JPH03225298A (en) 1990-01-31 1990-01-31 Nuclear reactor pressure controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020817A JPH03225298A (en) 1990-01-31 1990-01-31 Nuclear reactor pressure controller

Publications (1)

Publication Number Publication Date
JPH03225298A true JPH03225298A (en) 1991-10-04

Family

ID=12037587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020817A Pending JPH03225298A (en) 1990-01-31 1990-01-31 Nuclear reactor pressure controller

Country Status (1)

Country Link
JP (1) JPH03225298A (en)

Similar Documents

Publication Publication Date Title
JP2809977B2 (en) Control device
KR20050010328A (en) Feedwater Control System in Nuclear Power Plant Considering Feedwater Control Valve Pressure Drop and Control Method thereof
JPH03225298A (en) Nuclear reactor pressure controller
KR20050003886A (en) Feedwater control system for steam generator in nuclear power plant and control method thereof
JPH04113298A (en) Controlling of nuclear reactor pressure
JPS6038522B2 (en) Turbine control device
JPS6039845B2 (en) Nuclear turbine pressure control device
US20220163196A1 (en) Integrated control logic device and operating method thereof for main control valve and auxiliary control valve to control water level of steam generator of nuclear power plant
JP2515797B2 (en) Turbin controller
JPS6069215A (en) Apparatus for controlling steam pressure at inlet side of turbine
JPS63277804A (en) Turbine control device for steam generating plant
JPS59107298A (en) Recirculation flow rate control device
JPH0233404A (en) Valve test device for steam turbine
JPS59180010A (en) Main steam pressure controlling apparatus of boiling water type nuclear power plant
JPH0335922Y2 (en)
JPS5851311A (en) Diagnosing device for fault of plant
JPH07224610A (en) Load control device for steam turbine
JPS58205005A (en) Controller for drum level of waste heat boiler
JPH09189204A (en) Steam turbine control device
JPH0410040B2 (en)
JPH0210328B2 (en)
JPS5838759B2 (en) Steam pressure control device for nuclear power plants
JPS6043103A (en) Steam system controller
JPH0220565Y2 (en)
JPS6283693A (en) Method and device for controlling output from nuclear reactor