JPH01277608A - Load control for power generation plant - Google Patents

Load control for power generation plant

Info

Publication number
JPH01277608A
JPH01277608A JP10651488A JP10651488A JPH01277608A JP H01277608 A JPH01277608 A JP H01277608A JP 10651488 A JP10651488 A JP 10651488A JP 10651488 A JP10651488 A JP 10651488A JP H01277608 A JPH01277608 A JP H01277608A
Authority
JP
Japan
Prior art keywords
load
signal
turbine
power generation
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10651488A
Other languages
Japanese (ja)
Inventor
Shiyouji Tsujitake
辻岳 正二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10651488A priority Critical patent/JPH01277608A/en
Publication of JPH01277608A publication Critical patent/JPH01277608A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To absorb the imbalance between a boiler and a turbine by reducing a power generation quantity instruction to an actual load when a partial load cut-off state is detected and by reducing the load of a steam turbine to an actual power generation quantity load by adjusting a turbine bypass valve. CONSTITUTION:If a partial load cut-off setting signal is over an actual load in the state where the connection point (a) of a load signal selecting relay 33 is in the partial load cut-off mode, a run-back signal or FCB instruction (opening of a power generator main relay) is outputted into a combustion control system 7 through a load signal selecting relay 34. When a signal is inputted into a connection point (b), and the partial load cut-off operation is generated, a load setting analogue memory 13 follows to the actual load value for a prescribed time after the load is cut off, and also a load variation rate limiter 17 performs following for a prescribed time, and a governor valve 23 and an intercept valve 22 are controlled, having the actual load after the cut-off of the load as new set load. Thus, the imbalance of the load between a boiler and a turbine can be absorbed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、タービンバイパス装置を備えた発電プラント
の負荷制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a load control method for a power plant equipped with a turbine bypass device.

[従来の技術] 従来、タービンバイパス装置を備えた発電プラントにお
いて、発電機開閉器がオープンとなったとき、負荷を所
定負荷まで減少させるいわゆる発電機主継電器を開状態
に制御するPCB制御は、行なわれていた。
[Prior Art] Conventionally, in a power generation plant equipped with a turbine bypass device, when a generator switch is opened, PCB control is used to reduce the load to a predetermined load by controlling the so-called generator main relay to an open state. It was being done.

ところが、発電機開閉器がオーブンとなることなく、負
荷が急減した場合すなわち部分負荷遮断時の制御につい
ては同等考慮されていなかった。
However, no equivalent consideration was given to control when the generator switch does not function as an oven and the load suddenly decreases, that is, when a partial load is cut off.

[発明が解決しようとする課題] このため、特に系統電力が弱い場合(例えば開発途上国
)において、負荷が急変したときには、発電機主継電器
間(P CB)の場合だけとは限らず、従来の制御方式
だけでは対処できず、電力を安定した状態で供給するこ
とはできず信頼性が悪い。
[Problem to be solved by the invention] For this reason, especially in cases where the grid power is weak (for example, in developing countries), when the load suddenly changes, it is not only the case between the generator main relay (PCB), but also the conventional The control method alone cannot deal with this problem, and it is not possible to supply power in a stable state, resulting in poor reliability.

そこで、本発明は発電プラントの急激な負荷減少による
主蒸気圧力上昇を抑えるとともに、ボイラータービン間
の負荷のアンバランスを吸収できる発電プラントの負荷
制御方法を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a load control method for a power plant that can suppress an increase in main steam pressure due to a sudden load reduction in a power plant, and can absorb load imbalance between boiler turbines.

[課題を解決するための手段] 本発明は、前記目的を達成するため、蒸気り−ビンに供
給する蒸気量を調節するためのタービンバイパス弁を含
むタービニ/バイパス装置を備えた発電プラントにおい
て、部分負荷遮断状態を検出し、たとき、発電量指令を
実負荷値にトラックさせ、また前記蒸気タービンへ供給
する蒸気量を、前記タービンバイパス弁を調節すること
により前記蒸気タービンを実発電量相当の負荷まで減少
させて発電量制御を行なうことを特徴とする発電プラン
トの負荷制御方法である。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a power generation plant equipped with a turbine/bypass device including a turbine bypass valve for adjusting the amount of steam supplied to the steam bin. When a partial load cut-off state is detected, the power generation command is tracked to the actual load value, and the amount of steam supplied to the steam turbine is adjusted by the turbine bypass valve, so that the steam turbine is controlled to match the actual power generation amount. This is a load control method for a power generation plant, characterized in that the power generation amount is controlled by reducing the load to .

[作用] 本発明は、発電量指令を実負荷まで減少し、蒸気タービ
ンの制御に発電量を制御させることで、負荷遮断の際に
生ずる負荷指令と実負荷のアンバランスを最小限におさ
えることができる。
[Operation] The present invention minimizes the imbalance between the load command and the actual load that occurs during load shedding by reducing the power generation command to the actual load and having the steam turbine control control the power generation amount. I can do it.

[実施例] 以下、本発明の一実施例について図面を参照して説明す
る。第1図はその一実施例を示す系統図であり、第2図
は第1図の制御ロジックを示す図である。ボイラ1は、
加熱器SH,RHを備えており、ここで給水系および低
温再熱蒸気系から供給される水をそれぞれ蒸気に変換し
、この蒸気は主蒸気系を介して高圧蒸気タービン(以下
高圧タービンと称す)2に供給されこれにより高圧ター
ビン2が回転駆動され、また前記蒸気は高温再熱蒸気系
を介して中低圧蒸気タービン(以下中低圧タービンゐ称
す)3に供給され、これにより中低圧タービン3が回転
駆動される。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing one embodiment, and FIG. 2 is a diagram showing the control logic of FIG. 1. Boiler 1 is
It is equipped with heaters SH and RH, which convert water supplied from the water supply system and the low-temperature reheat steam system into steam, respectively, and this steam is passed through the main steam system to a high-pressure steam turbine (hereinafter referred to as high-pressure turbine). ) 2, which rotationally drives the high-pressure turbine 2, and the steam is also supplied to a medium-low pressure steam turbine (hereinafter referred to as medium-low pressure turbine) 3 via a high-temperature reheat steam system, whereby the medium-low pressure turbine 3 is driven to rotate.

発電機4には、高圧タービン2および中低圧タービン3
の回転駆動力が伝達される。中低圧タービン3で仕事を
した後の蒸気は、コンデンサ5により復水にされ、この
水は復水系およびポンプ6を介して前記加熱器SHに供
給する給水系に供給される。
The generator 4 includes a high pressure turbine 2 and a medium/low pressure turbine 3.
rotational driving force is transmitted. The steam after doing work in the medium and low pressure turbine 3 is converted into condensate by a condenser 5, and this water is supplied via a condensate system and a pump 6 to a water supply system that supplies the heater SH.

ボイラ1には、図示しない空気供給源からの空気および
燃料供給源からの燃料がそれぞれ供給され、これらの量
は空気流量制御用ダンパ8および燃料制御弁9の開度に
より決められ、空気流量制御用ダンパ8および燃料制御
弁9の開度は燃焼制御系7からの制御信号により制御さ
れる。発電機4の出力信号は、トランスジューサ10に
より検出され、この検出された実負荷信号(メガワット
(Mw)信号)は、偏差信号モニタ11の一方の入力端
子に入力され、この他方の入力端子には負荷設定器12
により設定された設定値が負荷設定用アナログメモリ1
3で記憶され、この記憶値が入力され、偏差モニタ11
により両者の偏差が求められ、この偏差によって後述す
る負荷信号選択用リレー33.34の通電路が制御され
る。
The boiler 1 is supplied with air from an air supply source (not shown) and fuel from a fuel supply source (not shown), and the amounts of these are determined by the opening degrees of the damper 8 for controlling the air flow rate and the fuel control valve 9. The opening degrees of the damper 8 and the fuel control valve 9 are controlled by control signals from the combustion control system 7. The output signal of the generator 4 is detected by the transducer 10, and the detected actual load signal (megawatt (Mw) signal) is input to one input terminal of the deviation signal monitor 11, and the other input terminal is input to the deviation signal monitor 11. Load setting device 12
The setting value set by is stored in analog memory 1 for load setting.
3, this stored value is input, and the deviation monitor 11
The deviation between the two is determined, and the energizing paths of load signal selection relays 33 and 34, which will be described later, are controlled based on this deviation.

減算器14は、トランスジューサ10からの実負荷信号
と負荷設定用アナログメモリ13が記憶されl;設定値
が入力され、両者の減算された減算出力が、負荷制限設
定器18により設定される最大値/最小値制限器19に
入力され、ここで制限された出力は協調制御系20に入
力される。この協調制御系20において、タービン・デ
マンドおよびボイラ・デマンドが得られ、このタービン
・デマンドはタービン制御系21に与えられ、ここで前
記高温再熱蒸気系に挿入されているインターセプト弁2
2と、前記主蒸気系に挿入されているガバナ弁23に対
する制御信号が生成されて出力される。前記協調制御系
20から出力されるボイラ・デマンドは、主蒸気圧力制
御系35の第1の入力端子に入力される。主蒸気圧力設
定器24で設定された設定値が主蒸気圧力設定用アナロ
グメモリ25に記憶され、この記憶値が主蒸気圧力制御
系35の第2の入力端子に入力される。主蒸気系に流れ
る蒸気量をトランスジューサ26で検出し、ここで主蒸
気圧力信号に変換され、この変換された主蒸気圧力信号
が主蒸気圧力制御系35の第3の入力端子に入力される
。主蒸気圧力制御系35で求められる制御信号が負荷信
号選択用リレー34に与えられる。
The subtracter 14 stores the actual load signal from the transducer 10 and the load setting analog memory 13; the set value is input, and the subtracted output of both is set to the maximum value set by the load limit setting device 18. /Minimum value limiter 19, and the output limited here is input to the cooperative control system 20. In this cooperative control system 20, a turbine demand and a boiler demand are obtained, and this turbine demand is given to a turbine control system 21, where the intercept valve 2 inserted in the high temperature reheat steam system
2, a control signal for the governor valve 23 inserted in the main steam system is generated and output. The boiler demand output from the cooperative control system 20 is input to the first input terminal of the main steam pressure control system 35. The set value set by the main steam pressure setting device 24 is stored in the main steam pressure setting analog memory 25, and this stored value is input to the second input terminal of the main steam pressure control system 35. The amount of steam flowing into the main steam system is detected by the transducer 26 and converted into a main steam pressure signal, and this converted main steam pressure signal is input to the third input terminal of the main steam pressure control system 35. A control signal obtained by the main steam pressure control system 35 is given to the load signal selection relay 34.

圧力バイアス選択用リレー27には、圧力バイアス信号
および0バイアス信号が入力され、ここで得られる信号
と前記主蒸気圧力設定用メモリ25で記憶された記憶値
とが加算器28により加算され、ここで加算された加算
値は減算器29に入力され、ここで前記トランスジュー
サ26で変拗された主蒸気圧力信号が減算され、この減
算結果がタービンバイパス制御系30に人力され、ここ
で高圧タービン・バイパス弁31と、中低圧タービン・
バイパス弁32に対して開度制御信号が与えられる。
A pressure bias signal and a 0 bias signal are input to the pressure bias selection relay 27, and the signal obtained here and the memory value stored in the main steam pressure setting memory 25 are added by an adder 28, The added value is input to the subtracter 29, where the main steam pressure signal modified by the transducer 26 is subtracted, and the result of this subtraction is manually input to the turbine bypass control system 30, where the high pressure turbine Bypass valve 31 and medium and low pressure turbine
An opening control signal is given to the bypass valve 32.

負荷信号選択用リレー34には、前記主蒸気圧力制御系
35からの制御信号以外に負荷信号選択用リレー33か
らの制御信号が入力される。負荷信号選択用リレー34
から得られるボイラ・マスク信号が燃焼制御系7に入力
される。
In addition to the control signal from the main steam pressure control system 35, a control signal from the load signal selection relay 33 is input to the load signal selection relay 34. Load signal selection relay 34
A boiler mask signal obtained from the combustion control system 7 is input to the combustion control system 7.

ここで、本発明の特徴について第2図を参照して説明す
る。第2図(a)、(b)は、それぞれ第1図の偏差モ
ニタ11と負荷信号選択用リレー33.34との関係を
示すもので、偏差モニター11において、トランスジュ
ーサ10からの実負荷信号と負荷設定用アナログメモリ
13で記憶されている負荷設定信号との偏差を監視し、
第2図(a)のようにその偏差が所定値以上(負荷設定
〉実負荷+αのとき)になった場合でかつ電機主継電器
間となると、これらはそれぞれオンデイレイタイマ41
、反転回路42をそれぞれ介して論理積回路43に入力
され、ここで論理積条件が成立すると、論理積回路43
から出力される信号により部分負荷遮断モードとなり、
その信号が接続点aに出力され、また論理積回路43で
論理積条件が成立したとき出力される信号はオフデイ1
/イタイマ44を介して接続点すに出力される。
Here, the features of the present invention will be explained with reference to FIG. 2(a) and 2(b) respectively show the relationship between the deviation monitor 11 and the load signal selection relays 33 and 34 in FIG. 1. In the deviation monitor 11, the actual load signal from the transducer 10 Monitor the deviation from the load setting signal stored in the load setting analog memory 13,
As shown in Fig. 2 (a), when the deviation exceeds a predetermined value (when load setting>actual load + α) and it is between the main relays of the electrical equipment, the on-delay timer 41
, are input to the AND circuit 43 via the inverting circuit 42, and when the AND condition is satisfied here, the AND circuit 43
Partial load shedding mode is activated by the signal output from
The signal is output to the connection point a, and the signal output when the AND condition is satisfied in the AND circuit 43 is the off-day 1
/ It is output to the connection point via the timer 44.

そして、第2図(b)に示すように接続点aが部分負荷
遮断モードとなった状態で、かつ負荷信号選択用リレー
33に入力される部分負荷遮断用設定信号が実負荷信号
以上(負荷設定〉実負荷+β、ただしβはタービン・バ
イパス弁容量分の負荷)となったとき、論理積回路45
の論理積条件が成立し、このときの論理信号、ランバッ
ク指令、PCB指令(発電機主継電器間)のいずれか一
つが論理和回路46に入力されると、負荷信号選択用リ
レー・34の信号の経路が84 Cに変更され、また負
荷信号選択用リレー33の信号の経路がa −dとなり
、ランバック指令が負荷信号選択用リレー33に入力さ
れると信号の経路がb−dとなり、またPCB指令が負
荷信号選択用リレー33に入力されると、信号の経路が
b−dとなる。
Then, when the connection point a is in the partial load shedding mode as shown in FIG. Setting> Actual load + β (where β is the load corresponding to the turbine bypass valve capacity), the AND circuit 45
When the AND condition is satisfied and any one of the logic signal, runback command, or PCB command (between generator main relays) is input to the OR circuit 46, the load signal selection relay 34 is activated. The signal path is changed to 84C, the signal path of the load signal selection relay 33 becomes a-d, and when the runback command is input to the load signal selection relay 33, the signal path becomes b-d. , and when a PCB command is input to the load signal selection relay 33, the signal path becomes b-d.

なお、第2図(b)において、ボイラが負荷を下げる必
要のない場合、即ち部分負荷遮断が発生し7ない前の負
荷設定値が、タービン・バ、イバス弁容量分の負荷βと
実負荷(発生後)とを加えた負荷の値より大きくない場
合は、論理積回路45の論理積条件が成立しないので、
ボイラ負荷を下げる制御は行なわれない。
In addition, in Fig. 2 (b), when the boiler does not need to reduce its load, that is, before partial load shedding occurs, the load setting value is equal to the load β for the turbine valve and Ibus valve capacity and the actual load. (After occurrence) If it is not larger than the value of the load added, the AND condition of the AND circuit 45 does not hold, so
Control to reduce the boiler load is not performed.

さらに、第2図(c)に示すように接続点すに信号が入
力されて部分負荷遮断動作が発生【7たとき、負荷設定
用アナログメモリ13は、負荷遮断後の実負荷値に規定
時間(オフデイレイタイマの設定時間)だけトラッキン
グされ、また負荷変化率制限器17は負荷遮断後の実負
荷値に前記規定時間だけトラッキングされる。このため
、ガバナ弁23とインターセプト弁22は、負荷遮断後
の実負荷値を新たな負荷設定として実負荷が制御される
Furthermore, as shown in Fig. 2(c), when a signal is input to the connection point and a partial load shedding operation occurs [7], the load setting analog memory 13 stores the actual load value after the load shedding for a specified period of time. (the set time of the off-delay timer), and the load change rate limiter 17 tracks the actual load value after load shedding for the specified time. Therefore, the actual load of the governor valve 23 and the intercept valve 22 is controlled by using the actual load value after the load cutoff as a new load setting.

また、ボイラ負荷を減少させる必要がある場合は、ボイ
ラ制御系は主蒸気圧力を制御しないので、この代りにタ
ービン・バイパス制御によって主蒸気圧力制御を行なう
ことができる。この場合、主蒸気圧力設定用アナログメ
モリ25の記憶値(出力信号)に通常運転中に加算器2
8を通して加算されている圧力バイアス信号をカットし
て圧力バイアス選択用リレー27の信号の経路がa −
Cとなり、主蒸気圧力制御を行なわせることで、発電プ
ラントの急激な負荷減少による主蒸気圧力上昇を抑える
とともに、ボ・fシータ−ビン間の負荷のアンバランス
が吸収できる。
Further, when it is necessary to reduce the boiler load, the boiler control system does not control the main steam pressure, so the main steam pressure can be controlled by turbine bypass control instead. In this case, the value stored in the main steam pressure setting analog memory 25 (output signal) is added to the adder 2 during normal operation.
By cutting the pressure bias signal added through 8, the signal path of the pressure bias selection relay 27 is changed to a -
By controlling the main steam pressure, it is possible to suppress an increase in main steam pressure due to a sudden load reduction in the power plant, and to absorb the imbalance in the load between the boss and f-seater turbines.

以上述べた本発明の実施例によれば、従来の発電プラン
トの負荷制御装置に、第2図に示す制御ロジックを追加
して、発電量指令を実負荷まで減少し、蒸気タービンの
制御に発電量を制御させることで、負荷遮断の際に生ず
る負荷指令と実負荷のアンバランスを最小限におさえる
ことができる。
According to the embodiment of the present invention described above, the control logic shown in FIG. 2 is added to the conventional load control device of a power generation plant, the power generation amount command is reduced to the actual load, and the power generation amount is controlled to control the steam turbine. By controlling the amount, it is possible to minimize the imbalance between the load command and the actual load that occurs during load shedding.

[発明の効果コ 本発明によれば、発電プラントの急激な負荷減少による
主蒸気圧力上昇を抑えるとともに、ボイラータービン間
の負荷のアンバランスを吸収できる発電プラントの負荷
制御方法を提供できる。
[Effects of the Invention] According to the present invention, it is possible to provide a load control method for a power generation plant that can suppress an increase in main steam pressure due to a sudden load reduction in a power generation plant and can absorb load imbalance between boiler turbines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による発電プラントの負荷制御方法の一
実施例を説明するための系統図、第2図は第1図の制御
ロジックを説明するための図である。 1・・・タービン、2・・・高圧タービン、3・・・中
低圧タービン、4・・・発電機、5・・・コンデンサ、
6・・・ポンプ、7・・・燃焼制御系、8・・・空気流
量制御用ダンパ、9・・・燃料制御弁、10日負荷信号
トランスジューサ、11・・・偏差信号モニタ、13・
・・負荷設定用アナログメモリ、16・・・負荷変化率
設定用アナログメモリ、17・・・負荷変化率制限器、
33.34・・・譜か信号選択用リレー。 出願人代理人 弁理士  鈴江武彦
FIG. 1 is a system diagram for explaining an embodiment of the load control method for a power generation plant according to the present invention, and FIG. 2 is a diagram for explaining the control logic of FIG. 1. 1... Turbine, 2... High pressure turbine, 3... Medium and low pressure turbine, 4... Generator, 5... Capacitor,
6... Pump, 7... Combustion control system, 8... Damper for air flow rate control, 9... Fuel control valve, 10-day load signal transducer, 11... Deviation signal monitor, 13.
... Analog memory for load setting, 16... Analog memory for load change rate setting, 17... Load change rate limiter,
33.34... Relay for selecting music or signal. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 蒸気タービンに供給する蒸気量を調節するためのタービ
ンバイパス弁を含むタービンバイパス装置を備えた発電
プラントにおいて、部分負荷遮断状態を検出したとき、
発電量指令を実負荷値にトラックさせ、また前記蒸気タ
ービンへ供給する蒸気量を、前記タービンバイパス弁を
調節することにより前記蒸気タービンを実発電量相当の
負荷まで減少させて発電量制御を行なうことを特徴とす
る発電プラントの負荷制御方法。
In a power generation plant equipped with a turbine bypass device including a turbine bypass valve for adjusting the amount of steam supplied to a steam turbine, when a partial load cutoff state is detected,
The power generation amount is controlled by tracking the power generation amount command to the actual load value and reducing the amount of steam supplied to the steam turbine to a load equivalent to the actual power generation amount by adjusting the turbine bypass valve. A load control method for a power generation plant characterized by the following.
JP10651488A 1988-04-28 1988-04-28 Load control for power generation plant Pending JPH01277608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10651488A JPH01277608A (en) 1988-04-28 1988-04-28 Load control for power generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10651488A JPH01277608A (en) 1988-04-28 1988-04-28 Load control for power generation plant

Publications (1)

Publication Number Publication Date
JPH01277608A true JPH01277608A (en) 1989-11-08

Family

ID=14435527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10651488A Pending JPH01277608A (en) 1988-04-28 1988-04-28 Load control for power generation plant

Country Status (1)

Country Link
JP (1) JPH01277608A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105604614A (en) * 2014-11-20 2016-05-25 国家电网公司 Islanding operation control device for self-provided machine set in chemical industry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105604614A (en) * 2014-11-20 2016-05-25 国家电网公司 Islanding operation control device for self-provided machine set in chemical industry

Similar Documents

Publication Publication Date Title
JPH01277608A (en) Load control for power generation plant
EP1233149B1 (en) Rotational speed control apparatus for a combined cycle power plant
JP2918743B2 (en) Steam cycle controller
JPH06330706A (en) Back pressure steam turbine system
JP3112579B2 (en) Pressure control device
JPH02192501A (en) Water feed control device during fcb of drum boiler
JP2642999B2 (en) Load control device for combined cycle plant
JP3784947B2 (en) Turbine speed control method
JPS59145309A (en) Afc controller of turbine bypass thermal power plant
JPS642762B2 (en)
JPS6193210A (en) Load controller of one-shaft type composite power plant
JPH0122521B2 (en)
JPH0128202B2 (en)
JPH0719007A (en) Turbine control device
JPS6212361B2 (en)
JPH0270906A (en) Control of bleeding turbine and device thereof
JPS6124903A (en) Automatic controller for boiler
JPS61190202A (en) Controller for drum level
JPS59170410A (en) Stand-by method of turbine bypass valve
JPS60185002A (en) Method of controlling drum level of boiler
JPS62210304A (en) Drum water-filling controller on stoppage
JPS6332109A (en) Complex power-generation control device
JPS639602A (en) Inlet steam pressure control method for geothermal turbine
Murgaš et al. BLACKSTART OF COMBINED CYCLE POWER PLANTS IN SLOVAK POWER SYSTEM
JPS60129694A (en) Controller for pressure of nuclear power plant