JPS5969690A - Operation monitoring device for condenser - Google Patents

Operation monitoring device for condenser

Info

Publication number
JPS5969690A
JPS5969690A JP17931082A JP17931082A JPS5969690A JP S5969690 A JPS5969690 A JP S5969690A JP 17931082 A JP17931082 A JP 17931082A JP 17931082 A JP17931082 A JP 17931082A JP S5969690 A JPS5969690 A JP S5969690A
Authority
JP
Japan
Prior art keywords
cooling water
condenser
heat transfer
actual
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17931082A
Other languages
Japanese (ja)
Inventor
Yoshio Goto
後藤 好男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17931082A priority Critical patent/JPS5969690A/en
Publication of JPS5969690A publication Critical patent/JPS5969690A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B11/00Controlling arrangements with features specially adapted for condensers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1917Control of temperature characterised by the use of electric means using digital means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To improve the operating efficiency of the device by a method wherein the operation and indication of the degree of cleanness of the condenser may be effected even during the operation of the whole of the device and the inspection as well as the repair of the condenser are permitted to be effected at a proper timing. CONSTITUTION:The average temperature difference thetam of cooling water at the outlet and inlet of the condenser is obtained at every periods in an unit 22 after the electric source of the monitoring device is thrownin. Next, an actual amount Wa of the cooling water is obtained from a reference heat exchanging amount Qa or the like in the unit 23 and, further, an actual heat-transmission coefficient Ka is obtained from the average temperature difference thetam, the reference heat exchanging amount Qa and the like in the unit 24. The actual heat-transmission coefficient Ka is converted into an equivalent heat-transmission coefficient Kas by using the actual amount Wa of the cooling water and the reference amount Ws of the cooling water in th unit 25, then, the degree of cleanness Rct is obtained from the ratio of the equivalent heat- transmission coefficient Kas to the reference heat-transmission coefficient Kds in the unit 26. A statistical value of the degree of cleanness Rct in the unit of one week or one month, which are obtained in every constant period, is obtained in the unit 27, and the result is indicated on an indicating device in the unit 29 if an output is requested in the unit 28 by an operation monitorer.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、復水器の清浄度を監視できる復水器の運転監
視装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a condenser operation monitoring device that can monitor the cleanliness of a condenser.

〔発明の背景技術とその問題点〕[Background technology of the invention and its problems]

一般の発電設備においては、この発電設備を構成する各
種の主機および補機の運転負荷状態によシ、発電設備全
体の運転効率は変動する。
In general power generation equipment, the operating efficiency of the entire power generation equipment fluctuates depending on the operating load conditions of the various main machines and auxiliary machines that make up the power generation equipment.

上記発電設備の重要な構成機器である復水器についても
同様なことが言える。
The same can be said of the condenser, which is an important component of the above-mentioned power generation equipment.

このような復水器においては、一般に冷却水として海水
を使用しているので、長期に区って運転すると、冷却管
等に沈殿物が付着したり、上記冷却管等が腐食されたり
して熱交換効率が低下する。
Such condensers generally use seawater as cooling water, so if they are operated for a long period of time, deposits may accumulate on the cooling pipes, etc., and the cooling pipes may become corroded. Heat exchange efficiency decreases.

そこで従来ではJ復水器の運転中の熱貫流率と設計時に
設定した基準熱貫流率との比を清浄度として、この清浄
度を前記熱交換効率の一つの指標としている。そして、
上記清浄度が一定限度以下に低下した場合に復水器を点
検補修するようにしていた。
Therefore, conventionally, the ratio between the heat transfer coefficient during operation of the J condenser and the reference heat transfer coefficient set at the time of design is defined as the cleanliness, and this cleanliness is used as one index of the heat exchange efficiency. and,
The condenser was inspected and repaired when the cleanliness level fell below a certain limit.

しかしながら、従来の復水器にあっては、前記清浄度を
求める作業は、発電設備全体の定期点検時だけしか実施
できなかったので、上記清浄度が低下しても直ちに設備
の運転監視者にその情報が伝わらなかった。したがって
、発電設備全体の効率が低下する問題があった。
However, with conventional condensers, the work to determine the cleanliness level could only be carried out during periodic inspections of the entire power generation equipment, so if the cleanliness level drops, it should be immediately reported to the equipment operation supervisor. That information was not conveyed. Therefore, there was a problem that the efficiency of the entire power generation equipment decreased.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に基すいてなされたもので、
その目的とするところは、設備全体が運転中であっても
復水器の清浄度を算出9表示することができ、適切な時
期に復水器の点検補修を実施することができ、設備の運
転効率を向上できる復水器の運転監視装置を提供するこ
とにある。
The present invention was made based on these circumstances, and
The purpose of this is to be able to calculate and display the cleanliness of the condenser even when the entire facility is in operation, to enable inspection and repair of the condenser at an appropriate time, and to improve the quality of the facility. An object of the present invention is to provide a condenser operation monitoring device that can improve operational efficiency.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために、本発明は、復水器の運転
監視装置を次のように構成したことを特徴としている。
In order to achieve the above object, the present invention is characterized in that a condenser operation monitoring device is configured as follows.

すなわち、負荷状態に応じて予め定められた復水器の熱
交換量および上記復水器の出入口の冷却水温度を用いて
それぞれ実熱貫流率および実冷却水量を算出する実熱貫
流率算出部および実冷却水量算出部を設け、上記実熱貫
流率を上記実冷却水量と基準冷却水量記憶装置に記憶さ
れている基準負荷状態における基準冷却水量とを用いて
等側熱貫流率に換算する等側熱1流率算出部を設け、上
記等側熱貫流率と基準熱貫流率記憶装置に記憶されてい
る基準負荷状態における基準熱貫流率との比で示される
清浄度を算出する清浄度算出部を設け、さらに、上記清
浄度の統計処理を行う統計処理部と、上記統計処理され
た結果および処理前の前記清浄度を表示する表示装置を
付加したことを特徴としている。
That is, an actual heat transfer coefficient calculation unit that calculates the actual heat transfer coefficient and the actual amount of cooling water, respectively, using the heat exchange amount of the condenser and the cooling water temperature at the inlet and outlet of the condenser, which are predetermined according to the load state. and an actual cooling water amount calculating section, which converts the actual heat transfer coefficient into an isolateral heat transfer coefficient using the actual cooling water amount and the reference cooling water amount in the reference load state stored in the reference cooling water amount storage device. Cleanliness calculation that includes a side heat 1 flow rate calculation unit and calculates the cleanliness represented by the ratio of the equal side heat transfer coefficient and the reference heat transfer coefficient in the reference load state stored in the reference heat transfer coefficient storage device. The present invention is characterized in that it further includes a statistical processing section that performs statistical processing of the cleanliness, and a display device that displays the results of the statistical processing and the cleanliness before processing.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の一実施例に係る復水器の運転監視装置
のブロック構成図である。このブロック構成図を信号の
流れに従って説明する。
FIG. 1 is a block diagram of a condenser operation monitoring device according to an embodiment of the present invention. This block configuration diagram will be explained according to the signal flow.

すなわち、任意の負荷状態で運転中の復水器の上記負荷
状態を表わす負荷状態aと冷却水の入口温度t、および
出口温度t7等の復水器からの入力信号は入力制御装置
1を介して演算処理装置2に入力される。演算処理装置
2に入力された上記入力信号は、実冷却水量算出部3お
よび平均温度差算出部4に与えられる。一方、基準熱交
換量記憶装置5には、各負荷状態に応じて予め設定され
た復水器の基準熱交換量が記憶されている。前記実冷却
水量算出部3において、負荷状態aに対応する上記基準
熱交換量記憶装置5に記憶された基準熱交換量Q、と前
記入口、出口温度jl+L!を用いて(1)式で示され
る負荷状態aにおける実冷却水量Waを求める。
That is, input signals from the condenser, such as the load state a representing the load state of the condenser operating under an arbitrary load state, the cooling water inlet temperature t, and the outlet temperature t7, are sent via the input control device 1. and is input to the arithmetic processing unit 2. The input signal input to the arithmetic processing device 2 is given to the actual cooling water amount calculation section 3 and the average temperature difference calculation section 4. On the other hand, the reference heat exchange amount storage device 5 stores a reference heat exchange amount of the condenser that is preset according to each load state. The actual cooling water amount calculation unit 3 calculates the reference heat exchange amount Q stored in the reference heat exchange amount storage device 5 corresponding to the load state a, and the inlet and outlet temperatures jl+L! The actual cooling water amount Wa in the load state a shown by equation (1) is determined using the equation (1).

ただしCは冷却水の比熱である。However, C is the specific heat of the cooling water.

Ω。Ω.

また、前記平均温度差算出部4において、(2)式で示
される平均温度差θmを求める。ただし、t8は復水器
のホットウェル温度である。
Further, the average temperature difference calculating section 4 calculates the average temperature difference θm shown by equation (2). However, t8 is the hot well temperature of the condenser.

さらに、実熱量流率算出部6において、負荷状態aにお
ける復水器の熱貫流率、すなわち実熱貫流率Kaを前記
基準熱交換量Q、、平均温度差θmおよび冷却管の伝熱
面積Sから求める。
Further, in the actual heat flow rate calculation unit 6, the heat transfer coefficient of the condenser in the load state a, that is, the actual heat transfer coefficient Ka, is calculated as the reference heat exchange amount Q, the average temperature difference θm, and the heat transfer area S of the cooling pipe. Find from.

Ka = Qa/S・θ□         ・・・・
・・ (3)次に、基準冷却水量記憶装置7に記憶され
た設計時に設定した基準負荷状態Sにおける基準冷却水
量W3および、上記実冷却水量Waを用いることによっ
て、等側熱貫流率算出部8にて(4)式に示す等側熱貫
流率Ka、を求める。ただし、kは補正係数である。
Ka = Qa/S・θ□・・・・
(3) Next, by using the reference cooling water amount W3 in the reference load state S set at the time of design, which is stored in the reference cooling water amount storage device 7, and the above-mentioned actual cooling water amount Wa, the isolateral heat transfer coefficient calculation unit In step 8, the isolateral heat transfer coefficient Ka shown in equation (4) is determined. However, k is a correction coefficient.

すなわち、上記等価熱貫流率Ka8は、実測した負荷状
態aにおける実熱貫流率Kaから基準負荷状態Sにおけ
る実熱貫流率を外挿法にて求めた値である。
That is, the equivalent heat transmission coefficient Ka8 is a value obtained by extrapolating the actual heat transmission coefficient in the reference load state S from the actual heat transmission coefficient Ka in the actually measured load state a.

次に、清浄度算出部9において、上記等価熱貫流率Ka
11と、基準冷却水量記憶装置1θに記憶された設計時
に設定した基準負荷状態Bにおける基準熱貫流率Kds
との比からこの復水器の清浄度Rcfを求める。
Next, in the cleanliness calculation section 9, the above equivalent heat transmission coefficient Ka
11, and the reference heat transfer coefficient Kds in the reference load state B set at the time of design stored in the reference cooling water amount storage device 1θ.
The cleanliness Rcf of this condenser is determined from the ratio.

この清浄度Rcfは、設備の運転員の指令eにより出力
制御装置J1を介して演算処理装置2外に設けられたラ
イングリンター、CRT装置等の表示装置12に表示さ
れる。
This cleanliness level Rcf is displayed on a display device 12, such as a line grinder or a CRT device, provided outside the arithmetic processing device 2 via the output control device J1 in response to a command e from an operator of the facility.

また、復水器が長期に亘って運転される場合には、−週
間又は1ケ月間等の間の清浄度Rcf求められる。そし
てこの平均値マや標準偏差σ等は前記指令eにて出力制
御装置11を介して表示装置12に表示されるとともに
記録保存用として出力される。
Further, when the condenser is operated for a long period of time, the cleanliness Rcf for -weeks or one month is determined. The average value, standard deviation σ, etc. are displayed on the display device 12 via the output control device 11 in accordance with the command e, and are also output for record storage.

第2図は第1図のブロック構成図で示した実施例に係る
復水器の運転監視装置の演算手順を示すフローチャート
図である。同監視装置の電源投入後、壕ず21において
実際に復水器が起動されているか否かを確認する。起動
されているときは、22において一定周期毎に復水器出
入口の冷却水の平均温度差θmを求める。次に23にお
いて基準熱交換量へ等から実冷却水量Waを求め、24
においてさらに、上記平均温度差θmおよび上記基準熱
交換量Qa等から実熱貫流率Kaを求める。25におい
て、実熱貫流率に、を実冷却水量WIL、基準冷却水i
t W、を用いて等側熱貫流率Kasに換算し、26に
て、この等側熱貫流率に&8と基準貫流率Kdgとの比
から清浄度Rcfを求める。そして27において一定期
間毎に求めた清浄度Rcfの一週間単位又は−月単位に
おける統計値(又、σ)を求め、28にて運転監視員の
出力要求があれば、29において結果を表示装置に表示
する。
FIG. 2 is a flowchart showing the calculation procedure of the condenser operation monitoring device according to the embodiment shown in the block diagram of FIG. 1. After turning on the power of the monitoring device, it is checked in the trench 21 whether or not the condenser is actually activated. When activated, the average temperature difference θm of the cooling water at the inlet and outlet of the condenser is determined at regular intervals in step 22. Next, in step 23, the actual cooling water amount Wa is calculated from the reference heat exchange amount, etc., and in step 24
Further, the actual heat transfer coefficient Ka is determined from the average temperature difference θm, the reference heat exchange amount Qa, and the like. 25, the actual heat transfer coefficient is expressed as the actual cooling water amount WIL and the reference cooling water i.
tW, is converted into an isolateral heat transmission coefficient Kas, and in step 26, the cleanliness Rcf is determined from the ratio of the isolateral heat transmission coefficient &8 and the reference transmission coefficient Kdg. Then, in step 27, the statistical value (also σ) of the cleanliness Rcf obtained at a certain period of time is obtained in weekly or -monthly units, and if there is an output request from the operation supervisor in step 28, the results are displayed on the display device in step 29. to be displayed.

このような構成の監視装置であれば、負荷状態aと冷却
水の入口温度t1および出口温度t2を検出器等を設置
して連続測定してこの情報を入力制御装置1を介して演
算処理装置2に入力するのみで、たとえ復水器が任意の
負荷状態で運転中であっても、基準負荷状態における清
浄度Rcfを連続して算出し、これを必要に応じてライ
ングリンター、CRT装置等の表示装置12に表示でき
る。したがって、何らかの原因で清浄度Refが規定値
以下に低下した時には、その情報が直ちに運転監視者に
伝わるので、適切な時期に復水器の点検補修を実施する
ことが可能であり、結局、発電設備全体の運転効率を向
上できる。
With a monitoring device having such a configuration, a detector or the like is installed to continuously measure the load condition a and the cooling water inlet temperature t1 and outlet temperature t2, and this information is inputted to the arithmetic processing unit via the control device 1. 2, even if the condenser is operating under any load condition, the cleanliness Rcf at the standard load condition is continuously calculated, and this is applied to the line grinder and CRT device as necessary. It can be displayed on a display device 12 such as the following. Therefore, if the cleanliness Ref drops below the specified value for some reason, that information is immediately conveyed to the operation supervisor, which allows the condenser to be inspected and repaired at an appropriate time, which ultimately improves power generation. The operating efficiency of the entire equipment can be improved.

また、長期の運転期間中にある一定の周期毎に監視装置
の演算処理装置2に前述の負荷状態a、入口温度tI、
出口温度t、を入力して清浄度Rcfを算出し、統計処
理部13で各週毎又は各月毎の平均値又、標準偏差σ等
を算出し、結果を定期的にラインプリンター等の出力装
置12に印字出力させることができる。したがって、各
週、各月毎の平均値や変動も把握でき、変動を繰返し徐
々に低下している場合でも、復水器の点検補修を最適時
期に実施することができる。
In addition, the above-mentioned load state a, inlet temperature tI,
The cleanliness level Rcf is calculated by inputting the outlet temperature t, and the statistical processing unit 13 calculates the weekly or monthly average value, standard deviation σ, etc., and the results are periodically output to a line printer or other output device. 12 can be printed out. Therefore, the average value and fluctuations for each week and month can be grasped, and even if fluctuations are repeated and the value gradually decreases, inspection and repair of the condenser can be carried out at the optimal time.

なお、本発明は上述した実施例に限定されるものではな
い。一般に復水器の熱貫流率は負荷状態により大幅に変
化するので、実施例では、実測した実熱貫流率Kaを1
つの設定された基準負荷状態Bの場合の熱貫流率に換算
しているが、上記基準負荷状態を負荷状態に応じて多数
設定して、予じめ複数の負荷状態における設計時の基準
熱貫流率、基準冷却水量を記憶装置に記憶させておいて
、運転時には、最も近い基準負荷状態における清浄度R
cfを求めてもよい。この場合には、負荷状態に対応し
たより正確な清浄度を得ることが可能である。
Note that the present invention is not limited to the embodiments described above. In general, the heat transfer coefficient of a condenser changes significantly depending on the load condition, so in this example, the measured actual heat transfer coefficient Ka was
The heat transfer coefficient is converted to the heat transfer coefficient for one set reference load state B, but a number of the above reference load states are set according to the load state, and the reference heat transfer coefficient at the time of design under multiple load states is calculated in advance. The cleanliness rate and standard cooling water amount are stored in the storage device, and during operation, the cleanliness R at the closest standard load condition is stored.
cf may also be obtained. In this case, it is possible to obtain more accurate cleanliness corresponding to the load state.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、任意の負荷状態で
運転中の復水器で実測した実熱貫流率を基準負荷状態に
おける熱貫流率、すなわち、等側熱貫流率に換算して、
予め記憶装置に記憶された基準熱貫流率と比較して清浄
度を求め、随時表示装置に表示するようにしているので
、復水器の運転監視者は必要な時にいつでも上記清浄度
の低下状態を確認することができる。したがって、最適
な時期に復水器の点検補修を実施することが可能であり
、結局、発電設備全体の運転効率を向上させることがで
きる。
As explained above, according to the present invention, the actual heat transfer coefficient actually measured in the condenser in operation under an arbitrary load state is converted into the heat transfer coefficient in the reference load state, that is, the isolateral heat transfer coefficient,
The cleanliness is determined by comparing it with the reference heat transfer coefficient stored in advance in the storage device and displayed on the display device at any time, so the operator monitoring the operation of the condenser can check the deterioration of the cleanliness whenever necessary. can be confirmed. Therefore, it is possible to inspect and repair the condenser at an optimal time, and as a result, the operating efficiency of the entire power generation facility can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る復水器の運転監視装置
のブロック構成図、第2図は同監視装置の演算手順を示
すフローチャート図である。 1・・・入力制御装置、2・・・演算処理装置、3・・
・実冷却水量算出部、4・・・平均温度差算出部、5・
・・基準熱交換量記憶装置、6・・・実熱貫流率算出部
、7・・・基準冷却水量記憶装置、8・・・等側熱貫流
率算出部、9・・・清浄度算出部、10・・・基準熱貫
流率記憶装置、1ノ・・・出力制御装置、12・・・表
示装置、13・・・統計処理部。
FIG. 1 is a block diagram of a condenser operation monitoring device according to an embodiment of the present invention, and FIG. 2 is a flowchart showing the calculation procedure of the monitoring device. 1... Input control device, 2... Arithmetic processing device, 3...
・Actual cooling water amount calculation unit, 4...Average temperature difference calculation unit, 5.
. . . Reference heat exchange amount storage device, 6 . . . Actual heat transfer coefficient calculation unit, 7 . , 10... Reference thermal conductivity storage device, 1... Output control device, 12... Display device, 13... Statistical processing section.

Claims (1)

【特許請求の範囲】[Claims] 任意の負荷状態で運転されている復水器の清浄度を監視
する復水器の運転監視装置において、前記負荷状態に応
じて予め定められた前記復水器の熱交換量と上記復水器
の出入口の冷却水温度とを用いて実熱貫流率を算出する
実熱貫流率算出部と、上記熱交換量および冷却水温度を
用いて実冷却水量を算出する実冷却水量算出部と、前記
実熱貫流率を上記実冷却水量と基準冷却水量記憶装置に
記憶されている基準負荷状態における基準冷却水量とを
用いて等側熱貫流率に換算する等側熱貫流率算出部と、
上記等側熱貫流率と基準熱貫流牢記、憶装置に記憶され
ている基準負荷状態における基準熱貫流率との比を求め
前記清浄度を算出する清浄度算出部と、上記清浄度の統
計処理を行う統計処理部と、上記統計処理された結果お
よび処理前の前記清浄度を表示する表示装置とを具備し
たことを特徴とする復水器の運転監視装置。
In a condenser operation monitoring device that monitors the cleanliness of a condenser operated under a given load condition, the heat exchange amount of the condenser and the condenser are determined in advance according to the load condition. an actual heat transfer coefficient calculating section that calculates an actual heat transfer coefficient using the cooling water temperature at the inlet and outlet of the cooling water; an actual cooling water amount calculation section that calculates the actual cooling water amount using the heat exchange amount and the cooling water temperature; an isolateral heat transfer coefficient calculation unit that converts the actual heat transfer coefficient into an isoside heat transfer coefficient using the actual cooling water amount and a reference cooling water amount in a reference load state stored in a reference cooling water amount storage device;
A cleanliness calculation unit that calculates the cleanliness by calculating the ratio between the equal side heat transfer coefficient and the reference heat transfer coefficient in a reference load state stored in a reference heat transfer cell and storage device, and statistical processing of the cleanliness. What is claimed is: 1. A condenser operation monitoring device comprising: a statistical processing unit that performs the statistical processing; and a display device that displays the statistical processing results and the cleanliness level before processing.
JP17931082A 1982-10-13 1982-10-13 Operation monitoring device for condenser Pending JPS5969690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17931082A JPS5969690A (en) 1982-10-13 1982-10-13 Operation monitoring device for condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17931082A JPS5969690A (en) 1982-10-13 1982-10-13 Operation monitoring device for condenser

Publications (1)

Publication Number Publication Date
JPS5969690A true JPS5969690A (en) 1984-04-19

Family

ID=16063592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17931082A Pending JPS5969690A (en) 1982-10-13 1982-10-13 Operation monitoring device for condenser

Country Status (1)

Country Link
JP (1) JPS5969690A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247592A (en) * 1987-04-03 1988-10-14 Hitachi Ltd Condenser cooling water flow rate control system
JP2005337523A (en) * 2004-05-24 2005-12-08 Chubu Electric Power Co Inc Method and apparatus for specifying air suction part in steam condenser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247592A (en) * 1987-04-03 1988-10-14 Hitachi Ltd Condenser cooling water flow rate control system
JP2005337523A (en) * 2004-05-24 2005-12-08 Chubu Electric Power Co Inc Method and apparatus for specifying air suction part in steam condenser

Similar Documents

Publication Publication Date Title
EP0030459B2 (en) System for monitoring steam condenser performance
CN108871821B (en) Real-time monitoring method for energy efficiency state of air cooler based on mean value-moving range method
Wu et al. Optimal np control chart with curtailment
EP0165675B1 (en) Apparatus for measuring thermal stress of pressure-tight tube
JPS5969690A (en) Operation monitoring device for condenser
JP2000258306A (en) Evaluation technique for creep life by maximum void grain boundary occupation rate method
JP3140884B2 (en) Plant process monitoring equipment
Mackertich Precontrol vs. control charting: a critical comparison
Bockhorst et al. MSET modeling of Crystal River-3 venturi flow meters.
JPH11354233A (en) Power equipment operation supporting system
JPS59128429A (en) Life monitoring method for pressure resisting parts
JP2503114Y2 (en) Calculator for calorific consumption of thermal power plants
JPS6223449B2 (en)
JPS624526B2 (en)
JP3463155B2 (en) Valve maintenance management device
CN117078003B (en) Risk assessment method for corrosion of static equipment
CN212363674U (en) On-line detection system for water cooler
CN111610051A (en) Online detection system and detection method for water cooler
CN113610289A (en) Method and device for predicting remaining maintenance time of industrial boiler and computer equipment
JPS57166541A (en) Method and device estimating life of fluid receptacle at high temperature
JP2961832B2 (en) Oil leak detection method for OF cable line
JPH1132433A (en) Device for evaluating degree of voltage stability for power system and recording medium recorded with its program
JPH0672751B2 (en) Condenser operation monitoring method
Smetanin Optimizing the operation of chemical-engineering monitoring systems using technological algorithms
JPH02157697A (en) Remaining life diagnostic device for control rod driving mechanism