JPH03215198A - Load controller for combined cycle plant - Google Patents

Load controller for combined cycle plant

Info

Publication number
JPH03215198A
JPH03215198A JP2006401A JP640190A JPH03215198A JP H03215198 A JPH03215198 A JP H03215198A JP 2006401 A JP2006401 A JP 2006401A JP 640190 A JP640190 A JP 640190A JP H03215198 A JPH03215198 A JP H03215198A
Authority
JP
Japan
Prior art keywords
signal
afc
steam
power generation
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006401A
Other languages
Japanese (ja)
Other versions
JP2642999B2 (en
Inventor
Tsuneo Mega
妻鹿 恒雄
Yoshiyuki Kita
北 良之
Mariko Kojima
真理子 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006401A priority Critical patent/JP2642999B2/en
Publication of JPH03215198A publication Critical patent/JPH03215198A/en
Application granted granted Critical
Publication of JP2642999B2 publication Critical patent/JP2642999B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To improve following-up property for the AFC signal of the whole plant by setting a circuit means for applying lead signal according to the AFC signal, to input signal to a steam turbine controller. CONSTITUTION:A circuit means for applying lead signal according to frequency controlling signal(AFC signal) 3, to input signal to a steam turbine controller, is set. On the circuit means, when a plant load controller having composition so that objective load command 1 and the AFC signal 3 may be added to each other to be turned into power generation quantity command 5 is used, then the AFC signal 3 is directly used, and when the power generation quantity command 5 is directly transmitted from a central feed current command station, then by performing arithmetic on the power generation quantity command 5 with a differentiator 33, equivalent AFC signal is computed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、コンバインドサイクルプラント、即ちガスタ
ービンに直結したガスタービン発電機により発電するガ
スタービン発電装置とガスタービンの排気ガスを排ガス
ボイラに導き排ガスボイラで発生した蒸気を蒸気タービ
ンに導き蒸気タービン発電機により発電する発電装置(
以下ボトミングサイクルと呼ぶ)とを組み合せたコンバ
インドサイクル発電プラントのための負荷制御装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a combined cycle plant, that is, a gas turbine power generation device that generates electricity using a gas turbine generator directly connected to a gas turbine, and an exhaust gas boiler in which the exhaust gas of the gas turbine is guided to an exhaust gas boiler. A power generation device (
The present invention relates to a load control device for a combined cycle power generation plant that combines a bottoming cycle (hereinafter referred to as a bottoming cycle).

従来の技術 第3図は、1台以上のガスタービンとガスタービンと同
台数の排ガスボイラに対して1台の蒸気タービンとを用
いたコンバインドサイクルプラントの出力を総合的に制
御するプラント負荷制御装置の一例を示す。
Conventional technology Figure 3 shows a plant load control device that comprehensively controls the output of a combined cycle plant that uses one or more gas turbines, one steam turbine for the same number of exhaust gas boilers as the gas turbines, and one or more gas turbines. An example is shown below.

中央給電指令所よりの伝送路により伝送されてくるプラ
ントの目標負荷指令1は負荷変化率設定器2により負荷
変化率を許容値以内に抑制されたあと、中央給電指令所
より前述の伝送路と異なる伝送路により伝送される周波
数制御信号(以下AFC信号と呼ぶ)3と加算器4で加
算されて発電量指令5となる。なお、別の実施例として
中央給電指令所から目標負荷指令信号とAFC信号とか
加算されて発電量指令として伝送されてくる場合もある
The target load command 1 of the plant, which is transmitted through the transmission line from the central power dispatch center, is transmitted from the central power dispatch center to the aforementioned transmission line after the load change rate is suppressed to within the allowable value by the load change rate setting device 2. A frequency control signal (hereinafter referred to as an AFC signal) 3 transmitted through a different transmission path is added by an adder 4 to obtain a power generation amount command 5. In addition, as another example, the target load command signal and the AFC signal may be added together and transmitted as the power generation amount command from the central power dispatch center.

発電量指令5は負荷上下限制限器6によりガスタービン
の運転台数及び大気温度により定まる負荷上下限の許容
値内に制限される。上下限制限器6の出力は比較器8で
蒸気タービン発電機の発電量7を差し引かれ、ガスター
ビン負荷要求指令9となる。ガスタービン負荷要求指令
9は運転中のガスタービンの台数及び運転状態に基づい
て、ガスタービン負荷配分制限器10において各ガスタ
ービン毎の出力指令11となる。各ガスタービン毎の出
力指令11は変化率制限器12と出力上下限制限器13
とにより各ガスタービン毎に出力変化率及び出力の上下
限が制限され、ガスタービン制御装置の入力信号14と
なる。この入力信号14でガスタービンへ供給する燃料
の流量を増減させることによりガスタービン発電機の出
力を調節する。
The power generation amount command 5 is limited by a load upper/lower limit limiter 6 to within the allowable load upper/lower limits determined by the number of operating gas turbines and atmospheric temperature. The output of the upper and lower limit limiter 6 is subtracted by the power generation amount 7 of the steam turbine generator by a comparator 8, and becomes a gas turbine load request command 9. The gas turbine load request command 9 becomes an output command 11 for each gas turbine in the gas turbine load distribution limiter 10 based on the number and operating state of gas turbines in operation. The output command 11 for each gas turbine includes a rate of change limiter 12 and an output upper/lower limit limiter 13
Therefore, the rate of change in output and the upper and lower limits of the output are limited for each gas turbine, and become the input signal 14 of the gas turbine control device. This input signal 14 is used to adjust the output of the gas turbine generator by increasing or decreasing the flow rate of fuel supplied to the gas turbine.

一方、蒸気タービンはボトミングサイクルの効率を最犬
にするという観点から蒸気加減弁開度を全開とし、排ガ
スボイラで発生する蒸気を全量飲み込む運転方式か採用
されている。実際には、蒸気加減弁制御信号に全開信号
を与えて全開に保持することも可能であるが、全開に固
定したままとすると、ガスタービンが緊急停止した場合
に排ガスボイラへの入熱が急減し、排ガスボイラからの
発生蒸気の温度が低下して悪質の蒸気が蒸気夕一ビンに
流入し、タービンを損傷する可能性があるため、主蒸気
圧力か規定値より低下した場合には、蒸気加減弁開度を
絞り、主蒸気圧力の低下を抑制することとしている。即
ち、第4図に示すように、発電量指令5に従って主蒸気
圧力設定器15により主蒸気圧力設定値16が算出され
る。この主蒸気圧力設定値16は比較器l7において実
際の主蒸気圧力18とつきあわされ、この偏差に基づい
てコントローラ19が修正動作を行ない、コントローラ
19の出力が主蒸気圧力制御信号20となる。
On the other hand, in order to maximize the efficiency of the bottoming cycle, steam turbines are operated by opening the steam control valve fully and swallowing the entire amount of steam generated by the exhaust gas boiler. In reality, it is possible to keep it fully open by giving a full open signal to the steam control valve control signal, but if it remains fixed at fully open, the heat input to the exhaust gas boiler will suddenly decrease in the event of an emergency stop of the gas turbine. However, if the temperature of the steam generated from the exhaust gas boiler decreases, bad steam may flow into the steam generator bin and damage the turbine. Therefore, if the main steam pressure drops below the specified value, the steam The opening degree of the control valve is reduced to suppress the drop in main steam pressure. That is, as shown in FIG. 4, a main steam pressure setting value 16 is calculated by the main steam pressure setting device 15 in accordance with the power generation command 5. This main steam pressure set value 16 is compared with the actual main steam pressure 18 in a comparator 17, and the controller 19 performs corrective action based on this deviation, and the output of the controller 19 becomes the main steam pressure control signal 20.

本制御系統において主蒸気圧力設定器15の出力である
主蒸気圧力設定値16はボトミングサイクルの静的特性
より定まる圧力より、一定幅低い値となるように設定さ
れているため、通常運転時は実際の主蒸気圧力18が主
蒸気圧力設定値16より犬となり、コントローラ19の
修正動作の結果、主蒸気圧力制御信号20は蒸気加減弁
全開相当となる。
In this control system, the main steam pressure setting value 16, which is the output of the main steam pressure setting device 15, is set to a value that is a certain width lower than the pressure determined by the static characteristics of the bottoming cycle. The actual main steam pressure 18 is smaller than the main steam pressure set value 16, and as a result of the corrective action of the controller 19, the main steam pressure control signal 20 becomes equivalent to the steam control valve fully open.

一方、電力系統の周波数が過度に上昇した時、蒸気の流
入量を抑制するためのバックアップ制御信号として、蒸
気タービン回転数21と定格回転数22とを比較器23
で比較した偏差に比例した信号24に負荷バイアス25
を加算器26にて加算した蒸気タービン回転数制御信号
27を使用している。主蒸気圧力制御信号20及び蒸気
タービン回転数制御信号27は、低値選択器28により
選択され、蒸気加減弁制御信号29としているが、通常
運転中は低値選択器28で主蒸気圧力制御信号20が選
択されるようにしている。
On the other hand, when the frequency of the power system increases excessively, the comparator 23 uses the steam turbine rotation speed 21 and the rated rotation speed 22 as a backup control signal to suppress the amount of steam inflow.
Load bias 25 is applied to signal 24 proportional to the deviation compared with
A steam turbine rotational speed control signal 27 obtained by adding the following in an adder 26 is used. The main steam pressure control signal 20 and the steam turbine rotation speed control signal 27 are selected by the low value selector 28 and are used as the steam control valve control signal 29. During normal operation, the low value selector 28 selects the main steam pressure control signal 27. 20 is selected.

蒸気タービンに対する中央給電指令所からのAFC信号
はプラント負荷制御装置を経由して負荷バイアス25の
中に含まれて伝送されてくるが、前述のように通常運転
中は、蒸気加減弁30は主蒸気圧力制御下にあるため、
AFC信号に対しては追従しない。
The AFC signal from the central power dispatch center to the steam turbine is transmitted via the plant load control device as part of the load bias 25, but as mentioned above, during normal operation, the steam control valve 30 is Because it is under steam pressure control,
It does not follow AFC signals.

ガスタービンの出力がAFC信号に追従して変動すると
ガスタービンの排ガス温度も変動し、その変動に応じて
排ガスボイラからの発生蒸気量が変動し、その結果とし
て蒸気タービン発電機出力も変化するが、排ガスボイラ
の熱容量が大きいため、応答の時間遅れが大き< 、A
FC信号に対する迅速な応答ができない。
When the gas turbine output fluctuates following the AFC signal, the gas turbine exhaust gas temperature also fluctuates, and the amount of steam generated from the exhaust gas boiler fluctuates according to that fluctuation, and as a result, the steam turbine generator output also changes. , Due to the large heat capacity of the exhaust gas boiler, the response time delay is large < ,A
It is not possible to respond quickly to FC signals.

発明が解決しようとする課題 前述のように従来使用されていた蒸気タービンの加減弁
制御方式ではAFC信号のような急激な負荷変化指令に
は蒸気タービン出力が追従せず、結果としてガスタービ
ンのみがAFC信号に対応せざるを得なかった。そのた
め、ガスタービンの負荷変動幅が大きくなり、燃料の大
幅な調整を行わなければならないため、ガスタービンの
ガスタービン入口ガス温度の変動も大きく、ガスタービ
ンに発生する熱応力も大きくなる上、必ずしもプラント
としてAFC信号に対する良好な追従性は期待できなか
った。
Problems to be Solved by the Invention As mentioned above, in the conventional steam turbine control valve control system, the steam turbine output cannot follow sudden load change commands such as AFC signals, and as a result, only the gas turbine I had no choice but to respond to the AFC signal. As a result, the range of load fluctuations in the gas turbine becomes large, and the fuel must be adjusted significantly, which causes large fluctuations in the gas temperature at the gas turbine inlet, which increases the thermal stress generated in the gas turbine. As a plant, good followability to AFC signals could not be expected.

本発明は上記の点を鑑みてなされたもので、信号により
蒸気タービンの蒸気加減弁を先行的に動かすことにより
排ガスボイラの熱容量か大きいことに起因する蓄熱効果
を有効に利用すると共に、ガスタービン制御装置への入
力信号の変動幅を小さくシ、ガスタービンのガスタービ
ン入口ガス温度の変化を抑制し、AFC信号に対し応答
の優れたコンバインドプラント負荷制御装置を提供する
ことを目的とする。
The present invention has been made in view of the above points, and by moving the steam control valve of the steam turbine in advance in response to a signal, it effectively utilizes the heat storage effect resulting from the large heat capacity of the exhaust gas boiler, and It is an object of the present invention to provide a combined plant load control device that reduces the fluctuation width of an input signal to a control device, suppresses changes in the gas turbine inlet gas temperature of a gas turbine, and has excellent response to an AFC signal.

課題を解決するための手段 本発明によれば、ガスタービン制御装置への入力信号を
、中央給電指令所より伝送されてくる電力系統の周波数
制御信号に追従させる手段を備えたコンバインドプラン
トの負荷制御装置において、蒸気タービン制御装置への
入力信号に対し前記周波数制御信号に対応した先行信号
を印加する回路手段を有し、プラント全体としてのAF
C信号に対する追従性を改善するようにしている。
Means for Solving the Problems According to the present invention, load control of a combined plant is provided with means for causing an input signal to a gas turbine control device to follow a frequency control signal of a power system transmitted from a central power dispatch center. The apparatus includes circuit means for applying a preceding signal corresponding to the frequency control signal to the input signal to the steam turbine control device, and the AF as a whole plant
The tracking performance for the C signal is improved.

作用 上記の回路手段によれば、まず、第3図に示したように
目標負荷指令1とAFC信号3とが加算されて発電量指
令5となる構成を有するプラント負荷制御装置を使用し
ている場合は、直接AFC信号3を使用し、中央給電指
令所より直接発電量指令5が伝送されてくる場合は、発
電量指令5に微分演算を施すことによって等価的なAF
C信号を算出する。主蒸気圧力18と主蒸気圧力設定値
l6との偏差が一定幅以内である場合は、このAFC信
号を蒸気タービン蒸気加減弁30に印加し蒸気タービン
出力をAFC信号に追従させるようにする。
According to the circuit means described above, first, as shown in FIG. 3, a plant load control device is used which has a configuration in which a target load command 1 and an AFC signal 3 are added to obtain a power generation amount command 5. In this case, the direct AFC signal 3 is used, and if the power generation amount command 5 is directly transmitted from the central power dispatch center, the equivalent AF signal is obtained by performing a differential operation on the power generation amount command 5.
Calculate the C signal. If the deviation between the main steam pressure 18 and the main steam pressure set value l6 is within a certain range, this AFC signal is applied to the steam turbine steam control valve 30 to cause the steam turbine output to follow the AFC signal.

又、別の実施例によれば、蒸気タービン回転数制御信号
27が規定値以内にある場合に、前述のAFC信号又は
等価的なAFC信号を蒸気タービン回転数制御信号に重
畳させて蒸気タービンをAFC信号に追従させる。
According to another embodiment, when the steam turbine rotation speed control signal 27 is within a specified value, the above-mentioned AFC signal or an equivalent AFC signal is superimposed on the steam turbine rotation speed control signal to control the steam turbine. Follows the AFC signal.

後者の実施例では、蒸気タービン制御装置が有する調速
機能とAFC信号に対する追従機能との両方に効果あら
わし、AFC信号より短い周期の電力系統の周波数変動
に対しても蒸気タービンを追従させることを特徴として
いる。
In the latter embodiment, the steam turbine control device has an effect on both the speed regulating function and the following function for the AFC signal, and it is possible to make the steam turbine follow even frequency fluctuations in the power system with a shorter period than the AFC signal. It is a feature.

これに対し前者の実施例では、中央給電指令所よりのA
FC信号に対して蒸気タービンを追従させるが周期の短
い電力系統の周波数変動に対しては蒸気タービンを追従
させないこととしている。
On the other hand, in the former embodiment, the A
Although the steam turbine is made to follow the FC signal, it is not made to follow the short-cycle frequency fluctuations of the power system.

実施例 以下、第1図及び第2図を参照して本発明の好適な実施
例を詳述する。なお、第1図及び第2図において、第3
図及び第4図に示したものと同一の部分には同一の符号
を付して、その詳細な説明は省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will now be described in detail with reference to FIGS. 1 and 2. In addition, in Figures 1 and 2, the third
The same parts as those shown in the figures and FIG. 4 are given the same reference numerals, and detailed explanation thereof will be omitted.

第1図は本発明によるプラント負荷制御装置の第1の実
施例を示している。蒸気タービンのガバナを先行的に動
かす制御回路手段の構成は下記の通りである。
FIG. 1 shows a first embodiment of a plant load control device according to the present invention. The configuration of the control circuit means for proactively moving the governor of the steam turbine is as follows.

発電量指令5から基準の蒸気加減弁開度指令を演算する
関数発生器31、発電量指令5を微分演算して等価的な
AFC信号を発生する微分器33、この微分器33の出
力に対応して蒸気加減弁制御信号を発生する関数発生器
34、この関数発生器34の出力信号である蒸気加減弁
制御信号の変化速度を制限する変化率制限器35、関数
発生器31及び変化率制限器35の各々の出力を加算す
る加算器36、そして圧力制御回路と周波数制御回路と
の切替器37であ?。
A function generator 31 that calculates a standard steam control valve opening command from the power generation command 5, a differentiator 33 that generates an equivalent AFC signal by differentially calculating the power generation command 5, and corresponds to the output of this differentiator 33. a function generator 34 that generates a steam control valve control signal, a rate of change limiter 35 that limits the rate of change of the steam control valve control signal that is the output signal of the function generator 34, a function generator 31, and a rate of change limiter An adder 36 that adds the outputs of each of the devices 35, and a switch 37 between the pressure control circuit and the frequency control circuit? .

中央給電指令所よりAFC信号がプラントの目標負荷指
令と別の伝送路により伝送されてくる場合は、微分器3
3を削除し、AFC指令信号を直接関数発生器34に入
力することも可能である。本回路手段の作用は以下の通
りである。
If the AFC signal is transmitted from the central power dispatch center through a transmission path different from the plant target load command, the differentiator 3
It is also possible to delete 3 and input the AFC command signal directly to the function generator 34. The operation of this circuit means is as follows.

関数発生器31は定格の発電量指令5に対し、蒸気ター
ビン蒸気加減弁3oが全■開でなく、多少絞り込んだ状
態となるように設定する。
The function generator 31 is set so that the steam turbine steam control valve 3o is not fully open, but rather is in a somewhat closed state, in response to the rated power generation command 5.

このような蒸気加減弁30を絞り込むと、絞り圧損が生
じ、ボトミングサイクルの効率が若干低下することとな
るが、逆に排ガスボイラの蓄圧効果が増大し、蒸気加減
弁30が急開した場合の一時的な蒸気タービンに流入す
る蒸気流量の増大が可能となり、AFC信号に対する追
従性が改善されることとなる。従って、関数発生器31
の設定はボトミングサイクルの効率低下と蓄圧効果の増
大とのバランスを考慮して設定すべきである。
If the steam regulator valve 30 is throttled in this way, a throttle pressure loss will occur and the efficiency of the bottoming cycle will decrease slightly, but on the other hand, the pressure accumulation effect of the exhaust gas boiler will increase, and if the steam regulator valve 30 is suddenly opened, It becomes possible to temporarily increase the flow rate of steam flowing into the steam turbine, and the ability to follow the AFC signal is improved. Therefore, the function generator 31
should be set in consideration of the balance between a decrease in bottoming cycle efficiency and an increase in pressure accumulation effect.

発電量指令5を微分演算器33で微分演算することによ
り等価的なAFC信号を算出することができる。この等
価的なAFC信号から関数発生器34により、AFC信
号に対応した蒸気加減弁の開度指令相当信号を算出し、
さらに変化率制限器35で加減弁が追従可能な変化率以
内に抑制する。
An equivalent AFC signal can be calculated by differentially calculating the power generation amount command 5 using the differential calculator 33. From this equivalent AFC signal, the function generator 34 calculates a signal equivalent to the opening command of the steam control valve corresponding to the AFC signal,
Further, the rate of change limiter 35 suppresses the rate of change to within a rate that can be followed by the control valve.

関数発生器31の出力と変化率制限器35の出力とを加
算器36で加算した信号を主蒸気圧力制御信号20とす
ることにより、AFC信号に応じて蒸気タービンの出力
を調整することが可能となる。
By using the signal obtained by adding the output of the function generator 31 and the output of the rate of change limiter 35 by the adder 36 as the main steam pressure control signal 20, it is possible to adjust the output of the steam turbine according to the AFC signal. becomes.

加算器36の出力を直接低値選択器2Bに入力すると、
主蒸気圧力は無制御状態となるため、主蒸気圧力と主蒸
気圧力設定との偏差が許容値を越えた場合は引きもどし
操作を行う回路を付加する。即ち、比較器17の出力で
ある主蒸気圧力偏差が許容値を越えた場合には、切替器
37を主蒸気圧力コントローラ19側に切り戻し、圧力
偏差が許容値以上に拡大することを防止する。
When the output of the adder 36 is directly input to the low value selector 2B,
Since the main steam pressure will be in an uncontrolled state, a circuit is added that performs a pullback operation if the deviation between the main steam pressure and the main steam pressure setting exceeds an allowable value. That is, when the main steam pressure deviation, which is the output of the comparator 17, exceeds the allowable value, the switch 37 is switched back to the main steam pressure controller 19 side to prevent the pressure deviation from expanding beyond the allowable value. .

第2の実施例を第2図に示す。第1図と同一符号のもの
は同一の機能を有する。この例では蒸気タービン回転数
制御信号にAFC信号を印加し、第1の実施例と同様、
中央給電指令所から伝送されてくるAFC信号に蒸気タ
ービン出力も追従させると共に、蒸気タービンの回転数
変化として検出される、より周期の短い電力系統の周波
数変動に対する調整(いわゆるガバナフリー運転)も可
能としている。この例では主蒸気圧力偏差が許容値を越
えない場合には優先的に蒸気タービン回転数制御信号2
7側が蒸気加減弁制御信号29として選択されるように
主蒸気圧力偏差に不感帯38を設け、許容値内の偏差に
対してコントローラ19か修正動作しないようにしてい
る。
A second embodiment is shown in FIG. Components with the same reference numerals as in FIG. 1 have the same functions. In this example, an AFC signal is applied to the steam turbine rotation speed control signal, and as in the first embodiment,
In addition to making the steam turbine output follow the AFC signal transmitted from the central power dispatch center, it is also possible to adjust for shorter-cycle frequency fluctuations in the power system (so-called governor-free operation), which are detected as changes in the rotation speed of the steam turbine. It is said that In this example, if the main steam pressure deviation does not exceed the allowable value, the steam turbine rotation speed control signal 2 is given priority.
A dead zone 38 is provided in the main steam pressure deviation so that the side 7 is selected as the steam control valve control signal 29, so that the controller 19 does not take corrective action for deviations within the permissible value.

発明の効果 本発明によれば、ガスタービンだけでなく、従来、全開
状態を維持してAFC信号に対しては追従動作を行わせ
ることのなかった蒸気タービン加減弁に対してもAFC
信号に追従させる回路手段を有することにより、プラン
ト全体のAFC信号に対する追従性を改善すると共に、
プラント全体で同等のAFC追従性を実現するとき、蒸
気タービンで追従させる分、相対的にガスタービンに要
求される変動幅が小さくなり、ガスタービンのガスター
ビン入口ガス温度の変動幅、さらにはガスタービンに生
ずる熱応力の変動幅が小さくなり、ガスタービンの寿命
が延長されるといった効果がある。
Effects of the Invention According to the present invention, AFC can be applied not only to gas turbines but also to steam turbine control valves that conventionally maintain a fully open state and do not follow the AFC signal.
By having a circuit means for following the signal, the followability of the entire plant to the AFC signal is improved, and
When achieving the same AFC followability in the entire plant, the fluctuation range required of the gas turbine is relatively smaller due to the steam turbine tracking, and the fluctuation range of the gas turbine inlet gas temperature of the gas turbine, as well as the gas This has the effect of reducing the fluctuation range of thermal stress generated in the turbine, and extending the life of the gas turbine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるコンバインドサイクルプラントの
負荷制御装置の第1の実施例を示すブロック図、第2図
は本発明装置の第2の実施例を示すブロック図、第3図
はコンバインドサイクルプラントの負荷制御装置の一例
を示す図、第4図は従来の蒸気タービン制御装置を示す
ブロック図である。 1・・プラントの目標負荷指令、2・・負荷変化率設定
器、3・・周波数制御信号( AFC信号)、4・・加
算器、5・・発電量指令、6・・上下限制限器、7・・
蒸気タービン発電機発電量、8・・比較器、9・・ガス
タービン負荷要求指令、10・・ガスタービン負荷配分
制限器、l1・・各ガスタービン毎の出力指令、12・
・変化率制限器、13・・出力上下限制限器、14・・
ガスタービン制御装置への入力信号、】5・・主蒸気圧
力設定器、16・・主蒸気圧力設定値、17・・比較器
、18・・主蒸気圧力、19・・コントローラ、20・
・主蒸気圧力制御信号、21・・蒸気タービン回転数、
22・・定格回転数、23・・比較器、24・・偏差に
比例した信号、25・・負荷バイアス、26・・加算器
、27・・蒸気タービン回転数制御信号、28・・低値
選択器、29・・蒸気加減弁制御信号、30・・蒸気加
減弁、31・・関数発生器、33・・微分器、34・・
関数発生器、35・・変化率制限器、36・・加算器、
第 1 図 第 2 図 第 3 図 リスク化″.ルl依り炙4z 第 4 図
FIG. 1 is a block diagram showing a first embodiment of the load control device for a combined cycle plant according to the present invention, FIG. 2 is a block diagram showing a second embodiment of the device according to the present invention, and FIG. 3 is a block diagram showing a second embodiment of the load control device for a combined cycle plant according to the present invention. FIG. 4 is a block diagram showing a conventional steam turbine control device. 1. Plant target load command, 2. Load change rate setter, 3. Frequency control signal (AFC signal), 4. Adder, 5. Power generation amount command, 6. Upper and lower limit limiter. 7...
Steam turbine generator power generation amount, 8... Comparator, 9... Gas turbine load request command, 10... Gas turbine load distribution limiter, l1... Output command for each gas turbine, 12...
- Rate of change limiter, 13... Output upper and lower limit limiter, 14...
Input signals to the gas turbine control device, ] 5. Main steam pressure setter, 16. Main steam pressure set value, 17. Comparator, 18. Main steam pressure, 19. Controller, 20.
・Main steam pressure control signal, 21...Steam turbine rotation speed,
22... Rated speed, 23... Comparator, 24... Signal proportional to deviation, 25... Load bias, 26... Adder, 27... Steam turbine rotation speed control signal, 28... Low value selection. device, 29...steam control valve control signal, 30...steam control valve, 31...function generator, 33...differentiator, 34...
Function generator, 35... Rate of change limiter, 36... Adder,
Fig. 1 Fig. 2 Fig. 3 Fig. ``Risk''.

Claims (1)

【特許請求の範囲】[Claims]  ガスタービン発電装置と蒸気タービン発電装置とを組
み合わせたコンバインドサイクル発電プラントにあって
、ガスタービン制御装置への入力信号を、中央給電指令
所より伝送されてくる電力系統の周波数制御信号に追従
させる手段を備えたコンバインドプラントの負荷制御装
置において、蒸気タービン制御装置への入力信号に対し
前記周波数制御信号に対応した先行信号を印加する回路
手段を有することを特徴とするコンバインドサイクルプ
ラントの負荷制御装置。
In a combined cycle power generation plant that combines a gas turbine power generation device and a steam turbine power generation device, means for causing an input signal to the gas turbine control device to follow a frequency control signal of a power system transmitted from a central power dispatch center. A load control device for a combined cycle plant, comprising circuit means for applying a preceding signal corresponding to the frequency control signal to an input signal to a steam turbine control device.
JP2006401A 1990-01-17 1990-01-17 Load control device for combined cycle plant Expired - Lifetime JP2642999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006401A JP2642999B2 (en) 1990-01-17 1990-01-17 Load control device for combined cycle plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006401A JP2642999B2 (en) 1990-01-17 1990-01-17 Load control device for combined cycle plant

Publications (2)

Publication Number Publication Date
JPH03215198A true JPH03215198A (en) 1991-09-20
JP2642999B2 JP2642999B2 (en) 1997-08-20

Family

ID=11637347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006401A Expired - Lifetime JP2642999B2 (en) 1990-01-17 1990-01-17 Load control device for combined cycle plant

Country Status (1)

Country Link
JP (1) JP2642999B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007665A (en) * 2008-06-27 2010-01-14 Alstom Technology Ltd Method for primary control of combined gas and steam turbine arrangement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007665A (en) * 2008-06-27 2010-01-14 Alstom Technology Ltd Method for primary control of combined gas and steam turbine arrangement

Also Published As

Publication number Publication date
JP2642999B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
JPS6344922B2 (en)
US4270357A (en) Turbine control
JPH03215198A (en) Load controller for combined cycle plant
EP1233149B1 (en) Rotational speed control apparatus for a combined cycle power plant
JP2001295607A (en) Method and device for controlling load of thermal power plant
JP2749123B2 (en) Power plant control method and device
JP3792853B2 (en) Combined cycle control device and gas turbine control device
JP3784947B2 (en) Turbine speed control method
JPS6193210A (en) Load controller of one-shaft type composite power plant
JP3166972B2 (en) Power plant control method and apparatus, and power plant
JPH01257704A (en) Load controller for single shaft type compound cycle generating plant and method therefor
JP2965658B2 (en) Turbine control method
JPH07103808B2 (en) Load back-up method when the system frequency drops sharply
JPH01224413A (en) Gas turbine fuel controller
JPS61279703A (en) Controller of steam turbine
JPH0270906A (en) Control of bleeding turbine and device thereof
JPS5820362B2 (en) load control device
JPH07332021A (en) Frequency controller for combined cycle electric power plant
JPH044601B2 (en)
JPH04103808A (en) Compound power generating plant and operating method thereof
JPS62150011A (en) Control device for nuclear turbine power plant
JPS639602A (en) Inlet steam pressure control method for geothermal turbine
JPS6124903A (en) Automatic controller for boiler
JPS62162703A (en) Turbine control device
JPH03241206A (en) Water supplying control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 13