JP2005337523A - Method and apparatus for specifying air suction part in steam condenser - Google Patents

Method and apparatus for specifying air suction part in steam condenser Download PDF

Info

Publication number
JP2005337523A
JP2005337523A JP2004153038A JP2004153038A JP2005337523A JP 2005337523 A JP2005337523 A JP 2005337523A JP 2004153038 A JP2004153038 A JP 2004153038A JP 2004153038 A JP2004153038 A JP 2004153038A JP 2005337523 A JP2005337523 A JP 2005337523A
Authority
JP
Japan
Prior art keywords
condenser
chamber
water
cleanliness
water chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004153038A
Other languages
Japanese (ja)
Inventor
Takeshi Tani
健 谷
Hiroshi Takeuchi
博 竹内
Yasuaki Narita
康昭 成田
Masashi Okumura
将詞 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2004153038A priority Critical patent/JP2005337523A/en
Publication of JP2005337523A publication Critical patent/JP2005337523A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently specify the part where the air is mixed in a steam condenser. <P>SOLUTION: The steam condenser 1 comprises a plurality of steam condenser chambers 10, 20 that are evacuated inside and are divided by partition walls, have at least one water chambers 11, 21, or the like in respective steam condenser chambers 10, 20, and cools steam guided into the plurality of steam condenser chambers 10, 20 by a cooling water pipe connected to the water chambers 11, 21, or the like for condensation. The steam condenser 1 measures the degree of pipe cleanliness of respective water chambers 11, 21, or the like during operation, compares the measured degree of pipe cleanliness, and estimates that air suction has occurred in the steam condenser chambers 10, 20 having a water chamber in which the degree of pipe cleanliness has dropped relatively. Further, the degree of cleanliness of pipes in respective water chambers 11, 21, or the like during operation is measured with time, and the operation history of a plant in which the steam condenser 1 is incorporated when the degree of cleanliness of pipes has dropped relatively is referred to, thus estimating that air suction has occurred at a part that is operated when the degree of pipe cleanliness has dropped relatively in the steam condenser chambers 10, 20 in which the degree of pipe cleanliness has dropped relatively. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、火力発電所の発電機等を駆動する蒸気タービン等から排出される蒸気を復水する復水器の空気吸い込み部位の特定方法および装置に関し、特に、復水器の稼動中に空気吸い込み部位を特定できる技術に関するものである。   The present invention relates to a method and apparatus for identifying an air suction portion of a condenser that condenses steam discharged from a steam turbine or the like that drives a generator or the like of a thermal power plant, and in particular, air during operation of the condenser. The present invention relates to a technique capable of specifying a suction site.

従来、火力発電所、原子力発電所等にて発電機等を駆動する蒸気タービンから排出される蒸気を復水する復水器が使用され、この復水器で復水された水は再度加熱されて蒸気になり蒸気タービンに供給されている。
前記復水器は真空状態に保たれ、蒸気タービンから復水器内に導かれた蒸気は冷却水管により冷却されて水に変わる。しかし、復水器に空気が混入すると、復水器の性能が劣化するので、空気の混入箇所を特定して空気の混入を防ぐ必要があるが、現状では、復水器(復水器に接続された蒸気用配管、蒸気用配管のバルブ等を含む。)における空気混入箇所を手作業で調べている。
一方、この復水器の性能を自動的に診断する装置が提案されている(例えば特許文献1参照)。この場合、火力または原子力発電所等の熱サイクルプラントに設置されている復水器の性能劣化を診断し、その経済的運用を可能にするとともに、予防保全の支援を行う。その際、復水器の冷却水管の管清浄度を基準値と比較することによって、復水器の性能劣化の原因や部位をオンラインで自動的に特定できるようにしている。
特開平5−141879号
Conventionally, a condenser that condenses steam discharged from a steam turbine that drives a generator, etc., is used in a thermal power plant, a nuclear power plant, etc., and the water condensed in this condenser is heated again. Steam is supplied to the steam turbine.
The condenser is kept in a vacuum state, and the steam guided from the steam turbine into the condenser is cooled by a cooling water pipe and turned into water. However, if air enters the condenser, the performance of the condenser deteriorates. Therefore, it is necessary to specify the location of the air and prevent the air from entering. (Including connected steam piping, steam piping valves, etc.)
On the other hand, an apparatus for automatically diagnosing the performance of this condenser has been proposed (see, for example, Patent Document 1). In this case, the performance deterioration of a condenser installed in a thermal cycle plant such as a thermal power plant or a nuclear power plant is diagnosed, its economic operation is enabled, and preventive maintenance is supported. At that time, by comparing the cleanliness of the cooling water pipe of the condenser with a reference value, the cause and part of the performance deterioration of the condenser can be automatically identified online.
Japanese Patent Laid-Open No. 5-141879

しかし、上述のように手作業により復水器の空気の混入箇所を調査することは、多大な労力が必要となるとともに、調査に時間が掛かるという問題があった。
また、上記の特許文献1の発明では、復水器の冷却水管の管清浄度については冷却水管の汚れまたはポンプの異常の判定に用いられており、復水器の空気吸い込みの有無については空気抽出量の増加の有無によって判定するものであるため、復水器の空気吸い込み部位を特定できるものではなかった。
そこで、本発明が解決しようとする課題は、復水器の空気の吸い込み箇所を能率良く特定できる復水器の空気吸い込み部位の特定方法および装置を提供することである。
However, investigating the air contamination location of the condenser manually as described above has a problem that much labor is required and the investigation takes time.
Further, in the invention of the above-mentioned Patent Document 1, the pipe cleanliness of the cooling water pipe of the condenser is used to determine whether the cooling water pipe is dirty or the pump is abnormal. Since the determination is based on whether or not the amount of extraction is increased, the air suction site of the condenser cannot be identified.
Therefore, the problem to be solved by the present invention is to provide a method and an apparatus for identifying an air suction portion of a condenser that can efficiently identify an air suction portion of the condenser.

上記課題を解決するため、請求項1記載の発明は、内部が真空にされ、隔壁で分割された複数の復水器室(復水器室に接続された蒸気用配管、蒸気用配管のバルブ等を含む。)からなり、各復水器室に少なくとも一つの水室を有し、前記複数の復水器室内に導かれた蒸気を前記水室に連なる冷却水管で冷却して復水する復水器において、稼動中の各水室の管清浄度を測定し、この測定された各水室の管清浄度を比較し、相対的に管清浄度が低下している水室を有する復水器室に空気吸い込みが発生していると推定する復水器の空気吸い込み部位の特定方法である。
これにより、内部が真空にされ、隔壁で分割された複数の復水器室からなり、各復水器室に少なくとも一つの水室を有する復水器の稼動中の各水室の管清浄度を測定し、測定された各水室の管清浄度を比較し、相対的に管清浄度が低下している水室を有する復水器室が空気吸い込みの影響を最も受けているので、この相対的に管清浄度が低下している水室に空気吸い込みが発生していると容易に推定することができる。なお、管清浄度とは水室に連なる冷却水管の管清浄度をいう。
In order to solve the above-mentioned problem, the invention described in claim 1 is a plurality of condenser chambers (steam piping connected to the condenser chamber, steam piping valves connected to the condenser chamber). Each condenser chamber has at least one water chamber, and steam led into the plurality of condenser chambers is cooled by a cooling water pipe connected to the water chamber to condense. In the condenser, the pipe cleanliness of each water chamber in operation is measured, and the measured pipe cleanliness of each water chamber is compared. This is a method of identifying the air suction portion of the condenser that is estimated to have air suction in the water chamber.
As a result, the tube cleanliness of each water chamber during operation of the condenser having a plurality of condenser chambers, the interior of which is evacuated and divided by partition walls, and having at least one water chamber in each condenser chamber And measure the pipe cleanliness of each water chamber, and the condenser chamber with the water chamber having a relatively low pipe cleanliness is most affected by air suction. It can be easily estimated that air is sucked into a water chamber having a relatively low pipe cleanliness. The pipe cleanliness refers to the cleanliness of the cooling water pipe connected to the water chamber.

さらに、請求項2記載の発明は、内部が真空にされ、隔壁で分割された複数の復水器室からなり、各復水器室に少なくとも一つの水室を有し、前記複数の復水器室内に導かれた蒸気を前記水室に連なる冷却水管で冷却して復水する復水器において、稼動中の各水室の管清浄度を経時的に測定し、測定された各水室の管清浄度を比較して相対的に管清浄度が低下している水室を有する復水器室を特定するとともに、相対的に管清浄度が低下している時点のプラントの操作履歴を参照し、前記相対的に管清浄度が低下している復水器室の前記相対的に管清浄度が低下している時点に操作(プラントの運転、保守点検および修理を含み、例えば復水器室の蒸気用配管のバルブの開閉、この配管の修理等を含む。)がなされた部位に空気吸い込みが発生していると推定する復水器の空気吸い込み部位の特定方法である。
これにより、内部が真空にされ、隔壁で分割された複数の復水器室からなり、各復水器室に少なくとも一つの水室を有する復水器の稼動中の各水室の管清浄度を経時的に測定し、測定された各水室の管清浄度を比較して相対的に管清浄度が低下している水室を有する復水器室を特定するとともに、相対的に管清浄度が低下している時点のプラントの運転操作履歴を参照し前記相対的に管清浄度が低下している復水器室の操作がなされた部位に前記操作に起因する空気吸い込みが発生していると容易に推定することができる。
Furthermore, the invention described in claim 2 comprises a plurality of condenser chambers whose interior is evacuated and divided by partition walls, each condenser chamber having at least one water chamber, and the plurality of condensates. In the condenser for condensing by cooling the steam guided into the chamber with a cooling water pipe connected to the water chamber, the tube cleanliness of each water chamber in operation is measured over time, and each measured water chamber Compare the pipe cleanliness of the pipes to identify the condenser room that has the water chamber whose pipe cleanliness is relatively low, and the operation history of the plant when the pipe cleanliness is relatively low Reference is made to the operation of the condenser room where the pipe cleanliness is relatively low at the time when the pipe cleanliness is relatively low (including plant operation, maintenance and repair, for example, condensate (Including opening / closing the valve of steam piping in the chamber and repairing this piping, etc.) It is that the particular method of air suction portion of the condenser to be estimated.
As a result, the tube cleanliness of each water chamber during operation of the condenser having a plurality of condenser chambers, the interior of which is evacuated and divided by partition walls, and having at least one water chamber in each condenser chamber Is measured over time, and the measured tube cleanliness of each water chamber is compared to identify a condenser chamber having a water chamber in which the tube cleanliness is relatively low, and relatively clean Referring to the operation history of the plant at the time when the degree of deterioration has decreased, air suction due to the operation has occurred at the site where the condenser room where the pipe cleanliness is relatively low has been operated. It can be estimated easily.

さらに、請求項3記載の発明は、請求項1または2記載の発明において、各水室の管清浄度の比較に際して、各水室の管清浄度のバラツキ(例えば最大値と最小値との差)を求め、通常よりも前記バラツキが大きくなったときに復水器室の復水器室を真空にするための空気抽出部材(空気抽出管を含む。)側と反対側で空気吸い込みが発生していると更に推定することである。
ここで、復水器の空気吸い込みにより復水器内に侵入した空気は空気抽出部材によって復水器室外に排出されるので、復水器室内に侵入した空気は侵入した箇所から空気抽出部材(図1の後側)に向かって流れることになる。したがって、空気抽出部材と反対側(図1の前側)で空気吸い込みが発生した場合には、空気抽出部材側で空気吸い込みが発生した場合に比べて、復水器室内に侵入した空気流が特定の水室の冷却水管の表面と接触する範囲が大きくなると考えられ、該水室の管清浄度の低下も大きいと考えることができる。このため、水室の管清浄度のバラツキが通常(空気吸い込みが発生していないとき)よりも大きくなったときに、復水器室の空気抽出部材側と反対側で空気吸い込みが発生していると更に推定することができる。
Furthermore, in the invention described in claim 3 in the invention described in claim 1 or 2, when the pipe cleanliness of each water chamber is compared, variation in the pipe cleanliness of each water chamber (for example, the difference between the maximum value and the minimum value). ) And when the variation becomes larger than usual, air suction occurs on the side opposite to the air extraction member (including the air extraction pipe) side to evacuate the condenser chamber of the condenser chamber It is to estimate further.
Here, the air that has entered the condenser due to the suction of air from the condenser is discharged to the outside of the condenser chamber by the air extraction member, so that the air that has entered the condenser chamber enters the air extraction member ( It flows toward the rear side of FIG. Therefore, when air suction occurs on the side opposite to the air extraction member (front side in FIG. 1), the air flow that has entered the condenser chamber is specified compared to when air suction occurs on the air extraction member side. It can be considered that the range of the water chamber in contact with the surface of the cooling water pipe is increased, and the decrease in the pipe cleanliness of the water chamber is also large. For this reason, when the variation in pipe cleanliness of the water chamber becomes larger than normal (when air suction is not occurring), air suction occurs on the side opposite to the air extraction member side of the condenser chamber. It can be estimated further.

さらに、請求項4記載の発明は、請求項1に記載の復水器の空気吸い込み部位の特定方法に使用する装置であって、管清浄度を算出する要素である前記各水室の冷却水流量測定手段、前記各水室の入口の冷却水温度測定手段、前記各水室の出口の冷却水温度測定手段および前記復水器のホットウェル内の復水温度測定手段を備え、さらに、前記各手段の測定値を使用して、復水器の水室の表面積をAとし、水室の入口の冷却水温度をTinとし、水室の出口の冷却水温度をToutとし、復水器のホットウェル内の復水の温度をThwとし、復水器から水室の表面を通過して水室内に熱が貫流する率の設計上の値を基準熱貫流率とし、下記式により

Figure 2005337523
前記管清浄度を自動的に算出する管清浄度算出手段およびこの算出された各水室の管清浄度を比較し、相対的に管清浄度が低下している水室を有する復水器室を特定する復水器室特定手段を備えることを特徴とする復水器の空気吸い込み部位の特定装置である。
これにより、各水室の管清浄度を算出するのに必要な前記水室の冷却水流量、前記水室の入口の冷却水温度、前記水室の出口の冷却水温度および前記復水器のホットウェル内の復水の温度を測定して容易に管清浄度を算出して、この算出された各水室の管清浄度を比較し、相対的に管清浄度が低下している水室を特定し、この特定された水室を有する復水器室に空気吸い込みが発生していると推定することができる。 Furthermore, the invention described in claim 4 is an apparatus used in the method for specifying the air suction portion of the condenser according to claim 1, wherein the cooling water for each water chamber is an element for calculating pipe cleanliness. A flow rate measuring means, a cooling water temperature measuring means at the inlet of each water chamber, a cooling water temperature measuring means at the outlet of each water chamber, and a condensate temperature measuring means in a hot well of the condenser, Using the measured values of each means, the surface area of the water chamber of the condenser is A, the cooling water temperature at the inlet of the water chamber is Tin, the cooling water temperature at the outlet of the water chamber is Tout, The temperature of the condensate in the hot well is Thw, and the design value of the rate at which heat passes through the surface of the water chamber from the condenser into the water chamber is defined as the reference heat transmissivity.
Figure 2005337523
The pipe cleanliness calculating means for automatically calculating the pipe cleanliness and the condenser room having a water chamber in which the calculated pipe cleanliness of each water chamber is compared and the pipe cleanliness is relatively lowered. It is the identification apparatus of the air suction site | part of a condenser characterized by including the condenser room identification means which identifies this.
This makes it possible to calculate the water flow rate of the water chamber, the cooling water temperature at the inlet of the water chamber, the cooling water temperature at the outlet of the water chamber, and the condenser. Measure the temperature of condensate in the hot well to easily calculate the tube cleanliness, compare the calculated tube cleanliness of each water chamber, and the water chamber in which the tube cleanliness is relatively low It is possible to estimate that air is sucked into the condenser chamber having the specified water chamber.

請求項1記載の発明によれば、復水器の複数の復水器室において、空気吸い込みを生じている復水器室を容易に特定できる。
さらに、請求項2記載の発明によれば、復水器が複数の復水器室を有する場合に、水室の管清浄度の低下の要因となる空気吸い込みは、復水器を有するプラントの運転操作によって生じるものと推定され、相対的に管清浄度が低下した時点に運転操作がなされている復水器室(復水器室に接続された蒸気用配管等を含む。)に空気吸い込みの現象が発生していると推定されることから、点検部位をより絞り込むことができる。
さらに、請求項3記載の発明によれば、請求項1または2記載の発明の効果とともに、空気吸い込み現象が、復水器室の空気抽出部材側で生じているのか復水器室の空気抽出部材側と反対側で生じているのかを容易に推定できる。
さらに、請求項4記載の発明に係る復水器の空気吸い込み部位の特定装置はその構成が簡単であり、これを使用することにより、複数ある復水器室において、空気吸い込みを生じている復水器室を容易に特定できる。
According to the first aspect of the present invention, it is possible to easily identify the condenser chamber in which air is sucked in the plurality of condenser chambers of the condenser.
Further, according to the invention described in claim 2, when the condenser has a plurality of condenser chambers, the air suction that causes a decrease in the pipe cleanliness of the water chamber is caused by the plant having the condenser. Air is sucked into a condenser room (including steam piping connected to the condenser room) that is estimated to be caused by the operation and is operated when the pipe cleanliness is relatively lowered. Since it is estimated that this phenomenon has occurred, the inspection site can be further narrowed down.
Further, according to the invention described in claim 3, in addition to the effect of the invention described in claim 1 or 2, whether the air suction phenomenon occurs on the side of the air extraction member of the condenser chamber or the air extraction of the condenser chamber. It can be easily estimated whether it occurs on the side opposite to the member side.
Further, the device for specifying the air suction portion of the condenser according to the invention of claim 4 is simple in configuration, and by using this device, the condenser that causes air suction in a plurality of condenser chambers is used. The water chamber can be easily identified.

以下、本発明における実施の形態を図面に基づいて説明する。
図1は、本発明の実施の形態に係る復水器の概略を示し、図2は本発明の復水器の空気吸い込み部位の特定装置を示すブロック図であり、図3は前記空気吸い込み部位の特定方法を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an outline of a condenser according to an embodiment of the present invention, FIG. 2 is a block diagram showing a device for identifying an air suction part of the condenser of the present invention, and FIG. 3 shows the air suction part. The identification method is shown.

図1に示すように、復水器1は内部が真空にされ、隔壁2で分割された2つの復水器室(A復水器室10およびB復水器室20)を備えている。なお、隔壁2のうちA復水器室10部分を2aとし、隔壁2のうちB復水器室20部分を2bとする。さらに、A復水器室10とB復水器室20とを連通させる連通部3が形成されている。連通部3はA復水器室10内とB復水器室20内との圧力差を無くすことができるものである。
A復水器室10は図示しない蒸気タービン等から排出される蒸気を取り入れる取入口13を備え、B復水器室20は前記蒸気タービン等から排出される蒸気を取り入れる取入口23を備えている。矢印14は取入口13に流れ込む蒸気の流れの方向を示し、矢印24は取入口23に流れ込む蒸気の流れの方向を示している。また、A復水器室10の下端部にホットウェル15が形成され、B復水器室20の下端部にホットウェル25が形成されている。
さらに、A復水器室10はA水室11およびB水室12を有し、B復水器室20はC水室21およびD水室22を有している。各水室11、12、21、22は箱状であり、各水室11、12、21、22には図示しない複数の冷却水管が取り付けられている。海水等の冷却水は各水室11、12、21、22および各水室11、12、21、22にそれぞれ連なる複数の冷却水管内を流れる。なお、矢印11a、12a、21a、22aはそれぞれ各水室11、12、21、22を流れる冷却水の流れる方向を示す。
As shown in FIG. 1, the condenser 1 is provided with two condenser chambers (A condenser room 10 and B condenser room 20) which are evacuated and divided by a partition wall 2. Note that the A condenser chamber 10 portion of the partition wall 2 is denoted by 2a, and the B condenser chamber 20 portion of the partition wall 2 is denoted by 2b. Furthermore, the communication part 3 which connects A condenser room 10 and B condenser room 20 is formed. The communication part 3 can eliminate the pressure difference between the A condenser chamber 10 and the B condenser chamber 20.
The A condenser chamber 10 is provided with an inlet 13 for taking in steam discharged from a steam turbine (not shown), and the B condenser chamber 20 is provided with an inlet 23 for taking in steam discharged from the steam turbine or the like. . An arrow 14 indicates the direction of the flow of steam flowing into the intake port 13, and an arrow 24 indicates the direction of the flow of steam flowing into the intake port 23. A hot well 15 is formed at the lower end of the A condenser chamber 10, and a hot well 25 is formed at the lower end of the B condenser chamber 20.
Furthermore, the A condenser chamber 10 has an A water chamber 11 and a B water chamber 12, and the B condenser chamber 20 has a C water chamber 21 and a D water chamber 22. Each of the water chambers 11, 12, 21, and 22 has a box shape, and a plurality of cooling water pipes (not shown) are attached to each of the water chambers 11, 12, 21, and 22. Cooling water such as seawater flows through the water chambers 11, 12, 21, 22 and a plurality of cooling water pipes connected to the water chambers 11, 12, 21, 22. The arrows 11a, 12a, 21a, and 22a indicate the directions of cooling water flowing through the water chambers 11, 12, 21, and 22, respectively.

A復水器室10内に導かれた蒸気は各水室11、12に連なる冷却水管で冷却されて復水されホットウェル15内に溜り、B復水器室20内に導かれた蒸気は各水室21、22に連なる冷却水管で冷却されて復水されホットウェル25内に溜る。
各ホットウェル15、25に溜まった復水は図示しないドレイン管により各復水器室10、20の外に取り出されて、図示しない加熱手段により加熱されて再度蒸気になって前記蒸気タービン等の駆動源となる。
The steam introduced into the A condenser chamber 10 is cooled by a cooling water pipe connected to each of the water chambers 11 and 12, condensed in the hot well 15, and the steam introduced into the B condenser chamber 20 is The water is cooled by a cooling water pipe connected to each of the water chambers 21, 22, condensed in the hot well 25.
Condensate accumulated in the hot wells 15 and 25 is taken out of the condenser chambers 10 and 20 by a drain pipe (not shown), heated by a heating means (not shown), and becomes steam again. It becomes a driving source.

なお、各復水器室10、20を真空にする真空ポンプ30が空気抽出管31によりA復水器室10の図示後側(各水室11、12の冷却入水口側)部分およびB復水器室20の図示後側(各水室21、22の冷却水入口側)部分に接続され、各復水器室10、20の真空度を調整する真空調整弁32が管33によりB復水器室20の図示後側部分に接続されている。   A vacuum pump 30 for evacuating the condenser chambers 10 and 20 is connected to the rear side of the A condenser chamber 10 by the air extraction pipe 31 (the cooling water inlet side of the water chambers 11 and 12) and the B condenser. Connected to the rear side of the water chamber 20 (the cooling water inlet side of each water chamber 21, 22), a vacuum regulating valve 32 that adjusts the degree of vacuum of each condenser chamber 10, 20 is provided with a B 33 by a pipe 33. It is connected to the rear portion of the water chamber 20 shown in the figure.

図2に示すように、各水室11、12、21、22の冷却水流量測定手段41、各水室11、12、21、22の冷却水入口側の冷却水の温度測定手段42、各水室11、12、21、22の冷却水出口側の冷却水の温度測定手段43および各ホットウェル15、25内の復水温度測定手段44はそれぞれコンピュータシステム50のインターフェース53に接続されている。このコンピュータシステム50は、前記インターフェース53の他にCPU等の演算手段51、入力手段52、メモリ54および出力手段55を備えており、本発明でいう管清浄度算出手段および復水器特定手段を構成するものである。なお、入力手段52、インターフェース53、メモリ54および出力手段55は演算手段51に接続されている。また、メモリ54は前記〔数1〕の管清浄度算出式を実施するプログラムおよび図3のフローチャートを実施するプログラム等を記憶するプログラム記憶部54aおよびデータ記憶部54bを備えている。   As shown in FIG. 2, the cooling water flow rate measuring means 41 of each water chamber 11, 12, 21, 22, the cooling water temperature measuring means 42 on the cooling water inlet side of each water chamber 11, 12, 21, 22, The cooling water temperature measuring means 43 on the cooling water outlet side of the water chambers 11, 12, 21, 22 and the condensate temperature measuring means 44 in each hot well 15, 25 are respectively connected to the interface 53 of the computer system 50. . The computer system 50 includes a calculation means 51 such as a CPU, an input means 52, a memory 54, and an output means 55 in addition to the interface 53, and the pipe cleanliness calculation means and the condenser specifying means referred to in the present invention. It constitutes. The input means 52, the interface 53, the memory 54, and the output means 55 are connected to the calculation means 51. The memory 54 includes a program storage unit 54a and a data storage unit 54b for storing a program for executing the pipe cleanliness calculation formula of [Formula 1] and a program for executing the flowchart of FIG.

上記構成の復水器の空気吸い込み部位の特定装置は、図3に示すフローチャートのように動作する。
まず、各復水器室10、20および各水室11、12、21、22が稼動中にて、冷却水流量測定手段41、各水室の入口の冷却水温度測定手段42、各水室の出口の冷却水温度測定手段43およびホットウェル15、25内の復水温度測定手段44の各測定値がインターフェース53および演算手段51を経由してメモリ54のデータ記憶部54bに記憶される。そして、メモリ54のプログラム記憶部54aに記憶されたプログラムにより演算手段51が上記データ記憶部54bに記憶された前記各測定値を利用してA〜Dの各水室11、12、21、22の管清浄度を算出する(ステップS1)。
この場合、水室11、12、21、22の表面積をAとし、水室11、12、21、22の入口の冷却水温度をTinとし、水室11、12、21、22の出口の冷却水温度をToutとし、ホットウェル15、25内の復水の温度をThwとし、各復水器室10、20から水室11、12、21、22の表面を通過して水室11、12、21、22内に熱が貫流する率の設計上の値を基準熱貫流率とし、下記式により

Figure 2005337523

前記管清浄度を各水室11、12、21、22ごとに自動的に算出する(管清浄度算出手段)。 The apparatus for identifying the air suction portion of the condenser having the above-described configuration operates as shown in the flowchart of FIG.
First, while each condenser room 10, 20 and each water chamber 11, 12, 21, 22 is in operation, the cooling water flow rate measuring means 41, the cooling water temperature measuring means 42 at the inlet of each water chamber, and each water chamber The measured values of the outlet coolant temperature measuring means 43 and the condensate temperature measuring means 44 in the hot wells 15 and 25 are stored in the data storage section 54 b of the memory 54 via the interface 53 and the calculating means 51. Then, the calculation means 51 uses the measured values stored in the data storage unit 54b by the program stored in the program storage unit 54a of the memory 54, and the water chambers 11, 12, 21, 22 of A to D are used. The tube cleanliness is calculated (step S1).
In this case, the surface area of the water chambers 11, 12, 21, and 22 is A, the cooling water temperature at the inlet of the water chambers 11, 12, 21, and 22 is Tin, and the cooling of the outlets of the water chambers 11, 12, 21, and 22 is performed. The water temperature is Tout, the condensate temperature in the hot wells 15 and 25 is Thw, and the water chambers 11 and 12 pass from the condenser chambers 10 and 20 through the surfaces of the water chambers 11, 12, 21 and 22. , 21, and 22 are the design values of the rate of heat flow into the reference heat flow rate.
Figure 2005337523

The pipe cleanliness is automatically calculated for each of the water chambers 11, 12, 21, and 22 (pipe cleanliness calculation means).

つぎに、各水室11、12、21、22のうち管清浄度が相対的に低い水室を特定する(ステップS2)。これにより、相対的に管清浄度が低下している水室を有する復水器室が特定される(復水器特定手段)。この場合は、図1の左右方向の判定であり、相対的に管清浄度が低下している水室(11、12、21または22)を有する復水器室(10または20)に空気吸い込みが発生していると推定して推定結果を出力手段55が出力する(ステップS4)。
また、各水室11、12、21、22の管清浄度のバラツキ(管清浄度の最大値と最小値の差)を算出する(ステップS3)。この場合は、図1の前後方向の判定であり、通常よりも前記バラツキが大きくなったときに、各復水器室10、20の空気抽出管31側と反対側(図1の前側)で空気吸い込みが発生していると推定して推定結果を出力手段55が出力する(ステップS4)。ここで、復水器室10または20に侵入した空気は空気抽出管31を通じて復水器室10または20外に排出されるので、復水器室内に侵入した空気は侵入した箇所から空気抽出管31側(図1の後側)に向かって流れることとなる。したがって、空気抽出管31と反対側(図1の前側)で空気吸い込みが発生した場合には、空気抽出管31側で空気吸い込みが発生した場合に比べて、復水器室内に侵入した空気流が特定の冷却水管の表面と接触する範囲が大きくなると考えられ、該水室の管清浄度の低下も大きいと考えることができるので、図1の前後方向の判定が可能となる。なお、管清浄度のバラツキ(管清浄度の最大値と最小値の差)が通常よりも大きいか否かの判定は、しきい値(プラントにより異なるが、例えば0.06〜0.08程度)を超えるか否かにより判定する方法が考えられる。
これにより、空気の吸い込みが発生している各復水器室10、20の前後のいずれの部位に空気吸い込みが発生しているか特定することができる。
なお、上述の左右方向の判定と前後方向の判定を組合わせて行うことにより、空気吸い込みが発生している部位の特定が更に容易となる。
Next, a water chamber having a relatively low pipe cleanliness among the water chambers 11, 12, 21, and 22 is specified (step S2). Thereby, the condenser room which has the water room where the pipe cleanliness is falling relatively is specified (condenser specifying means). In this case, the determination in the horizontal direction in FIG. 1 is performed, and air is sucked into the condenser chamber (10 or 20) having the water chamber (11, 12, 21 or 22) in which the pipe cleanliness is relatively lowered. Is output and the output means 55 outputs the estimation result (step S4).
Further, the variation in the tube cleanliness of each water chamber 11, 12, 21, 22 (difference between the maximum value and the minimum value of the tube cleanliness) is calculated (step S3). In this case, the determination in the front-rear direction in FIG. 1 is performed, and when the variation becomes larger than usual, the side opposite to the air extraction pipe 31 side of each condenser chamber 10, 20 (the front side in FIG. 1). It is estimated that air suction has occurred, and the output means 55 outputs the estimation result (step S4). Here, since the air that has entered the condenser chamber 10 or 20 is discharged to the outside of the condenser chamber 10 or 20 through the air extraction pipe 31, the air that has entered the condenser chamber 10 enters the air extraction pipe from the place where it has entered. It will flow toward the 31 side (the rear side in FIG. 1). Therefore, when air suction occurs on the side opposite to the air extraction pipe 31 (the front side in FIG. 1), the air flow that has entered the condenser chamber is greater than when air suction occurs on the air extraction pipe 31 side. It is considered that the range in contact with the surface of a specific cooling water pipe is increased, and it can be considered that the reduction of the pipe cleanliness of the water chamber is large, so that the front-rear direction in FIG. 1 can be determined. It should be noted that whether or not the variation in tube cleanliness (difference between the maximum value and the minimum value of tube cleanliness) is larger than normal is determined by a threshold value (depending on the plant, for example, about 0.06 to 0.08). ) Can be considered based on whether or not it exceeds.
Thereby, it can be specified whether the air suction is occurring in any part of the condenser chambers 10 and 20 where the air suction is occurring.
It should be noted that the combination of the determination in the left-right direction and the determination in the front-rear direction described above makes it easier to identify the site where air inhalation occurs.

一方、稼動中の各水室11、12、21、22の管清浄度の経時的変化を記録する(ステップS5)。そして、ステップS2において復水器室が特定された後、この記録から相対的に管清浄度が低下している時点を判定し、その時点の該復水器が組み込まれたプラントの運転操作履歴(プラントの運転、保守点検および修理を含み、例えば各復水器室10、20の図示しない配管のバルブの開閉、この配管の修理等を含む。)を参照し(ステップS6)、前記相対的に管清浄度が低下している各復水器室10、20の運転操作履歴に変化を生じている部位(各復水器室10、20の取入口13、23に接続されている図示しない蒸気用配管およびそのバルブを含む。)に運転操作履歴に変化を生じている時点に空気吸い込みが発生していると推定し、推定結果を出力手段55が出力する(ステップS7)。
なお、この運転操作履歴による判定に上述した前後方向の判定を組合わせて行うことにより、運転操作履歴による空気吸い込み部位の推定結果が複数あった場合でも、その複数候補のうち真に空気吸い込みが発生している部位の推定が容易となる。
On the other hand, the change with time of the pipe cleanliness of each of the water chambers 11, 12, 21, and 22 in operation is recorded (step S5). Then, after the condenser room is specified in step S2, it is determined from this record when the pipe cleanliness is relatively lowered, and the operation operation history of the plant incorporating the condenser at that time is determined. (Including the operation, maintenance and repair of the plant, for example, the opening and closing of a valve (not shown) of the condenser chambers 10 and 20, the repair of the pipe, etc.) (see step S6), the relative A portion of the operation history of the condenser chambers 10 and 20 in which the pipe cleanliness has been lowered is changed (not shown connected to the intake ports 13 and 23 of the condenser chambers 10 and 20). It is estimated that air suction has occurred at the time when the operation history has changed in the piping for steam and its valve), and the output means 55 outputs the estimation result (step S7).
In addition, by combining the determination in the front-rear direction described above with the determination based on the driving operation history, even when there are a plurality of estimation results of the air suction site based on the driving operation history, the air suction is truly out of the plurality of candidates. It is easy to estimate the site where it occurs.

これにより、内部が真空にされ、隔壁2で分割された復水器室10、20からなり、各復水器室10、20に水室11、21等を有する復水器1の稼動中の各水室11、21等の管清浄度を測定し、測定された各水室11、21等の管清浄度を比較し、相対的に管清浄度が低下している水室11、21等を有する復水器室10または20が空気吸い込みの影響を最も受けているので、この相対的に管清浄度が低下している水室11、21等に空気吸い込みが発生していると容易に推定することができる。
さらに、復水器1の稼動中の各水室11、21等の管清浄度の経時的変化を記録し、相対的に管清浄度が低下している時点のプラントの運転操作履歴を参照し前記相対的に管清浄度が低下している復水器室10または20の操作がなされた部位に前記操作に起因する空気吸い込みが発生していると容易に推定することができる。
さらに、各水室11、21等の管清浄度のバラツキが大きくなったときは、空気吸い込みによる空気流が特定の水室の表面に流れて空気抽出管31側にて復水器室10、20の外部に抽出されるので、これによりこの特定の水室11、21等の管清浄度が低下している。このため、水室11、21等の管清浄度のバラツキが通常よりも大きくなったときに、復水器室10、20の空気抽出管31側と反対側で空気吸い込みが発生していると更に推定することができる。
As a result, the interior is evacuated and is composed of condenser chambers 10 and 20 divided by the partition wall 2, and the condenser 1 having the water chambers 11 and 21 in the condenser chambers 10 and 20 is in operation. The water cleanliness of each of the water chambers 11 and 21 is measured, the measured tube cleanliness of each of the water chambers 11 and 21 is compared, and the water cleanliness 11 and 21 and the like in which the tube cleanliness is relatively lowered Since the condenser chamber 10 or 20 having the most is affected by the air suction most easily when the air suction is generated in the water chambers 11, 21, etc. in which the pipe cleanliness is relatively lowered. Can be estimated.
Furthermore, the change over time of the pipe cleanliness of each water chamber 11, 21, etc. during operation of the condenser 1 is recorded, and the operation history of the plant at the time when the pipe cleanliness is relatively lowered is referred to. It can be easily estimated that air suction due to the operation occurs at the site where the condenser chamber 10 or 20 in which the pipe cleanliness is relatively lowered has been operated.
Furthermore, when the variation in the pipe cleanliness of the water chambers 11, 21, etc. becomes large, the air flow caused by air suction flows to the surface of the specific water chamber, and the condenser chamber 10, As a result, the pipe cleanliness of the specific water chambers 11, 21 and the like is lowered. For this reason, when the variation in pipe cleanliness of the water chambers 11 and 21 is larger than usual, air suction is occurring on the side opposite to the air extraction pipe 31 side of the condenser chambers 10 and 20. Further estimation can be made.

なお、上記の実施の形態において、復水器1は2つの復水器室10、20を有しているが、これに限定されず、復水器1は複数の復水器室を有するものであればよい。
また、上記実施の形態において、連通部3はなくてもよい。
また、各復水器室10、20は、2つの水室11、21等を有しているが、これに限定されず、少なくとも一つの水室を有していればよい。
また、空気抽出管31が使用されているが、これに限定されず、真空ポンプ30と復水器室10、20を接続可能な空気路を形成する空気抽出部材であればよい。
In the above embodiment, the condenser 1 has the two condenser chambers 10 and 20, but is not limited to this, and the condenser 1 has a plurality of condenser chambers. If it is.
Moreover, in the said embodiment, the communication part 3 does not need to be.
In addition, each condenser chamber 10, 20 has two water chambers 11, 21, etc., but is not limited to this, as long as it has at least one water chamber.
Moreover, although the air extraction pipe | tube 31 is used, it is not limited to this, What is necessary is just an air extraction member which forms the air path which can connect the vacuum pump 30 and the condenser chambers 10 and 20. FIG.

本発明の実施の形態に係る復水器の概略を示す説明図である。It is explanatory drawing which shows the outline of the condenser which concerns on embodiment of this invention. 本発明の空気吸い込みの検出装置を示すブロック図である。It is a block diagram which shows the detection apparatus of the air suction of this invention. 本発明の空気吸い込みの検出方法を示すフローチャートである。It is a flowchart which shows the detection method of the air suction of this invention.

符号の説明Explanation of symbols

1 復水器
2 隔壁
10 A復水器室
11 A水室
12 B水室
14 矢印
15 ホットウェル
20 B復水器室
21 C水室
22 D水室
24 矢印
25 ホットウェル
30 真空ポンプ
31 空気抽出管(空気抽出部材)
41 冷却水流量測定手段
42 水室入口の冷却水温度測定手段
43 水室出口の冷却水温度測定手段
44 ホットウェル内の復水温度測定手段
50 コンピュータシステム
DESCRIPTION OF SYMBOLS 1 Condenser 2 Bulkhead 10 A Condenser room 11 A Water room 12 B Water room 14 Arrow 15 Hot well 20 B Condenser room 21 C Water room 22 D Water room 24 Arrow 25 Hot well 30 Vacuum pump 31 Air extraction Tube (Air extraction member)
41 Cooling water flow rate measuring means 42 Cooling water temperature measuring means at the water chamber inlet 43 Cooling water temperature measuring means at the water chamber outlet 44 Condensate temperature measuring means in the hot well 50 Computer system

Claims (4)

内部が真空にされ、隔壁で分割された複数の復水器室からなり、各復水器室に少なくとも一つの水室を有し、前記複数の復水器室内に導かれた蒸気を前記水室に連なる冷却水管で冷却して復水する復水器において、
稼動中の各水室の管清浄度を測定し、この測定された各水室の管清浄度を比較し、相対的に管清浄度が低下している水室を有する復水器室に空気吸い込みが発生していると推定する復水器の空気吸い込み部位の特定方法。
The condenser chamber is divided into a plurality of condenser chambers that are evacuated and divided by partition walls, each condenser chamber having at least one water chamber, and steam introduced into the plurality of condenser chambers In a condenser that cools with a cooling water pipe connected to the chamber and condenses,
Measure the tube cleanliness of each water chamber in operation, compare the measured tube cleanliness of each water chamber, and place air in the condenser chamber having the water chamber where the tube cleanliness is relatively lowered. A method of identifying the air intake area of a condenser that is presumed that suction has occurred.
内部が真空にされ、隔壁で分割された複数の復水器室からなり、各復水器室に少なくとも一つの水室を有し、前記複数の復水器室内に導かれた蒸気を前記水室に連なる冷却水管で冷却して復水する復水器において、
稼動中の各水室の管清浄度を経時的に測定し、測定された各水室の管清浄度を比較して相対的に管清浄度が低下している水室を有する復水器室を特定するとともに、
相対的に管清浄度が低下している時点の復水器が組み込まれたプラントの操作履歴を参照し、前記相対的に管清浄度が低下している復水器室の前記相対的に管清浄度が低下している時点に操作がなされた部位に空気吸い込みが発生していると推定する復水器の空気吸い込み部位の特定方法。
The condenser chamber is divided into a plurality of condenser chambers that are evacuated and divided by partition walls, each condenser chamber having at least one water chamber, and steam introduced into the plurality of condenser chambers In a condenser that cools with a cooling water pipe connected to the chamber and condenses,
A condenser room having a water chamber in which the tube cleanliness of each water chamber in operation is measured over time, and the measured tube cleanliness of each water chamber is compared and the tube cleanliness is relatively lowered. As well as
Referring to the operation history of the plant in which the condenser is incorporated at the time when the pipe cleanliness is relatively low, the relative pipe of the condenser room where the pipe cleanliness is relatively low A method of identifying an air suction portion of a condenser that estimates that air suction has occurred at a portion that has been operated when the cleanliness level has decreased.
請求項1または2に記載した復水器の空気吸い込み部位の特定方法であって、
各水室の管清浄度の比較に際して、各水室の管清浄度のバラツキを求め、通常よりも前記バラツキが大きくなったときに前記復水器室の復水器室を真空にするための空気抽出部材側と反対側で空気吸い込みが発生していると更に推定することを特徴とする復水器の空気吸い込み部位の特定方法。
A method for identifying an air suction portion of a condenser according to claim 1 or 2,
When comparing the tube cleanliness of each water chamber, the variation in the tube cleanliness of each water chamber is obtained, and when the variation becomes larger than usual, the condenser chamber of the condenser chamber is evacuated. A method for specifying an air suction portion of a condenser, further estimating that air suction has occurred on the side opposite to the air extraction member side.
請求項1に記載の復水器の空気吸い込み部位の特定方法に使用する装置であって、
管清浄度を算出する要素である前記各水室の冷却水流量測定手段、前記各水室の入口の冷却水温度測定手段、前記各水室の出口の冷却水温度測定手段および前記復水器のホットウェル内の復水温度測定手段を備え、
さらに、前記各手段の測定値を使用して、復水器の水室の表面積をAとし、水室の入口の冷却水温度をTinとし、水室の出口の冷却水温度をToutとし、復水器のホットウェル内の復水の温度をThwとし、復水器から水室の表面を通過して水室内に熱が貫流する率の設計上の値を基準熱貫流率とし、下記式により
Figure 2005337523

前記管清浄度を自動的に算出する管清浄度算出手段およびこの算出された各水室の管清浄度を比較し、相対的に管清浄度が低下している水室を有する復水器室を特定する復水器室特定手段を備えることを特徴とする復水器の空気吸い込み部位の特定装置。
It is an apparatus used for the identification method of the air suction site | part of the condenser of Claim 1, Comprising:
Cooling water flow rate measuring means for each water chamber, cooling water temperature measuring means for inlet of each water chamber, cooling water temperature measuring means for outlet of each water chamber, and condenser Condensate temperature measuring means in the hot well of
Further, using the measured values of the above means, the surface area of the water chamber of the condenser is A, the cooling water temperature at the inlet of the water chamber is Tin, the cooling water temperature at the outlet of the water chamber is Tout, The temperature of the condensate in the water well hot water is Thw, and the design value of the rate at which heat passes from the condenser through the surface of the water chamber to the water chamber is defined as the reference heat transmissivity.
Figure 2005337523

The pipe cleanliness calculating means for automatically calculating the pipe cleanliness and the condenser room having a water chamber in which the calculated pipe cleanliness of each water chamber is compared and the pipe cleanliness is relatively lowered. An apparatus for identifying an air suction portion of a condenser, comprising a condenser chamber identifying means for identifying the condenser.
JP2004153038A 2004-05-24 2004-05-24 Method and apparatus for specifying air suction part in steam condenser Pending JP2005337523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004153038A JP2005337523A (en) 2004-05-24 2004-05-24 Method and apparatus for specifying air suction part in steam condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004153038A JP2005337523A (en) 2004-05-24 2004-05-24 Method and apparatus for specifying air suction part in steam condenser

Publications (1)

Publication Number Publication Date
JP2005337523A true JP2005337523A (en) 2005-12-08

Family

ID=35491293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004153038A Pending JP2005337523A (en) 2004-05-24 2004-05-24 Method and apparatus for specifying air suction part in steam condenser

Country Status (1)

Country Link
JP (1) JP2005337523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105181741A (en) * 2015-10-26 2015-12-23 张伟 Multi-pipeline cleanliness online detection device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110986A (en) * 1981-12-25 1983-07-01 Hitachi Ltd Condenser system
JPS5969690A (en) * 1982-10-13 1984-04-19 Toshiba Corp Operation monitoring device for condenser
JPS6415406A (en) * 1987-07-08 1989-01-19 Hitachi Ltd Air leakage detector in condenser vacuum pump
JPH05141879A (en) * 1991-11-20 1993-06-08 Toshiba Corp Condenser performance diagnosis device
JPH05256741A (en) * 1992-03-11 1993-10-05 Toshiba Corp Method and apparatus for monitoring plant signal
JPH0861814A (en) * 1994-08-12 1996-03-08 Nakano Reiki Kk Method and apparatus for monitoring and controlling freezing equipment
JPH11142068A (en) * 1997-11-10 1999-05-28 Toshiba Eng Co Ltd Vacuum monitor for condenser
JP2000162035A (en) * 1998-11-30 2000-06-16 Kanegafuchi Chem Ind Co Ltd Method and device for determining abnormality in rotating equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110986A (en) * 1981-12-25 1983-07-01 Hitachi Ltd Condenser system
JPS5969690A (en) * 1982-10-13 1984-04-19 Toshiba Corp Operation monitoring device for condenser
JPS6415406A (en) * 1987-07-08 1989-01-19 Hitachi Ltd Air leakage detector in condenser vacuum pump
JPH05141879A (en) * 1991-11-20 1993-06-08 Toshiba Corp Condenser performance diagnosis device
JPH05256741A (en) * 1992-03-11 1993-10-05 Toshiba Corp Method and apparatus for monitoring plant signal
JPH0861814A (en) * 1994-08-12 1996-03-08 Nakano Reiki Kk Method and apparatus for monitoring and controlling freezing equipment
JPH11142068A (en) * 1997-11-10 1999-05-28 Toshiba Eng Co Ltd Vacuum monitor for condenser
JP2000162035A (en) * 1998-11-30 2000-06-16 Kanegafuchi Chem Ind Co Ltd Method and device for determining abnormality in rotating equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105181741A (en) * 2015-10-26 2015-12-23 张伟 Multi-pipeline cleanliness online detection device

Similar Documents

Publication Publication Date Title
JP2675684B2 (en) Abnormality monitoring device for heat exchanger
CN102313471B (en) The function of cooling system monitors and/or control method and corresponding cooling system
US20140090712A1 (en) Steam trap monitor with diagnostics
JPH04217786A (en) Method and device for controlling condenser for power plant
WO2021249480A1 (en) Method for detecting whether amount of leaked air of condenser exceeds standard
JP5019861B2 (en) Plant leak detection system
JP2010014323A (en) Deterioration diagnosing device, deterioration diagnosing method, and deterioration diagnosing system for cold supply system
KR101700538B1 (en) Method for sensing contamination of heat exchanger and system for the same
JP4301085B2 (en) Deterioration diagnosis system for heat source equipment
JP2008082565A (en) Drainage recovery device for production steam
WO2017006455A1 (en) Method for evaluating cleanliness of coolant line
JP2005337523A (en) Method and apparatus for specifying air suction part in steam condenser
CN112051082A (en) Fault diagnosis method in operation of heat exchanger of heat supply system
JP4231024B2 (en) Absorption diagnosis method and apparatus for absorption refrigerator
JP4049610B2 (en) Abnormality detection device for heat pump heat exchanger
JP3690992B2 (en) Abnormality diagnosis method and apparatus for thermal power plant
JP2011196677A (en) System and method for measuring loss of steam pipe
JP6480213B2 (en) Apparatus state detection apparatus and apparatus state detection method for steam system
JP2008051073A (en) Cogeneration system
JP2007322051A (en) Heat pump type water heater
JP2008039224A (en) Structure of constant pressure once-through boiler and operating method therefor
JP5721569B2 (en) Cooling device and cooling water leakage detection method
JP6875097B2 (en) A method of controlling an bleed air device and a device that executes this method.
KR101744049B1 (en) Winterization system with waste heat of compressor package
CN205536636U (en) Refrigeration water installation and refrigerating system thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090728