JPS6039845B2 - Nuclear turbine pressure control device - Google Patents

Nuclear turbine pressure control device

Info

Publication number
JPS6039845B2
JPS6039845B2 JP935377A JP935377A JPS6039845B2 JP S6039845 B2 JPS6039845 B2 JP S6039845B2 JP 935377 A JP935377 A JP 935377A JP 935377 A JP935377 A JP 935377A JP S6039845 B2 JPS6039845 B2 JP S6039845B2
Authority
JP
Japan
Prior art keywords
steam
valve
signal
pressure
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP935377A
Other languages
Japanese (ja)
Other versions
JPS5395402A (en
Inventor
次郎 尾園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP935377A priority Critical patent/JPS6039845B2/en
Publication of JPS5395402A publication Critical patent/JPS5395402A/en
Publication of JPS6039845B2 publication Critical patent/JPS6039845B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は沸騰水形原子炉を蒸気発生源とする原子力タ
ービンに係り、特に、蒸気加減弁、タービンバイパス弁
(以下バイパス弁と称す)を中心とする圧力制御装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nuclear power turbine using a boiling water reactor as a steam generation source, and particularly relates to a pressure control device mainly including a steam control valve and a turbine bypass valve (hereinafter referred to as a bypass valve). .

沸騰水形原子炉を蒸気発生源とする原子力夕−ビンにお
いて原子炉の圧力は、タービン入口蒸気圧力を蒸気加減
弁、バイパス弁による圧力制御によりおこなわれている
In a nuclear power plant using a boiling water reactor as a steam generation source, the pressure of the reactor is controlled by controlling the steam pressure at the turbine inlet using a steam control valve and a bypass valve.

この種の制御系統における蒸気の流れは第1図に示すよ
うであり、原子炉100で発生した蒸気はタービンの保
安装置である主蒸気止弁101、タービン入口蒸気圧力
を制御する蒸気加減弁102を通り、高圧タービン10
3に流入する。
The flow of steam in this type of control system is as shown in FIG. 1, and the steam generated in the nuclear reactor 100 is transferred to the main steam stop valve 101, which is a turbine safety device, and the steam control valve 102, which controls the turbine inlet steam pressure. through the high pressure turbine 10
3.

高圧タービン103で仕事をした蒸気は湿分分離器10
4を通り、ここで湿分を除去されたあと、組合せ中間弁
105を通り低圧タービン106で仕事をし復水器10
7にて復水となる。タービンバイパス弁108はタービ
ンで必要としない原子炉から発生した余剰蒸気を直接復
水器107へ戻す役目をする。このような制御系統にお
いて従釆の圧力 暦109は第2図に示すようである。
The steam that has done work in the high pressure turbine 103 is transferred to the moisture separator 10
4, where moisture is removed, and then passes through a combination intermediate valve 105 to work in a low pressure turbine 106 and then to a condenser 10.
Condensation occurs at 7. The turbine bypass valve 108 serves to directly return excess steam generated from the reactor that is not needed by the turbine to the condenser 107 . In such a control system, the subordinate pressure history 109 is as shown in FIG.

タービン入口蒸気圧力は原子炉から発生する蒸気をター
ビン側へ送る蒸気管(もしくはへッダ)の主蒸気止弁1
01前にて主蒸気圧力検出装置11川こより検出されて
電気信号Sに変換される。このタービン入口蒸気圧力信
号S.は、プラント固有の進み遅れ時定数に調整された
圧力制御回路211にて、所定の圧力設定値V,と比較
され、その偏差信号S2が圧力制御回路211から出力
される。この偏差信号S2は所定の圧力調定率制御装置
212により蒸気流量信号S3すなわち弁開度指令信号
となる。前記信号S3はタービン速度信号S4を入力と
す速度負荷制御回路213からの蒸気加減弁関度指令信
号S5(タービン側で必要とする蒸気流量信号)と共に
低値懐先回路214へ送られている。低値優先回路21
4の出力信号S6は圧力制御回路211の蒸気加減弁開
度指令信号S3と速度負荷制御回路213の蒸気加減弁
開度指令号S5のうち小さい方の信号を優先させ、蒸気
加減弁制御回路215へ送出する。この蒸気加減弁制御
回路215においては前記低値優先回路214から出力
される蒸気加減弁閥度指令信号S6が、蒸気加減弁の弁
開度に対する蒸気流量の非線形を補正する非線形回路2
18を通り、実際の蒸気加減弁開度に対応する信号S7
との減算を比較器219でおこない、この比較器219
の偏差出力信号を蒸気加減弁サーボ増幅器220へ送出
する。
The steam pressure at the turbine inlet is determined by the main steam stop valve 1 of the steam pipe (or header) that sends the steam generated from the reactor to the turbine side.
01, it is detected from the main steam pressure detection device 11 and converted into an electrical signal S. This turbine inlet steam pressure signal S. is compared with a predetermined pressure setting value V, in a pressure control circuit 211 adjusted to a lead/lag time constant unique to the plant, and a deviation signal S2 thereof is outputted from the pressure control circuit 211. This deviation signal S2 is converted into a steam flow rate signal S3, that is, a valve opening command signal, by a predetermined pressure adjustment rate control device 212. The signal S3 is sent to the low value control circuit 214 together with the steam control valve function command signal S5 (steam flow rate signal required on the turbine side) from the speed load control circuit 213 which receives the turbine speed signal S4 as input. . Low value priority circuit 21
The output signal S6 of No. 4 gives priority to the smaller one of the steam regulating valve opening command signal S3 of the pressure control circuit 211 and the steam regulating valve opening command signal S5 of the speed load control circuit 213. Send to. In this steam regulating valve control circuit 215, the steam regulating valve degree command signal S6 outputted from the low value priority circuit 214 is used as a nonlinear circuit 2 for correcting the nonlinearity of the steam flow rate with respect to the valve opening of the steam regulating valve.
18, and a signal S7 corresponding to the actual steam control valve opening degree.
The comparator 219 performs subtraction between
The deviation output signal is sent to the steam control valve servo amplifier 220.

サーボ増幅器22川まその偏差信号がなくなるまで、す
なわち所望の蒸気加減弁関度になるまで弁を開ける。こ
のような蒸気加減弁は通常複数台設置されており原子力
タービンの場合基底負荷運転される関係上から、すべて
の蒸気加減弁は同一開度となるよう蒸気加減弁制御回路
が構成されている。
The valve is opened until the deviation signal of the servo amplifier 22 disappears, that is, until the desired steam control valve function is reached. Usually, a plurality of such steam control valves are installed, and since nuclear turbines are operated at base load, the steam control valve control circuit is configured so that all the steam control valves have the same opening degree.

すなわち第2図において蒸気加減弁制御回路215が蒸
気加減弁の台数分並列接続されており、これらが全て低
値優先回路214から入力を受ける。また、圧力議定率
制御装置212及び低値優先回路214の出力は演算器
216を介して、原子炉の圧力を一定に保つためのバイ
パス弁制御回路217に与えられ、こ回路217はバイ
パス弁関度要求信号S8を送出する。以下、これを詳述
する。すなわち、原子炉側の圧力を制御するために原子
力タービンは原則として原子炉側で発生する蒸気は蒸気
加減弁102を通りすべてタービン103,106で消
費される。また通常時は圧力制御信号S3を優先させる
ために速度負荷制御回路213の信号S5は圧力制御回
路211からの信号S2に対してタービン出力にして定
格出力の約10%のバイアスをもたせてある。しかし、
タービン起動時に速度負荷制御を蒸気加減弁に対する開
度指令信号としなければならない場合、あるいは負荷制
限信号などの他の信号が蒸気加減弁関度指令信号として
優先される場合には、圧力制御回路211からの蒸気加
減弁開度指令信号S3と他の信号との間に偏差が生じる
。すなわち圧力制御回路211からの蒸気加減弁開度指
令信号S3に対して蒸気加減弁の開度指令信号が小さい
場合、そのままでは原子炉で発生する蒸気をすべて蒸気
加減弁によりタービン側へ流出できないため原子炉の圧
力上昇が生ずる。このため前記偏差を前記演算器216
により減算しバイパス弁制御回路217へ送り、バイパ
ス弁108の開度指令信号S8を送出するようにする。
ここで、この信号S8によりバイパス弁108が流す蒸
気量は、圧力制御回路211から要求するタービン側で
消費しなければならない蒸気流量から蒸気加減弁102
を通る蒸気量を差し引いたものであるから、原子炉の圧
力は一定に保たれる。すなわちこの場合主蒸気圧力はバ
イパス弁108により制御されることになる。以上のよ
うな制御装置において、蒸気加減弁制御回路215には
、蒸気加減弁102の動作あるいは非常時の急開動作を
確認するための弁テスト回路221が各蒸気加減弁に設
置されている。
That is, in FIG. 2, steam regulating valve control circuits 215 are connected in parallel for the number of steam regulating valves, and all of them receive input from the low value priority circuit 214. In addition, the outputs of the pressure stabilization rate control device 212 and the low value priority circuit 214 are given to a bypass valve control circuit 217 for keeping the reactor pressure constant via a computing unit 216, and this circuit 217 is connected to the bypass valve control circuit 217. A request signal S8 is sent out. This will be explained in detail below. That is, in order to control the pressure on the nuclear reactor side, in principle, in a nuclear power turbine, steam generated on the nuclear reactor side passes through the steam control valve 102 and is all consumed by the turbines 103 and 106. Further, in order to give priority to the pressure control signal S3 under normal conditions, the signal S5 of the speed load control circuit 213 is biased with respect to the signal S2 from the pressure control circuit 211 by about 10% of the rated output in terms of turbine output. but,
When the speed load control must be used as the opening command signal for the steam regulating valve at the time of turbine startup, or when other signals such as a load limit signal are given priority as the steam regulating valve relation command signal, the pressure control circuit 211 A deviation occurs between the steam control valve opening command signal S3 and other signals. That is, if the opening command signal of the steam regulating valve is smaller than the steam regulating valve opening command signal S3 from the pressure control circuit 211, all the steam generated in the reactor cannot flow out to the turbine side by the steam regulating valve. A pressure increase in the reactor occurs. Therefore, the deviation is calculated by the calculation unit 216.
is subtracted by , and sent to the bypass valve control circuit 217 to send out the opening command signal S8 of the bypass valve 108.
Here, the amount of steam flowed by the bypass valve 108 by this signal S8 is determined from the amount of steam that must be consumed on the turbine side requested by the pressure control circuit 211.
The pressure in the reactor remains constant. That is, in this case, the main steam pressure will be controlled by the bypass valve 108. In the control device as described above, the steam regulating valve control circuit 215 includes a valve test circuit 221 for each steam regulating valve to check the operation of the steam regulating valve 102 or the sudden opening operation in an emergency.

これは蒸気加減弁関度指令信号S6とは無関係に接点2
21aを通りサーボ増幅器2201こ弁テスト信号S9
を入力する。しかし、この種の回路で、蒸気加減弁開閉
テストをおこなうときにはタービン側へ流入する蒸気が
変化し原子炉の圧力変化を伴なし、好ましくない。また
、この圧力変化は圧力制御回路211にて検知され他の
圧力制御状態にある蒸気加減弁へ前記圧力変化を補正す
る蒸気加減弁開度指令信号を発し圧力を定に保とうとす
る。しかし、圧力変化をもたらすこと自体原子炉には好
ましくなく、これはとりもなおさず蒸気加減弁の開閉テ
ストをするときに制御状態にある弁を制御から切り離す
ために生じるものである。この種の圧力変化はサーボ増
幅器等の故障により蒸気加減弁が非制御状態に入ったと
きにも生じ望ましくなかつた。この発明は上記実情に鑑
み成されたものであり、蒸気加減弁が非制御状態におか
れた場合にも原子炉側への圧力変化を抑制し得る原子力
タービンの圧力制御装置を提供することを目的とする。
この目的を達成するため本発明によれば、タービンの入
口蒸気圧力信号を入力して弁関度指令信号を出力する圧
力制御回路の出力に基づいて、複数の蒸気加減弁及びタ
ービンバイパス弁の開度を制御することにより圧力制御
を行う原子力タービンの圧力制御装置において、前記複
数の蒸気加減弁の実際の関度に対応する信号値からその
平均値を演算する演算手段と、前記弁関度指令信号と前
記演算手段の出力信号とを比較し、その比較偏差信号を
出力する比較手段と、この比較手段から出力される比較
偏差信号により前記タービンバイパス弁を制御するバイ
パス弁制御手段とを備え、前記複数の蒸気加減弁のうち
いずれかの蒸気加減弁が非制御状態になった場合でも、
原子力タービンの実際の圧力変化に先行してタービンバ
イパス弁を制御して、原子炉の圧力変化を抑制するよう
にしている。以下、添付図面に従ってこの発明の実施例
を説明する。
This is the contact point 2 regardless of the steam control valve function command signal S6.
21a to the servo amplifier 2201 valve test signal S9
Enter. However, in this type of circuit, when a steam control valve opening/closing test is performed, the steam flowing into the turbine side changes, which is accompanied by a change in the pressure of the reactor, which is not preferable. Further, this pressure change is detected by the pressure control circuit 211, and a steam control valve opening command signal is issued to the steam control valves in other pressure control states to correct the pressure change, thereby attempting to keep the pressure constant. However, bringing about a pressure change is itself undesirable for a nuclear reactor, and this occurs primarily because the valve that is in the controlled state is separated from the control when testing the opening and closing of the steam control valve. This type of pressure change also occurs when the steam control valve enters an uncontrolled state due to failure of a servo amplifier or the like and is undesirable. This invention has been made in view of the above circumstances, and aims to provide a pressure control device for a nuclear turbine that can suppress pressure changes to the reactor side even when the steam control valve is placed in an uncontrolled state. purpose.
To achieve this object, according to the present invention, a plurality of steam control valves and a turbine bypass valve are opened based on the output of a pressure control circuit that inputs a turbine inlet steam pressure signal and outputs a valve function command signal. In a pressure control device for a nuclear power turbine that performs pressure control by controlling a pressure of a plurality of steam control valves, the pressure control device includes a calculation means for calculating an average value from signal values corresponding to actual relations of the plurality of steam control valves, and the valve relation command. Comparing means for comparing the signal and the output signal of the calculation means and outputting a comparison deviation signal thereof, and bypass valve control means for controlling the turbine bypass valve based on the comparison deviation signal output from the comparison means, Even if any of the steam regulating valves among the plurality of steam regulating valves becomes uncontrolled,
The turbine bypass valve is controlled in advance of the actual pressure change in the nuclear turbine to suppress the pressure change in the reactor. Embodiments of the present invention will be described below with reference to the accompanying drawings.

第3図はこの発明の実施例を示すものであり、第2図と
同一の符号は同様の対象を示すものとする。同図におい
て、蒸気加減弁制御回路215のサーボ増幅器22川ま
比較器219の出力によって駆動され、この比較器21
9は、低値優先回路216の弁開度指令信号S6と、実
際の加減弁の非線形特性を補正する非線形回路218′
を介した実際の加減弁開度に対応した信号S7とを比較
する。また、各加減弁制御回路215,215′の非線
形回路218′の出力は加算器30川こ入力され加算さ
れる。この加算器300の出力は定数回路301を介し
てき(nは加減弁制御回路の台数)の値にされる。この
定数回路301の出力は演算器302の入力の一方とさ
れる。また、この演算器302の他の入力は圧力調定率
制御装置212を介した圧力制御回路212の出力S3
であり、演算器302はこれらの入力の偏差を出力して
バイパス弁制御回217を駆動する。尚、演算器302
の出力で警報暦303を駆動するようにしてもよい。以
上のような構成によれば、バイパス弁制御回路17を駆
動する演算器302における一方の入力信号は、実際の
蒸気加減弁関度を弁の非線形特性を補償した非線形回路
218′を通した信号となっており、蒸気加減弁はすべ
て同一開度に制御されているため、すべての非線形回路
を通してきた蒸気加減弁の開度を演算器300で総和し
、蒸気加減弁の台数nで割る定数回路301を通すこと
により、蒸気加減弁が実際に流している蒸気流量信号を
形成することができる。
FIG. 3 shows an embodiment of the present invention, and the same reference numerals as in FIG. 2 indicate similar objects. In the figure, the servo amplifier 22 of the steam control valve control circuit 215 is driven by the output of the comparator 219, and the comparator 21
9 is a nonlinear circuit 218' that corrects the valve opening command signal S6 of the low value priority circuit 216 and the nonlinear characteristics of the actual control valve.
The signal S7 corresponding to the actual opening degree of the adjusting valve is compared with the signal S7. Further, the outputs of the non-linear circuits 218' of the control valve control circuits 215 and 215' are input to an adder 30 and added. The output of this adder 300 is converted to a value (n is the number of control valve control circuits) via a constant circuit 301. The output of this constant circuit 301 is used as one of the inputs of the arithmetic unit 302. Further, the other input of this calculator 302 is the output S3 of the pressure control circuit 212 via the pressure adjustment rate control device 212.
The computing unit 302 outputs the deviation of these inputs to drive the bypass valve control circuit 217. In addition, the computing unit 302
The alarm calendar 303 may be driven by the output. According to the above configuration, one of the input signals in the arithmetic unit 302 that drives the bypass valve control circuit 17 is a signal passed through the nonlinear circuit 218' that compensates the nonlinear characteristics of the valve for the actual steam control valve function. Since all the steam regulating valves are controlled to the same opening degree, a constant circuit is used in which the opening degrees of the steam regulating valves that have passed through all the nonlinear circuits are summed up by the calculator 300 and divided by the number n of steam regulating valves. 301, it is possible to form a steam flow rate signal that is actually flowing through the steam control valve.

従って、蒸気加減弁が圧力制御をおこなっている場合は
圧力制御系からの信号S3と定数回路301からの信号
が等しいためバイパス弁制御回路217への出力信号は
零である。すなわち、バイパス弁は制御されない。また
、任意の蒸気加減弁が非制御状態となり弁閉動作となっ
た場合には定数回路301の信号が蒸気加減弁の開度が
変つた分に相当する出力信号を示すため、すなわち蒸気
加減弁が閉った分だけ定数回路301の出力信号は低下
し、圧力制御回路211からの信号A(S3)との間に
偏差を生じ、バイパス制御回路217の出力信号S5に
よってバイパス弁が偏差信号分だけ開く。したがって蒸
気加減弁が制御状態から離れ弁閉動作をしても原子炉圧
力が上昇することなく圧力制御が達成される。第4図は
他の実施例を示すものであり、第3図の構成に加えて、
比較器400、定数回路401、及び接点221a′,
221bを備えている。
Therefore, when the steam control valve is controlling the pressure, the signal S3 from the pressure control system and the signal from the constant circuit 301 are equal, so the output signal to the bypass valve control circuit 217 is zero. That is, the bypass valve is not controlled. Furthermore, when any steam regulating valve is in an uncontrolled state and the valve is closed, the signal of the constant circuit 301 indicates an output signal corresponding to the change in the opening degree of the steam regulating valve. The output signal of the constant circuit 301 decreases by the amount that the constant circuit 301 is closed, causing a deviation from the signal A (S3) from the pressure control circuit 211, and the output signal S5 of the bypass control circuit 217 causes the bypass valve to increase Only open. Therefore, even if the steam control valve leaves the controlled state and performs a valve closing operation, pressure control is achieved without increasing the reactor pressure. FIG. 4 shows another embodiment, in which, in addition to the configuration shown in FIG. 3,
Comparator 400, constant circuit 401, and contact 221a',
221b.

比較器400‘ま低値優先回路214及び定数回路30
1の出力を入力として偏差出力を送出するものであり、
この出力は接点221a′を介して定数回路401へ送
られる。定枚回路401は入力の個古(M蒸気刀。滅綱
御回路の台数)とするものであり、この回路401の出
力は各蒸気加減弁制御回路215,215′のサーボ増
幅器220の前段の比較器219に入力される。
Comparator 400', low value priority circuit 214 and constant circuit 30
It uses the output of 1 as input and sends out the deviation output,
This output is sent to constant circuit 401 via contact 221a'. The fixed quantity circuit 401 is for inputting the number of inputs (M steam blades, the number of Metsuna control circuits), and the output of this circuit 401 is the one before the servo amplifier 220 of each steam control valve control circuit 215, 215'. It is input to comparator 219.

各接点221a′,221bはそれぞれ弁テスト回路2
21の接点221aをテストのために閉じたとき閉じ又
は開く接点であり、接点221bと同様の接点が各蒸気
加減弁制御回路に設けられている。この実施例は、蒸気
加減弁が非制御状態に入った場合の圧力変化をなくす目
的の他に、弁スト時における負荷変動をなくすべく、1
弁の閉まった流量信号を残りの弁の弁開信号に振り分け
る機構を追加したものである。すなわち各加減弁の関度
信号S7を非線形回路218′を通し演算器300で総
和し、弁の台数nで割った流量信号Bと低値優先回路2
14からの信号C(S6)とを比較器400で比較する
。ここで、1番目の弁テスト時には比較器400にここ
で、1番目の弁テストをするとすれば、弁テストに先立
ち第1番目の蒸気加減弁制御回路215の弁テスト回路
221の指令によって接点221a′が閉じ、接点22
1bが開く(第5図イ,口)。ここで、弁テスト回路2
21のテストボタンの接点221aが閉じると(第5図
ハ)、比較器40川こ出力偏差信号が生じ、弁テスト時
に閉となる接点221a′は閉じているため定数回路4
01を介して弁テストしている弁以外に偏差信号を均等
に振り分ける。すなわち、第1の弁を全閉し(第5図二
)、その分残りの他の弁を開くようにする(同図木)。
これにより弁テスト時に、第1の弁が閉まることにより
負荷が減少する分を残りの弁で補償し負荷を一定に保つ
ことができ、蒸気加減弁が非制御状態となった場合、ま
た弁テストなどによりバイパス弁が開いた場合に圧力変
化と共に負荷変動をなくすことができる。この発明によ
れば、以上のように圧力制御回路からの蒸気流量信号と
実際の蒸気加減弁の開度に対応する信号とを比較し、そ
の偏差信号によってバイパス弁を制御するようにするこ
とにより、原子力タービンにおいて、弁テスト時など蒸
気加減弁が非制御状態になったとき圧力変化を生じさせ
ることなく目的を達成できる安全性の高い原子力タービ
ンの圧力制御装置を提供することができる。
Each contact 221a', 221b is connected to the valve test circuit 2.
This is a contact that closes or opens when the contact 221a of No. 21 is closed for testing, and a contact similar to the contact 221b is provided in each steam control valve control circuit. This embodiment has the purpose of eliminating pressure changes when the steam control valve enters an uncontrolled state, as well as eliminating load fluctuations during valve stall.
A mechanism is added that distributes the flow rate signal of a closed valve to the valve open signal of the remaining valves. That is, the flow rate signal B obtained by summing the function signal S7 of each control valve through the nonlinear circuit 218' and the arithmetic unit 300 and dividing by the number of valves n and the low value priority circuit 2
A comparator 400 compares the signal C (S6) from 14 with the signal C (S6). At the time of the first valve test, if the comparator 400 is to perform the first valve test, the contact 221a is activated by a command from the valve test circuit 221 of the first steam control valve control circuit 215 prior to the valve test. ' is closed, contact 22
1b opens (Fig. 5 A, mouth). Here, valve test circuit 2
When the contact 221a of the test button 21 closes (FIG. 5C), an output deviation signal is generated from the comparator 40, and since the contact 221a', which is closed during the valve test, is closed, the constant circuit 4
The deviation signal is evenly distributed to the valves other than the valves being tested via 01. That is, the first valve is fully closed (FIG. 5, 2), and the remaining valves are opened accordingly (FIG. 5, tree).
As a result, during a valve test, the remaining valves can compensate for the load reduction caused by closing the first valve and keep the load constant. When the bypass valve is opened due to such reasons, it is possible to eliminate pressure changes and load fluctuations. According to this invention, as described above, the steam flow rate signal from the pressure control circuit is compared with the signal corresponding to the actual opening degree of the steam control valve, and the bypass valve is controlled based on the deviation signal. It is possible to provide a highly safe pressure control device for a nuclear power turbine that can achieve its purpose without causing a pressure change when a steam control valve is in an uncontrolled state such as during a valve test.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原子力タービンの圧力制御系統図、第2図は従
来の圧力制御装置の圧力制御装置の系統図、第3図及び
第4図はこの発明の実施例の系統図、第5図は第4図の
実施例の動作説明図である。 100・・・原子炉、102…蒸気加減弁、103,1
06…タービン、108…タービンバイパス弁、109
・・・圧力制御装置、211・・・圧力制御回路、21
2・・・圧力議定率制御装置、213・・・速度負荷制
御回路、214・・・低値優先回路、215,215′
・・・蒸気加減弁制御回路、217・・・バイパス弁制
御回路、218,218′…非線形回路、219,30
0,302,400…比較器、−220・・・サーボ増
幅器、221…弁テスト回路、301,401…定数回
路、303・・・警報回路、S.・・・タービン入口蒸
気圧力信号、S7・・・蒸気加減弁開度信号、S5・・
・バイパス弁開度指令信号。 多J図策3図 弟づ図 第2図 弟4図
Fig. 1 is a pressure control system diagram of a nuclear turbine, Fig. 2 is a system diagram of a conventional pressure control device, Figs. 3 and 4 are system diagrams of an embodiment of the present invention, and Fig. 5 is a system diagram of a pressure control device of a conventional pressure control device. FIG. 5 is an explanatory diagram of the operation of the embodiment of FIG. 4; 100...Nuclear reactor, 102...Steam control valve, 103,1
06...Turbine, 108...Turbine bypass valve, 109
... Pressure control device, 211 ... Pressure control circuit, 21
2... Pressure regulation rate control device, 213... Speed load control circuit, 214... Low value priority circuit, 215, 215'
...Steam control valve control circuit, 217...Bypass valve control circuit, 218, 218'...Nonlinear circuit, 219, 30
0,302,400...Comparator, -220...Servo amplifier, 221...Valve test circuit, 301,401...Constant circuit, 303...Alarm circuit, S. ...Turbine inlet steam pressure signal, S7...Steam control valve opening signal, S5...
・Bypass valve opening command signal. Multi-J scheme 3 figures Younger brother figure 2 Younger brother figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 タービンの入口蒸気圧力信号を入力して弁開度指令
信号を出力する圧力制御回路の出力に基づいて、複数の
蒸気加減弁及びタービンバイパス弁の開度を制御するこ
とにより圧力制御を行う原子力タービンの圧力制御装置
において、 前記複数の蒸気加減弁の実際の開度に対応
する信号値からその平均値を演算する演算手段と、 前
記弁開度指令信号と前記演算手段の出力信号とを比較し
、その比較偏差信号を出力する比較手段と、 この比較
手段から出力される比較偏差信号により前記タービンバ
イパス弁を制御するバイパス弁制御手段とを備え、 前
記複数の蒸気加減弁のうちいずれかの蒸気加減弁が非制
御状態になつた場合でも、原子力タービンの実際の圧力
変化に先行してタービンバイパス弁を制御して、原子炉
の圧力変化を抑制するようにしたことを特徴とする原子
力タービンの圧力制御装置。
1 A nuclear power plant that performs pressure control by controlling the opening degrees of multiple steam control valves and turbine bypass valves based on the output of a pressure control circuit that inputs a turbine inlet steam pressure signal and outputs a valve opening command signal. In the turbine pressure control device, a calculation means for calculating an average value from signal values corresponding to the actual opening degrees of the plurality of steam control valves, and a comparison between the valve opening command signal and an output signal of the calculation means. and a comparison means for outputting the comparison deviation signal, and a bypass valve control means for controlling the turbine bypass valve by the comparison deviation signal output from the comparison means, A nuclear power turbine characterized in that even if a steam control valve goes into an uncontrolled state, a turbine bypass valve is controlled in advance of an actual pressure change in the nuclear turbine to suppress pressure changes in the nuclear reactor. pressure control device.
JP935377A 1977-01-31 1977-01-31 Nuclear turbine pressure control device Expired JPS6039845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP935377A JPS6039845B2 (en) 1977-01-31 1977-01-31 Nuclear turbine pressure control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP935377A JPS6039845B2 (en) 1977-01-31 1977-01-31 Nuclear turbine pressure control device

Publications (2)

Publication Number Publication Date
JPS5395402A JPS5395402A (en) 1978-08-21
JPS6039845B2 true JPS6039845B2 (en) 1985-09-07

Family

ID=11718092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP935377A Expired JPS6039845B2 (en) 1977-01-31 1977-01-31 Nuclear turbine pressure control device

Country Status (1)

Country Link
JP (1) JPS6039845B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838309A (en) * 1981-08-28 1983-03-05 Toshiba Corp Uniaxial type composite generating plant
JPS5915608A (en) * 1982-07-16 1984-01-26 Toshiba Corp Controller of steam turbine
JPH0681890B2 (en) * 1985-12-12 1994-10-19 株式会社日立製作所 Turbine controller
JP3546121B2 (en) * 1997-02-25 2004-07-21 三菱重工業株式会社 Fluid pressure control device in pipeline

Also Published As

Publication number Publication date
JPS5395402A (en) 1978-08-21

Similar Documents

Publication Publication Date Title
JPS60243402A (en) Maximum efficiency steam temperature controller
JPH0566601B2 (en)
JPS6039845B2 (en) Nuclear turbine pressure control device
JPS6239919B2 (en)
JPH0450602B2 (en)
JPH0223684B2 (en)
JP2668143B2 (en) Steam turbine control device and control method therefor
JPS62139905A (en) Turbine controller
JPS62150011A (en) Control device for nuclear turbine power plant
JPS5845561B2 (en) steam turbine control device
JPS63154807A (en) Turbine controller having nonlinear characteristic
JPS62157598A (en) Controller for water level of nuclear reactor
JPS59170602A (en) Controller for temperature of steam from boiler outlet
JPH0343606A (en) Turbine controlling device
JPH0343603A (en) Turbine controlling device
JPH04134102A (en) Turbine controller
JPS63277804A (en) Turbine control device for steam generating plant
JPS62142809A (en) Speed control device for steam turbine
JPH0245601A (en) Turbine control device
JPS62240404A (en) Turbine control device
JPS6029916B2 (en) Boiling water reactor water supply control device
JPS6132102A (en) Turbine controller
JPH03225298A (en) Nuclear reactor pressure controller
JPS61110097A (en) Controller for water level in nuclear reactor
JPS62162703A (en) Turbine control device