JP4231024B2 - Absorption diagnosis method and apparatus for absorption refrigerator - Google Patents

Absorption diagnosis method and apparatus for absorption refrigerator Download PDF

Info

Publication number
JP4231024B2
JP4231024B2 JP2005131001A JP2005131001A JP4231024B2 JP 4231024 B2 JP4231024 B2 JP 4231024B2 JP 2005131001 A JP2005131001 A JP 2005131001A JP 2005131001 A JP2005131001 A JP 2005131001A JP 4231024 B2 JP4231024 B2 JP 4231024B2
Authority
JP
Japan
Prior art keywords
heat transfer
heat
temperature
aqueous solution
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005131001A
Other languages
Japanese (ja)
Other versions
JP2005233609A (en
Inventor
昭彦 山田
喜治 林
信義 坪井
美雄 佐藤
木村  亨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005131001A priority Critical patent/JP4231024B2/en
Publication of JP2005233609A publication Critical patent/JP2005233609A/en
Application granted granted Critical
Publication of JP4231024B2 publication Critical patent/JP4231024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Description

本発明は、伝熱特性の劣化又はその中を流れる流体の漏洩の異常を検出する新規な吸収式冷凍機の異常診断方法及びその装置に関する。   TECHNICAL FIELD The present invention relates to a novel absorption refrigeration machine abnormality diagnosis method and apparatus for detecting deterioration of heat transfer characteristics or leakage of fluid flowing therein.

従来の検出方法としては、伝熱管製作時に管に水圧をかけたり、水中に沈めた管に空気圧をかけたりして水または気泡の発生を目視により検査する方法が一般的であった。   As a conventional detection method, a method of visually inspecting the generation of water or bubbles by applying water pressure to a heat transfer tube or applying air pressure to a tube submerged in water is generally used.

しかし、この方法では製作時の初期不良は発見できるが、使用中の経年劣化等による管の損傷等は発見することができなかった。また、検査に長い時間を要するため、作業効率が低いという問題点があった。そこで、特許文献1では、機器の運転中に漏洩を検出する方法として、複数の音響センサを伝熱管付近に取付けて、漏洩時の音響信号の変化から漏洩発生を検出する方法が述べられている。又、特許文献2及び3には、ガスパイプラインにおける圧力降下モデルの未定係数を圧力径の測定値に基づいて最小になるように定め、その係数が予め定められた値以上になった時、漏洩を判断する方法が示されている。   However, with this method, initial defects at the time of production can be found, but damage to the pipe due to aging during use, etc., cannot be found. Further, since a long time is required for the inspection, there is a problem that work efficiency is low. Therefore, in Patent Document 1, as a method for detecting leakage during operation of a device, a method is described in which a plurality of acoustic sensors are attached in the vicinity of a heat transfer tube and leakage occurrence is detected from a change in an acoustic signal at the time of leakage. . In Patent Documents 2 and 3, the undetermined coefficient of the pressure drop model in the gas pipeline is determined to be the minimum based on the measured value of the pressure diameter, and when the coefficient exceeds a predetermined value, leakage occurs. The method of judging is shown.

特開平7−248274号公報JP 7-248274 A 特開平1−109236号公報JP-A-1-109236 特開平1−201132号公報JP-A-1-201132

しかし、上述の従来技術には音響センサの取付け位置によっては音響信号が必ずしも正確に受信できない場合があった。また、複数の熱交換器を有する機器またはプラントに適用するためには、それぞれの熱交換器に対して音響センサを新たに設置する必要がある。   However, in the above-described conventional technology, there is a case where an acoustic signal cannot always be accurately received depending on the mounting position of the acoustic sensor. Moreover, in order to apply to the apparatus or plant which has several heat exchangers, it is necessary to newly install an acoustic sensor with respect to each heat exchanger.

また、上記従来技術で述べられているように、対象機器がボイラのように高圧の流体(蒸気)を取り扱う場合には、音響センサによる漏洩検出が可能である。しかし、伝熱管内外の圧力差が小さい場合では、漏洩の有無を音響(振動)データの変化としてとらえることが困難な場合が多い。更に、ガスパイプラインの漏洩検出においては、温度等の特定の条件での漏洩検出については示されていない。   Further, as described in the above prior art, when the target device handles a high-pressure fluid (steam) like a boiler, leakage detection by an acoustic sensor is possible. However, when the pressure difference between the inside and outside of the heat transfer tube is small, it is often difficult to capture the presence or absence of leakage as a change in acoustic (vibration) data. Further, in leak detection of a gas pipeline, leak detection under specific conditions such as temperature is not shown.

本発明の目的は、音響センサ等のセンサを新たに付加する測定設備を少なくし、又、センサの設置位置による影響を受けにくく、伝熱管内外の圧力差が小さい場合にも伝熱管の伝熱特性の劣化又は伝熱管内の流体の漏洩を検出できる吸収式冷凍機の異常を検出する異常診断方法及びその装置を提供することにある。   The object of the present invention is to reduce the number of measuring equipment to which a sensor such as an acoustic sensor is newly added, to be hardly affected by the installation position of the sensor, and to perform heat transfer of the heat transfer tube even when the pressure difference inside and outside the heat transfer tube is small. An object of the present invention is to provide an abnormality diagnosis method and apparatus for detecting an abnormality of an absorption refrigerator capable of detecting deterioration of characteristics or leakage of fluid in a heat transfer tube.

本発明の吸収式冷凍機の異常診断方法は、伝熱管の伝熱特性を物理式で模擬してプロセス値の計測値から非計測の状態量を推定する状態推定機能と、該状態推定機能で推定した状態量の値を正常状態における推定値と比較して伝熱特性の劣化又はその中を流れる流体の漏洩の異常を検出する異常判定機能から構成されることを特徴とし、又、以下の要件を有するものである。   An abnormality diagnosis method for an absorption chiller according to the present invention includes a state estimation function that simulates a heat transfer characteristic of a heat transfer tube by a physical formula and estimates a non-measured state quantity from a process value, and the state estimation function. Comparing the estimated value of the state quantity with the estimated value in the normal state, it is composed of an abnormality determination function for detecting deterioration of heat transfer characteristics or leakage of fluid flowing therein, and is characterized by the following: It has a requirement.

(a)非定常時を含めた伝熱特性を物理式で模擬した伝熱モデルにより計算した流体温度計算値と、それに対応する計測値(流体温度)との差が少なくなるように少なくともモデルに設定している伝熱特性パラメータを調整する。
(b)調整済みのモデルで計算した流体温度計算値とそれに対応する計測値(流体温度)との差を指標として伝熱管の伝熱特性の劣化又は流体の漏洩を検出する。
c)モデルに基づいて計測値を入力して計算した伝熱特性パラメータ計算値と調整済みモデルの伝熱特性パラメータ設定値との差を指標として伝熱管の伝熱特性の劣化又は流体の漏洩を検出する。そして、上述の(b)及び(c)は(a)に対して単独で構成される。
(A) At least in the model so that the difference between the calculated fluid temperature calculated by the heat transfer model simulating the heat transfer characteristics including the unsteady state with a physical formula and the corresponding measured value (fluid temperature) is reduced. Adjust the heat transfer characteristic parameters that have been set.
(B) The deterioration of the heat transfer characteristics of the heat transfer tube or the leakage of the fluid is detected using the difference between the calculated fluid temperature value calculated by the adjusted model and the corresponding measured value (fluid temperature) as an index.
( C) Degradation of heat transfer characteristics of heat transfer tubes or fluid leakage using as an index the difference between the calculated value of heat transfer characteristic parameters calculated by inputting measured values based on the model and the heat transfer characteristic parameter setting value of the adjusted model Is detected. And said (b) and (c) are comprised independently with respect to (a).

本発明の吸収式冷凍機の異常診断方法は、伝熱特性を用いて模擬した伝熱モデルにより流体温度を計算する温度計算演算手段と、前記計算で求められた流体温度と実際に測定された流体温度との差を指標として伝熱管の伝熱特性の劣化又は流体の漏洩を演算する漏洩演算手段とを有することを特徴とする伝熱管の異常診断装置により実施できるものであり、更に上述のパラメータ調整手段を有するものである。 The abnormality diagnosis method for an absorption refrigerator according to the present invention includes a temperature calculation calculation means for calculating a fluid temperature by a heat transfer model simulated using heat transfer characteristics, and the fluid temperature obtained by the calculation is actually measured. It is those that can be more practiced abnormality diagnosis apparatus for the heat transfer tube and having a leakage calculation means for calculating a deterioration or leakage of fluid heat transfer characteristics of the heat transfer tubes the difference as an indication of the fluid temperature, further described Parameter adjusting means.

本発明は、吸湿性化合物を有する水溶液を熱媒体により加熱し水蒸気を発生させる再生器、前記水蒸気を熱媒体の冷却水により凝縮させる凝縮器、前記水蒸気を冷却する低温再生器、前記凝縮器より出た水を蒸発させ熱媒体の冷水を発生させる蒸発器、該蒸発器より出た水を高濃度の吸湿性化合物を含む水溶液に吸収させると共に前記凝縮器をでた前記冷却水により前記水溶液を冷却する吸収器及び該吸収器より出た前記水溶液を前記高温再生器に戻す際に熱交換させる熱交換器の各機器を備えた吸収式冷凍機の異常診断方法において、
前記各機器のうちの1つの機器内に前記熱媒体を流通させる配管の伝熱特性を模擬した伝熱モデルと該伝熱モデルの対象となる前記機器内を流れる前記熱媒体の出入口の一方で実測された温度とにより前記配管内を流れる前記機器の前記熱媒体の出入口の他方の温度を計算する工程と、
該計算によって求められた前記温度と、前記計算によって求められた前記温度に対応する位置での実際に測定される前記配管内を流れる前記熱媒体の温度との差を指標として前記配管の伝熱特性の劣化の程度又は前記差の大きさに基づいて前記熱媒体の漏洩の有無を判定する工程とを有すること、
又、該計算によって求められた前記温度と、前記計算によって求められた前記温度に対応する位置での前記吸収式冷凍機の正常状態で実際に測定される前記配管内を流れる前記熱媒体の温度との差が少なくなるように前記伝熱モデルに設定した熱伝達率、伝熱面積及び熱伝達率と伝熱面積との積のいずれかからなる伝熱特性パラメータを調整して伝熱特性パラメータ設定値を求める工程と、
該調整された伝熱特性パラメータ設定値を用いて前記伝熱モデルで計算した前記温度と前記実際に測定された前記温度との差を指標として前記配管の伝熱特性の劣化の程度又は前記差の大きさに基づいて前記熱媒体の漏洩の有無を判定する工程とを有すること、
更に、前記伝熱モデルと前記実際に測定された前記温度とに基づいて前記伝熱特性パラメータを計算して伝熱特性パラメータ計算値を求める工程と、
前記伝熱特性パラメータ計算値と前記伝熱特性パラメータ設定値との差を指標として前記配管の伝熱特性の劣化の程度又は前記差の大きさに基づいて前記熱媒体の漏洩の有無を判定する工程とを有することを特徴とする。
The present invention comprises a regenerator that heats an aqueous solution containing a hygroscopic compound with a heat medium to generate water vapor, a condenser that condenses the water vapor with cooling water of the heat medium, a low-temperature regenerator that cools the water vapor, and the condenser. An evaporator that evaporates the water that is generated to generate cold water as a heat medium; the aqueous solution that absorbs water from the evaporator in an aqueous solution containing a high-concentration hygroscopic compound and the cooling water from the condenser; In an abnormality diagnosis method for an absorption refrigeration machine comprising an absorber to be cooled and a heat exchanger for exchanging heat when returning the aqueous solution from the absorber to the high-temperature regenerator,
Wherein the entrance of one of equipment the heat is subject to the heat transfer model and the heat transfer model simulating the heat transfer characteristics of the pipe for flowing the heat medium flowing through said device in the medium of the respective devices Calculating the other temperature of the inlet / outlet of the heat medium of the device flowing in the pipe according to the actually measured temperature;
Heat transfer of the pipe using as an index the difference between the temperature obtained by the calculation and the temperature of the heat medium flowing in the pipe actually measured at a position corresponding to the temperature obtained by the calculation having a step of determining the presence or absence of leakage of the heat medium body based on the size of the extent or the difference of the degradation characteristics,
Further, the temperature obtained by the calculation, and the temperature of the heat medium flowing in the pipe actually measured in a normal state of the absorption refrigerator at a position corresponding to the temperature obtained by the calculation. The heat transfer characteristic parameter is adjusted by adjusting the heat transfer coefficient, the heat transfer area and the product of the heat transfer coefficient and the heat transfer area set in the heat transfer model so that the difference between Obtaining a set value; and
Degree of deterioration of the heat transfer characteristics of the pipe or the difference using the difference between the temperature calculated by the heat transfer model using the adjusted heat transfer characteristic parameter setting value and the actually measured temperature as an index based on the size of it and a step of determining the presence or absence of leakage of the heat medium body,
And calculating a heat transfer characteristic parameter calculation value by calculating the heat transfer characteristic parameter based on the heat transfer model and the actually measured temperature;
Determining the presence or absence of leakage of the heat medium body based on the size of the extent or the difference of the degradation of heat transfer characteristics of the pipe a difference between the heat transfer characteristic parameter setting value and the heat transfer characteristic parameter calculated value as an index And a step of performing.

又、本発明は、吸湿性化合物を有する水溶液を熱媒体により加熱し水蒸気を発生させる再生器、前記水蒸気を熱媒体の冷却水により凝縮させる凝縮器、該凝縮器より出た水を蒸発させ熱媒体の冷水を発生させる蒸発器、該蒸発器より出た水を高濃度の前記吸湿性化合物を含む水溶液に吸収させると共に前記凝縮器を出てクーリングタワーにより冷却された前記冷却水により前記水溶液を冷却する吸収器及び該吸収器より出た前記水溶液を前記再生器に戻す際に熱交換させる熱交換器の各機器を備えた吸収式冷凍機の異常診断装置において、
前記各機器のうちの1つの機器内に前記熱媒体を流通させる配管の伝熱特性を模擬した伝熱モデルと該伝熱モデルの対象となる前記機器内を流れる前記熱媒体の出入口の一方で実測される温度とにより前記配管内を流れる前記機器の前記熱媒体の出入口の他方の温度を計算によって求める温度計算手段と、
前記計算によって求められた前記温度と、前記計算によって求められた前記温度に対応する位置で実際に測定された前記配管内を流れる前記熱媒体の温度との差を指標として前記配管の伝熱特性の劣化の程度又は前記差の大きさに基づいて前記熱媒体の漏洩の有無を判定する異常判定手段とを有することを特徴とする。
The present invention also provides a regenerator that heats an aqueous solution containing a hygroscopic compound with a heat medium to generate water vapor, a condenser that condenses the water vapor with cooling water of the heat medium, and heats the water by evaporating water from the condenser. An evaporator for generating cold water of the medium, and the aqueous solution is absorbed by the aqueous solution containing the hygroscopic compound having a high concentration, and the aqueous solution is cooled by the cooling water exiting the condenser and cooled by a cooling tower. In an abnormality diagnosis apparatus for an absorption refrigeration machine equipped with each device of a heat exchanger that exchanges heat when returning the aqueous solution from the absorber and the aqueous solution returned from the absorber to the regenerator,
Wherein the entrance of one of equipment the heat is subject to the heat transfer model and the heat transfer model simulating the heat transfer characteristics of the pipe for flowing the heat medium flowing through said device in the medium of the respective devices On the other hand, temperature calculation means for calculating the other temperature of the inlet / outlet of the heat medium of the device flowing in the pipe by the actually measured temperature;
Wherein said temperature obtained by the calculation, the pipe of the heat transfer the difference between the temperature of the heat medium flowing through said calculations the pipe that is actually measured by the position corresponding to the temperature determined by the index and having an abnormality determination means for determining the presence or absence of leakage of the heat medium body based on the size of the extent or the difference of the degradation of characteristics.

更に、本発明の吸収式冷凍機の異常診断装置は、前記各機器のうちの1つの機器内に前記熱媒体を流通させる配管の伝熱特性を模擬した伝熱モデルと該伝熱モデルの対象となる前記機器内を流れる前記熱媒体の出入口の一方で実測される温度とにより前記配管内を流れる前記機器の前記熱媒体の出入口の他方の温度を計算によって求める温度計算手段と、
該計算によって求められた前記温度と、前記計算によって求められた前記温度に対応する位置での前記吸収式冷凍機の正常状態で実際に測定された前記配管内を流れる前記熱媒体の温度との差が少なくなるように前記伝熱モデルに設定した熱伝達率、伝熱面積及び熱伝達率と伝熱面積との積のいずれかからなる伝熱特性パラメータを調整して伝熱特性パラメータ設定値を求めるパラメータ調整手段と、
該調整された伝熱特性パラメータ設定値を用いて前記伝熱モデルで計算した前記温度と前記実際に測定された前記温度との差を指標として前記配管の伝熱特性の劣化の程度又は前記差の大きさに基づいて前記熱媒体の漏洩の有無を判定する異常判定手段とを有すること、
又は、前記伝熱モデルと前記実際に測定された前記温度とに基づいて前記伝熱特性パラメータを計算して伝熱特性パラメータ計算値を求める計算手段と、
前記伝熱特性パラメータ計算値と前記伝熱特性パラメータ設定値との差を指標として前記配管の伝熱特性の劣化の程度又は前記差の大きさに基づいて前記熱媒体の漏洩の有無を判定する異常判定手段とを有することを特徴とする。
Furthermore, the abnormality diagnosis apparatus for the absorption type refrigerator of the present invention, said one equipment heat transfer model and heat transfer model simulating the heat transfer characteristics of the pipe for circulating the heat medium in one of the devices Temperature calculating means for calculating by calculation the temperature of the other side of the heating medium of the device flowing in the pipe by the temperature actually measured on one side of the inlet and outlet of the heating medium flowing through the device as the target of;
The temperature obtained by the calculation and the temperature of the heat medium flowing in the pipe actually measured in a normal state of the absorption chiller at a position corresponding to the temperature obtained by the calculation. Heat transfer characteristic parameter setting value by adjusting the heat transfer characteristic parameter set to any one of the heat transfer coefficient, heat transfer area and product of heat transfer coefficient and heat transfer area set in the heat transfer model so as to reduce the difference Parameter adjustment means for obtaining
Degree of deterioration of the heat transfer characteristics of the pipe or the difference using the difference between the temperature calculated by the heat transfer model using the adjusted heat transfer characteristic parameter setting value and the actually measured temperature as an index to have an abnormality determining means for determining the presence or absence of leakage of the heat medium body based on the size,
Or a calculation means for calculating the heat transfer characteristic parameter based on the heat transfer model and the actually measured temperature to obtain a heat transfer characteristic parameter calculation value;
Determining the presence or absence of leakage of the heat medium body based on the size of the extent or the difference of the degradation of heat transfer characteristics of the pipe a difference between the heat transfer characteristic parameter setting value and the heat transfer characteristic parameter calculated value as an index And an abnormality determination unit that performs the above-described abnormality determination.

以上の様に、本発明は、プラントのプロセス量の計測値からプラント構成機器の入出力特性に関る設計データ又は物理・化学的特性値を推定する設計データ推定手段を有していること、又、設計データ推定手段により決定したモデルパラメータを使用するプラントモデルと、このモデルを用いた操作量決定手段を備えており、非定常時においても伝熱性能劣化および流体漏洩が精度良く検出できるものである。   As described above, the present invention has design data estimation means for estimating design data or physical / chemical characteristic values related to input / output characteristics of plant components from measured values of plant process quantities. Also equipped with a plant model that uses model parameters determined by the design data estimation means, and a manipulated variable determination means using this model, which can accurately detect heat transfer performance degradation and fluid leakage even during non-stationary conditions It is.

音響センサ等のセンサを新たに付加する測定設備を少なくし、又、センサの設置位置による影響を受けにくく、伝熱管内外の圧力差が小さい場合にも伝熱管の伝熱特性の劣化又は伝熱管内の流体の漏洩を自動的に検出できる吸収式冷凍機の異常診断方法並びにそれらの装置を得ることができる。また、非定常時においても伝熱性能劣化および流体漏洩が精度良く検出できる。 The number of measuring equipment to which a sensor such as an acoustic sensor is newly added is reduced, and the heat transfer characteristics of the heat transfer tube are deteriorated or heat transfer even when the pressure difference between the inside and outside of the heat transfer tube is small due to the influence of the sensor installation position. abnormality diagnosis method of the intake Osamushiki refrigerator that can automatically detect the leakage of the fluid in the tube and can be obtained those devices. In addition, heat transfer performance deterioration and fluid leakage can be detected with high accuracy even in an unsteady state.

本実施例は、吸収式冷凍機を対象にしたものである。吸収式冷凍機500の動作原理を図1を用いて説明する。吸収式冷凍機500は主に蒸発器510、吸収器520、凝縮器530、再生器540、熱交換器550、555及び流体ポンプ560、565とから構成されている。本例の冷凍機は吸収液として臭化リチウム溶液、冷媒に水を使用している。   The present embodiment is intended for an absorption refrigerator. The operation principle of the absorption chiller 500 will be described with reference to FIG. The absorption refrigerator 500 mainly includes an evaporator 510, an absorber 520, a condenser 530, a regenerator 540, heat exchangers 550 and 555, and fluid pumps 560 and 565. The refrigerator of this example uses a lithium bromide solution as an absorbing solution and water as a refrigerant.

再生器540では、冷媒である水を吸収して濃度の低下した臭化リチウム水溶液を加熱して溶液中の水分を蒸発させ溶液を濃縮する。この加熱源にタービン404からの高温排ガス410を用いるのである。タービン排ガス410と高濃度臭化リチウム水溶液とを熱交換させ、臭化リチウム水溶液を加熱する。再生器540で蒸発した水分は凝縮器530へ流れ、加熱により濃縮され、温度が上昇した臭化リチウム水溶液は高温熱交換器550、低温熱交換器555を通って温度を低下させ、吸収器520内へ散布される。   In the regenerator 540, the aqueous solution of lithium bromide having a reduced concentration by absorbing water as a refrigerant is heated to evaporate the water in the solution and concentrate the solution. The high temperature exhaust gas 410 from the turbine 404 is used as this heating source. Heat exchange is performed between the turbine exhaust gas 410 and the high-concentration lithium bromide aqueous solution to heat the lithium bromide aqueous solution. The water evaporated in the regenerator 540 flows to the condenser 530, is concentrated by heating, and the lithium bromide aqueous solution whose temperature has been increased decreases the temperature through the high temperature heat exchanger 550 and the low temperature heat exchanger 555, and the absorber 520 It is sprayed in.

凝縮器530は、再生器540で発生した蒸気を冷却水704との熱交換により凝縮させて水(液体)に戻す。凝縮した水は蒸発器510内に散布される。蒸発器510内には、冷水管が配置されており、散布された水は冷水管から熱を奪って蒸発し、再び蒸気になる。これによって冷水管内の冷水温度が低下して、約7℃の水として空調等の冷水需要600へ供給される。蒸発しなかった水は一旦蒸発器510の下部に溜まり、冷媒循環ポンプ565により再度蒸発器510の上部から容器内に散布される。   The condenser 530 condenses the steam generated in the regenerator 540 by heat exchange with the cooling water 704 and returns it to water (liquid). The condensed water is scattered in the evaporator 510. A cold water pipe is disposed in the evaporator 510, and the sprayed water takes heat from the cold water pipe and evaporates to become steam again. As a result, the temperature of the chilled water in the chilled water pipe is lowered and supplied to the chilled water demand 600 such as air conditioner as about 7 ° C. water. The water that has not evaporated once accumulates in the lower part of the evaporator 510 and is again sprayed into the container from the upper part of the evaporator 510 by the refrigerant circulation pump 565.

蒸発した蒸気は吸収器520内へ散布された高濃度の臭化リチウム水溶液と接触して吸収される。蒸気が吸収されるために、吸収器520内の圧力が低下する。従って、吸収器520内と連結している蒸発器510内の圧力も低下するので、蒸発器510では冷媒である水が低温で蒸発するのである。   The evaporated vapor is absorbed in contact with the high-concentration lithium bromide aqueous solution sprayed into the absorber 520. As the vapor is absorbed, the pressure in the absorber 520 decreases. Accordingly, the pressure in the evaporator 510 connected to the absorber 520 is also reduced, so that water as a refrigerant evaporates at a low temperature in the evaporator 510.

臭化リチウム水溶液は温度が低いほど蒸気を吸収しやすいので、吸収器520内では冷却水704で臭化リチウム水溶液を冷却している。冷却水704はその後、前述したように凝縮器530で蒸気を凝縮させてさらに温度が上昇するので、クーリングタワー700で冷却されて再び吸収器520へ戻る。吸収器520で濃度が低下した臭化リチウム水溶液は低温熱交換器555、高温熱交換器550によって加熱されて、再生器540へ戻る。吸収式冷凍機500は以上のようなサイクルを繰り返して、冷熱を発生する。   Since the lithium bromide aqueous solution absorbs vapor more easily as the temperature is lower, the lithium bromide aqueous solution is cooled by the cooling water 704 in the absorber 520. Thereafter, the cooling water 704 condenses the vapor in the condenser 530 as described above, and the temperature further rises. Therefore, the cooling water 704 is cooled in the cooling tower 700 and returned to the absorber 520 again. The lithium bromide aqueous solution whose concentration has been reduced by the absorber 520 is heated by the low temperature heat exchanger 555 and the high temperature heat exchanger 550 and returned to the regenerator 540. The absorption refrigerator 500 repeats the above cycle to generate cold.

本例では、図1に示すようにガスタービン発電システム450との組合せによりコージェネレーションシステムを構成しているので、吸収式冷凍機500の熱源はガスタービンシステム450からの排出ガス410を使用している。しかし、何らかの理由によりタービンが停止しているときには、熱源となる排出ガス410が受け取れないため、吸収式冷凍機500を運転することができなくなる。そこで、吸収式冷凍機500の再生器540には代替熱源となるバーナー570を備えている。ガスタービン発電システムは圧縮機400で空気を吸引、圧縮して、その圧縮空気を燃焼機402へ送る。燃焼機402では燃料調節弁406の操作により供給される燃料を燃焼させる。燃焼ガスは膨張する過程でタービン404を回転させ、その回転力で発電機408を回して電気出力を得ている。   In this example, as shown in FIG. 1, the cogeneration system is configured in combination with the gas turbine power generation system 450, so the heat source of the absorption chiller 500 uses the exhaust gas 410 from the gas turbine system 450. Yes. However, when the turbine is stopped for some reason, the exhaust chiller 500 cannot be operated because the exhaust gas 410 as a heat source cannot be received. Therefore, the regenerator 540 of the absorption chiller 500 is provided with a burner 570 serving as an alternative heat source. The gas turbine power generation system sucks and compresses air with the compressor 400 and sends the compressed air to the combustor 402. The combustor 402 combusts the fuel supplied by operating the fuel control valve 406. The combustion gas rotates the turbine 404 in the process of expanding, and rotates the generator 408 with the rotational force to obtain an electrical output.

さて、吸収式冷凍機500には、蒸発器510、吸収器520、再生器540、凝縮器530、低温熱交換器555、高温熱交換器550の熱交換器が存在する。また、冷凍機は上述したように水(冷媒)の蒸発に伴う熱移動で冷水を作るので、大気圧以下の低圧下で動作している。従って、伝熱管に穴が開いたとしても内部の真空度が下がる(内部圧力が上がって大気圧に近づく)ことになり、内部流体が噴出することはない。また、冷水504および冷却水704も送水ポンプにより多少昇圧されている程度である。従って、漏洩時の音の変化で漏洩を検出するのは困難である。また、冷水504および冷却水704は配管により冷凍機外部にある空調機やクーリングタワーなど広い範囲を流れるので、音響式の漏洩検出方法を適用する場合には長距離に渡る配管沿いに多数のセンサを設置する必要があり、実質的に適用困難である。   The absorption chiller 500 includes an evaporator 510, an absorber 520, a regenerator 540, a condenser 530, a low-temperature heat exchanger 555, and a high-temperature heat exchanger 550. Moreover, since the refrigerator produces cold water by heat transfer accompanying the evaporation of water (refrigerant) as described above, it operates at a low pressure below atmospheric pressure. Therefore, even if a hole is formed in the heat transfer tube, the degree of internal vacuum is reduced (the internal pressure increases and approaches atmospheric pressure), and the internal fluid is not ejected. Further, the cold water 504 and the cooling water 704 are also slightly pressurized by the water pump. Therefore, it is difficult to detect a leak by a change in sound at the time of the leak. In addition, since the cold water 504 and the cooling water 704 flow through a wide range such as an air conditioner and a cooling tower outside the refrigerator by piping, when applying an acoustic leak detection method, a large number of sensors are installed along the piping over a long distance. It is necessary to install, and practically difficult to apply.

本例では、冷却水704の漏洩検出を例に説明する。図2に冷却水系統に関する部分を抜き出して示す。冷却水704は吸収器520から凝縮器530内を流れて加熱される。その後、タンク760を介して循環ポンプ720でクーリングタワー700へ送られて冷却され、再び吸収器520に戻るように循環している。クーリングタワー700は外気への放熱によって冷却するので、外部への冷却水の飛散や蒸発により、正常状態でも若干冷却水量が減少する。タンク760の水位がある設定値以下に低下すると補給水770が供給されて、冷却水の減少を補うようになっている。   In this example, detection of leakage of the cooling water 704 will be described as an example. FIG. 2 shows a portion relating to the cooling water system. The cooling water 704 flows from the absorber 520 through the condenser 530 and is heated. After that, it is sent to the cooling tower 700 by the circulation pump 720 via the tank 760, cooled, and circulated back to the absorber 520 again. Since the cooling tower 700 is cooled by heat radiation to the outside air, the amount of cooling water slightly decreases even in a normal state due to scattering and evaporation of the cooling water to the outside. When the water level in the tank 760 falls below a certain set value, makeup water 770 is supplied to compensate for the decrease in cooling water.

冷却水の循環ポンプ720は冷凍機500の運転と連動して運転する。循環ポンプ720は常に定格運転である。冷却水流量は冷却水量調節バルブ710で調節可能であるが、通常は調節バルブ710の開度は最初に設定された開度のままに保たれている。なお、中・小型の冷凍機では冷却水流量は通常計測していないのが普通であり、直接的に冷却水流量の変化を監視することはできない。冷却水に関する計測データとしては、吸収器520の入口における冷却水温度(TC1)、吸収既520の出口における冷却水温度(TC3)、凝縮器530出口における冷却水温度(TC2)をそれぞれ温度センサ750、740および730で計測している。   The cooling water circulation pump 720 operates in conjunction with the operation of the refrigerator 500. Circulation pump 720 is always at rated operation. Although the cooling water flow rate can be adjusted by the cooling water amount adjusting valve 710, the opening degree of the adjusting valve 710 is normally kept at the initially set opening degree. In medium and small-sized refrigerators, the cooling water flow rate is not normally measured, and changes in the cooling water flow rate cannot be monitored directly. As the measurement data regarding the cooling water, the temperature sensor 750 includes the cooling water temperature (TC1) at the inlet of the absorber 520, the cooling water temperature (TC3) at the outlet of the absorbed 520, and the cooling water temperature (TC2) at the outlet of the condenser 530, respectively. , 740 and 730.

また、冷凍機500側の情報としては、吸収器520出口の溶液温度(Ta)と凝縮器530出口の冷媒温度(Tw)がそれぞれ温度センサ521および531により計測されている。冷却水流量G1[kg/s]は循環ポンプ720の定格出力と調節弁710の開度から推定する。あるいは、冷凍機の設置時等に測定した値を用いることもできる。図2に示すように、クーリングタワー700と吸収器520との間で冷却水がΔG[kg/s]だけ漏洩したとすると、吸収器520および凝縮器530内を流れる冷却水量は実際にはG1よりも少ないG2[kg/s](G2=G1-ΔG)となる。また、冷却水管の腐食や外部からの異物の混入等によって、管内流路が閉塞しても冷却水量は減少することがあり得る。   As the information on the refrigerator 500 side, the solution temperature (Ta) at the outlet of the absorber 520 and the refrigerant temperature (Tw) at the outlet of the condenser 530 are measured by temperature sensors 521 and 531, respectively. The coolant flow rate G1 [kg / s] is estimated from the rated output of the circulation pump 720 and the opening of the control valve 710. Or the value measured at the time of installation of a refrigerator, etc. can also be used. As shown in FIG. 2, if the cooling water leaks by ΔG [kg / s] between the cooling tower 700 and the absorber 520, the amount of cooling water flowing in the absorber 520 and the condenser 530 is actually larger than G1. Less G2 [kg / s] (G2 = G1-ΔG). In addition, the amount of cooling water may be reduced even if the flow path in the pipe is blocked due to corrosion of the cooling water pipe or mixing of foreign matter from the outside.

この冷却水量低下に関して本発明の検出方法を以下に説明する。はじめに、従来の検出方法を説明する。従来は、冷却水出口温度に上限値を設けて、これを異常判定しきい値とする方法が用いられていた。吸収式冷凍機は出力(冷水温度)を制御するために再生器540への入熱量を制御するため、吸収器520や凝縮器530内の温度もそれに伴って変化する。すなわち、正常時においても冷却水出口温度は変化する(図3)。また、冷却水入口温度が変化する場合もあり、この場合も出口温度が変化する。   The detection method of the present invention will be described below with respect to this cooling water amount reduction. First, a conventional detection method will be described. Conventionally, a method has been used in which an upper limit value is provided for the coolant outlet temperature and this is used as an abnormality determination threshold value. Since the absorption refrigerator controls the amount of heat input to the regenerator 540 in order to control the output (cold water temperature), the temperatures in the absorber 520 and the condenser 530 change accordingly. That is, the cooling water outlet temperature changes even during normal operation (FIG. 3). In addition, the cooling water inlet temperature may change, and the outlet temperature also changes in this case.

従来の方法では、正常時の冷却水出口温度の最大値を基準にして上限値を設定することになる。この場合、例えば冷却水出口温度が低い状態(図3中のA点)で異常が生じて温度が上昇しても上限値(異常判定しきい値)に到達しない場合は異常を検出できない。従って、異常の発見が遅くなる場合があった。   In the conventional method, the upper limit value is set based on the maximum value of the cooling water outlet temperature at the normal time. In this case, for example, if an abnormality occurs when the cooling water outlet temperature is low (point A in FIG. 3) and the temperature rises, the abnormality cannot be detected if the upper limit (abnormality determination threshold) is not reached. Therefore, the discovery of an abnormality may be delayed.

これに対して本発明では、以下の方法で冷却水量低下を検出する。図4に本実施の形態における基本構成を示す。図4は吸収器520について記述したものであり、以下の説明も主として吸収器について述べるが、同様に凝縮器530についても適用可能である。吸収器モデル800は吸収器520の伝熱特性を式(1)〜(3)でモデル化している。   In contrast, in the present invention, a decrease in the amount of cooling water is detected by the following method. FIG. 4 shows a basic configuration in the present embodiment. FIG. 4 describes the absorber 520, and the following description mainly describes the absorber. However, the absorber 520 can be applied to the condenser 530 as well. The absorber model 800 models the heat transfer characteristics of the absorber 520 with the equations (1) to (3).

Figure 0004231024
Figure 0004231024

ここで、Vは伝熱管内容積[m3]、ρは冷却水密度[m3/kg]、Gは冷却水流量[kg/s]、Hは冷却水エンタルピ[kJ/kg]、Aは伝熱面積[m2]、αは熱伝達率[kW/m2・K]、Tは温度[℃]、Cは伝熱管比熱[kJ/kg・K]、Mは伝熱管質量[kg]、tは時間[s]であり、添え字iは入口位置、oは出口位置、mは伝熱管、fは冷却水側、rは伝熱管外側、eは伝熱管外部をそれぞれ表している。また、式(3)は冷却水の平均温度の算出式であり、εは平均係数(0≦ε≦1)である。吸収器520については、G=G1、Ti=TC1、To=TC3、Te=Taであり、凝縮器530については、G=G1、Ti=TC3、To=TC2、Te=Twとなる。A、V、C、Mはそれぞれの熱交換器の設計値を使用し、Hは温度Tの関数として求めることができる。 Where V is the heat transfer tube internal volume [m 3 ], ρ is the cooling water density [m 3 / kg], G is the cooling water flow rate [kg / s], H is the cooling water enthalpy [kJ / kg], and A is Heat transfer area [m 2 ], α is the heat transfer coefficient [kW / m 2 · K], T is the temperature [° C], C is the heat transfer tube specific heat [kJ / kg · K], M is the heat transfer tube mass [kg] , T is time [s], the suffix i is the inlet position, o is the outlet position, m is the heat transfer tube, f is the cooling water side, r is the heat transfer tube outside, and e is the heat transfer tube exterior. Equation (3) is an equation for calculating the average temperature of the cooling water, and ε is an average coefficient (0 ≦ ε ≦ 1). For the absorber 520, G = G1, Ti = TC1, To = TC3, and Te = Ta, and for the condenser 530, G = G1, Ti = TC3, To = TC2, and Te = Tw. A, V, C, and M use design values of the respective heat exchangers, and H can be obtained as a function of the temperature T.

熱伝達率αは直接計測できない状態パラメータである。熱伝達率推定機能802はモデル式(1)〜(3)に基づいて式(4)及び(5)により熱伝達率αを推定する。なお、伝熱管の内面側と外面側の2つの熱伝達率α、αがあるが、ここではαは既知としてある値を設定して、αを推定する。 The heat transfer coefficient α is a state parameter that cannot be directly measured. The heat transfer coefficient estimation function 802 estimates the heat transfer coefficient α from the equations (4) and (5) based on the model equations (1) to (3). Note that there are two heat transfer coefficients α f and α r on the inner surface side and the outer surface side of the heat transfer tube. Here, α f is set to a known value and α r is estimated.

Figure 0004231024
Figure 0004231024

予め、吸収器モデル800の特性を実機特性に合わせておく必要がある。モデルの特性調整はモデル調整機能80で行う。モデル調整機能80の機能について説明する。正常状態において、冷却水流量G1、冷却水入口温度TC1、吸収器内溶液温度Teの実測値を吸収器モデル800に入力して冷却水出口温度TC3calを計算する。TC3calと冷却水出口温度実測値TC3の差を計算し、両者の差が小さくなる方向に吸収器モデル800の熱伝達率設定値αまたはαの値を変化させて再び冷却水出口温度TC3calを計算し、実測値TC3とを比較する。TC3calとTC3との差が許容値ΔTC3以下になるまでこの操作を繰返す。
In advance, it is necessary to match the characteristics of the absorber model 800 with the actual machine characteristics. Model characteristic adjustment is carried out in the model adjustment function 80 1. The function of the model adjustment function 80 1 will be described. In a normal state, measured values of the cooling water flow rate G1, the cooling water inlet temperature TC1, and the solution temperature Te in the absorber are input to the absorber model 800 to calculate the cooling water outlet temperature TC3cal. Calculate the difference between TC3cal and cooling water outlet temperature measured value TC3, and change the value of heat transfer coefficient setting value α r or α f of absorber model 800 in such a direction that the difference between the two becomes smaller, again cooling water outlet temperature TC3cal Is compared with the measured value TC3. This operation is repeated until the difference between TC3cal and TC3 falls below the allowable value ΔTC3.

図5に、冷却水量が何らかの原因で減少した場合を想定して、冷却水量G1を意図的に変化させた場合の吸収器熱伝達率の推定結果を示す。式(4)および(5)を用いて熱伝達率αを推定する場合には、当然ながら冷却水量G1の変化はないものとして推定した。本例では、モデル式(1)、(2)における熱伝達率α、αは運転状態によらず定数として設定したので、図5中破線で示した熱伝達率のモデル設定値は一定である。ただし、本発明はモデルの熱伝達率設定方法には依存せず、設定値は必ずしも一定値である必要はない。例えば、冷却水量の関数として熱伝達率を設定してもよい。 FIG. 5 shows an estimation result of the absorber heat transfer coefficient when the cooling water amount G1 is intentionally changed assuming that the cooling water amount is reduced for some reason. When estimating the heat transfer coefficient α r using the equations (4) and (5), it was naturally assumed that there was no change in the cooling water amount G1. In this example, since the heat transfer coefficients α f and α r in the model equations (1) and (2) are set as constants regardless of the operation state, the model set value of the heat transfer coefficient indicated by the broken line in FIG. 5 is constant. It is. However, the present invention does not depend on the model heat transfer coefficient setting method, and the set value is not necessarily a constant value. For example, the heat transfer coefficient may be set as a function of the cooling water amount.

推定値は冷却水量が一定の時間0〜t1まではモデル設定値にほぼ一致している。時刻t1で冷却水量をG1からG2へ減少させると、熱伝達率の推定値はα1からα2へ増加する。時刻t2から冷却水量をG1に戻すと、推定値もα1に付近まで低下する。従って、冷却水量が正常(G1)ならば、熱伝達率αの推定値はモデル設定値とある誤差範囲内で一致するが、冷却水量が減少する(G2)と、推定値とモデル設定値との偏差が大きくなる。
判定機能803では以下に示す方法で、冷却水量低下を判定する。正常時のモデル設定値に対する推定値の標準偏差をσとして、推定値とモデル設定値との偏差が標準偏差σのn倍(例えばn=3)よりも大きくなったら冷却水量異常と判断する。図5では時刻t3で冷却水量を異常と判定する。
The estimated value almost coincides with the model set value from 0 to t1 when the cooling water amount is constant. When the amount of cooling water is reduced from G1 to G2 at time t1, the estimated value of the heat transfer rate increases from alpha r 1 to alpha r 2. When the amount of cooling water is returned to G1 from time t2, the estimated value decreases to near α r 1. Therefore, if the cooling water amount is normal (G1), the estimated value of the heat transfer coefficient α r matches the model set value within a certain error range, but if the cooling water amount decreases (G2), the estimated value and the model set value And the deviation becomes larger.
In the determination function 803, a decrease in the cooling water amount is determined by the following method. If the standard deviation of the estimated value with respect to the normal model setting value is σ, and the deviation between the estimated value and the model setting value is larger than n times the standard deviation σ (for example, n = 3), it is determined that the cooling water amount is abnormal. In FIG. 5, the amount of cooling water is determined to be abnormal at time t3.

異常判定方法はこれ以外の方法でも良く、例えば、推定値とモデル設定値との偏差量がある基準値(例えば3σ)よりも大きくなり、かつ、その状態がある時間以上継続した時点で異常と判定するようにしても良い。このようにすると、センサ信号に対するノイズや、計測器の誤差などによって一時的に偏差が大きくなり基準値を超える状態が生じても異常と判定することがなくなり、異常検出の信頼性が向上する。また、ノイズや計測誤差に対応するために、計測値をそのまま使わず、時間平均等の平滑化処理後のデータを使用したり、推定値を平滑化処理して異常判定に用いてもよい。   The abnormality determination method may be other methods. For example, when the deviation amount between the estimated value and the model setting value is larger than a certain reference value (for example, 3σ) and the state continues for a certain time or more, the abnormality is determined. It may be determined. In this way, even if a deviation temporarily increases due to noise with respect to the sensor signal or an error of the measuring instrument and a state exceeding the reference value occurs, it is not determined that there is an abnormality, and the reliability of abnormality detection is improved. In order to deal with noise and measurement errors, the measurement value may not be used as it is, but data after smoothing processing such as time average may be used, or the estimated value may be smoothed and used for abnormality determination.

前述したように、冷却水は吸収器520と凝縮器530を流れている。冷却水が吸収器520より前で漏洩した場合には、吸収器520および凝縮器530を流れる冷却水は両者ともに減少するが、吸収器520と凝縮器530の間で漏洩した場合は吸収器520には影響がなく、凝縮器530だけに影響がでる。従って、上述の方法で吸収器520と凝縮器530について状態を監視しいていれば、漏洩した場所を特定することもできる。   As described above, the cooling water flows through the absorber 520 and the condenser 530. When the cooling water leaks before the absorber 520, both the cooling water flowing through the absorber 520 and the condenser 530 are reduced, but when the leakage is between the absorber 520 and the condenser 530, the absorber 520 Is not affected, only the condenser 530 is affected. Therefore, if the states of the absorber 520 and the condenser 530 are monitored by the above-described method, the leaked place can be specified.

しかし、冷凍機によっては、吸収器520と凝縮器530の間の冷却水温度TC3は計測していない場合がある。この場合、吸収器520にとっては冷却水の入口温度TC1は得られるが出口温度TC3が得られず、凝縮器530にとっては、冷却水の出口温度TC2は得られるが、入口温度TC3が得られないために、吸収器520と凝縮器530の両者とも、前述の方法では異常を検出することができない。そこで、TC3を計測していない場合の検出システムの構成を図6に示す。前述の図4に示した構成と異なる点は、吸収器520の冷却水出口温度を吸収器モデル800で計算し、その計算値TC3calを凝縮器モデル804へ入力して、熱伝達率の推定および異常判定は凝縮器モデル804に対してのみ実施する点である。   However, depending on the refrigerator, the cooling water temperature TC3 between the absorber 520 and the condenser 530 may not be measured. In this case, the cooling water inlet temperature TC1 is obtained for the absorber 520 but the outlet temperature TC3 is not obtained. For the condenser 530, the cooling water outlet temperature TC2 is obtained, but the inlet temperature TC3 is not obtained. For this reason, both the absorber 520 and the condenser 530 cannot detect abnormality by the above-described method. Therefore, FIG. 6 shows the configuration of the detection system when TC3 is not measured. The difference from the configuration shown in FIG. 4 is that the cooling water outlet temperature of the absorber 520 is calculated by the absorber model 800, and the calculated value TC3cal is input to the condenser model 804 to estimate the heat transfer coefficient and The abnormality determination is performed only for the condenser model 804.

この場合の冷却水量低下の検出方法を以下に説明する。まず、式(1)〜(3)で示す吸収器モデル800を用いて、冷却水流量G1(ただし、冷却水漏洩等により実際にはG1より少ない場合があり得る)、吸収器内溶液温度Te、冷却水入口温度TC1の実測値から吸収器520の冷却水出口温度TC3calを計算する。凝縮器530については前述の方法で、熱伝達率αを推定して冷却水量低下が起きているか否かを判定する。この時、凝縮器530に対する冷却水入口温度は吸収器モデルで計算したTC3calを用いる。 A method for detecting a decrease in the amount of cooling water in this case will be described below. First, using the absorber model 800 shown in the equations (1) to (3), the cooling water flow rate G1 (however, it may actually be less than G1 due to cooling water leakage, etc.), the solution temperature Te in the absorber Then, the cooling water outlet temperature TC3cal of the absorber 520 is calculated from the actually measured value of the cooling water inlet temperature TC1. For the condenser 530, the heat transfer coefficient αr is estimated by the above-described method to determine whether or not the cooling water amount has decreased. At this time, the cooling water inlet temperature to the condenser 530 is TC3cal calculated by the absorber model.

凝縮器モデル804は予め正常時のデータを用いて凝縮器530出口の冷却水温度の実測値TC2と計算値TC2calとの誤差が許容値ΔTC2以下になるように凝縮器モデル804の熱伝達率値を調整しておく。従って、正常時は吸収器モデル800で計算したTC3calを用いて凝縮器の熱伝達率を推定すれば、その推定値と凝縮器モデル804の設定値との偏差がある誤差範囲内に入っている。冷却水の漏洩が起きると、凝縮器の熱伝達率推定値とモデル設定値との差異が大きくなって漏洩を検出することができる。判定機能803は前述の機能と同じである。この場合、TC3を測定していないので、冷却水の漏洩個所を吸収器520の前か、吸収器520以降であるかを特定することはできないが、冷却水の漏洩が生じていることは検出することができる。   The condenser model 804 uses the normal data in advance so that the heat transfer coefficient value of the condenser model 804 is such that the error between the measured value TC2 of the cooling water temperature at the outlet of the condenser 530 and the calculated value TC2cal is less than the allowable value ΔTC2. Adjust. Therefore, when the heat transfer coefficient of the condenser is estimated using TC3cal calculated by the absorber model 800 in the normal state, the deviation between the estimated value and the set value of the condenser model 804 is within an error range. . When the cooling water leaks, the difference between the estimated value of the heat transfer coefficient of the condenser and the model setting value becomes large, and the leak can be detected. The determination function 803 is the same as the function described above. In this case, since TC3 is not measured, it is not possible to specify whether the leakage of the cooling water is before the absorber 520 or after the absorber 520, but it is detected that the cooling water is leaking. can do.

以上のように、本発明によれば、既設の計測情報を活用して冷却水の漏洩検知が可能である。また、本発明は伝熱管の熱伝達率を推定しているので、この推定値を監視していれば、伝熱面への異物の付着や伝熱面の腐食等によって伝熱性能が低下したことを定量的に把握することが可能である。   As described above, according to the present invention, it is possible to detect leakage of cooling water using existing measurement information. In addition, since the heat transfer coefficient of the heat transfer tube is estimated in the present invention, if this estimated value is monitored, the heat transfer performance deteriorates due to adhesion of foreign matters to the heat transfer surface, corrosion of the heat transfer surface, or the like. It is possible to grasp this quantitatively.

図7に熱伝達率推定値の監視例を示す。図7の上段は2時の比較的短い時間範囲での推定値を1分間隔で表示している。また、下段には3ヶ月間の推移を1日毎の平均値として表示している。伝熱管の亀裂により急激な漏洩が生じた場合などは、上段のモニタグラフで確認できる。また、伝熱面の汚れ等による伝熱性能劣化は、徐々に進行する場合が多いので、下段のモニタグラフで確認する。図7に示した例では、下段のグラフにより徐々に伝熱性能が低下していることがわかる。   FIG. 7 shows an example of monitoring the heat transfer coefficient estimated value. The upper part of FIG. 7 displays estimated values in a relatively short time range of 2 o'clock at 1 minute intervals. In the lower row, the transition for three months is displayed as an average value for each day. If a sudden leak occurs due to a crack in the heat transfer tube, it can be confirmed on the upper monitor graph. In addition, deterioration in heat transfer performance due to dirt on the heat transfer surface often progresses gradually, so check with the lower monitor graph. In the example shown in FIG. 7, it can be seen from the lower graph that the heat transfer performance gradually decreases.

このように本発明によれば、伝熱性能の低下や、漏洩発生を的確に評価できるので、真に必要な時のみ、機器の清掃や点検を実施することができる。そのため、過度な点検整備等の不必要な作業を低減することができる。これによって、設備の所有者または保守・管理者ともに、保守費用を削減することができる。   As described above, according to the present invention, since deterioration of heat transfer performance and occurrence of leakage can be accurately evaluated, cleaning and inspection of equipment can be performed only when it is truly necessary. Therefore, unnecessary work such as excessive inspection and maintenance can be reduced. Thereby, both the owner of the equipment or the maintenance / administrator can reduce the maintenance cost.

吸収冷凍機とガスタービン発電のコージェネシステム図。Cogeneration system diagram of absorption refrigerator and gas turbine power generation. 吸収冷凍機の冷却水系を表す構成図。The block diagram showing the cooling water system of an absorption refrigerator. 冷却水出口温度の時間変化を表す図。The figure showing the time change of a cooling water exit temperature. 吸収冷凍機の冷却水系診断の構成図。The block diagram of the cooling water system diagnosis of an absorption refrigerator. 冷却水量減少時の熱伝達率推定結果を表す図。The figure showing the heat transfer rate estimation result at the time of cooling water amount reduction | decrease. 吸収冷凍機の異常診断の構成図。The block diagram of the abnormality diagnosis of an absorption refrigerator. 熱伝達率推定値の変化を表す図。The figure showing the change of a heat transfer rate estimated value.

符号の説明Explanation of symbols

500…吸収式冷凍機、510…蒸発器、520…吸収器、530…縮器、540…再生器、550、555…熱交換器、560、565…流体ポンプ、800…吸収器モデル、801…モデル調整機能、802…熱伝達率推定機能、803…判定機能。
500 ... Absorption refrigerator, 510 ... Evaporator, 520 ... Absorber, 530 ... Condenser, 540 ... Regenerator, 550, 555 ... Heat exchanger, 560, 565 ... Fluid pump, 800 ... Absorber model, 801 ... Model adjustment function, 802... Heat transfer coefficient estimation function, 803.

Claims (6)

吸湿性化合物を有する水溶液を熱媒体により加熱し水蒸気を発生させる再生器、前記水蒸気を熱媒体の冷却水により凝縮させる凝縮器、該凝縮器より出た水を蒸発させ熱媒体の冷水を発生させる蒸発器、該蒸発器より出た水を高濃度の前記吸湿性化合物を含む水溶液に吸収させると共に前記凝縮器を出てクーリングタワーにより冷却された前記冷却水により前記水溶液を冷却する吸収器及び該吸収器より出た前記水溶液を前記再生器に戻す際に熱交換させる熱交換器の各機器を備えた吸収式冷凍機の異常診断方法において、
前記各機器のうちの1つの機器内に前記熱媒体を流通させる配管の伝熱特性を模擬した伝熱モデルと該伝熱モデルの対象となる前記機器内を流れる前記熱媒体の出入口の一方で実測される温度とにより前記配管内を流れる前記機器の前記熱媒体の出入口の他方の温度を計算する工程と、
該計算によって求められた前記温度と、前記計算によって求められた前記温度に対応する位置での実際に測定される前記配管内を流れる前記熱媒体の温度との差を指標として前記配管の伝熱特性の劣化の程度又は前記差の大きさに基づいて前記熱媒体の漏洩の有無を判定する工程とを有することを特徴とする吸収式冷凍機の異常診断方法。
A regenerator that heats an aqueous solution containing a hygroscopic compound with a heat medium to generate water vapor, a condenser that condenses the water vapor with cooling water of the heat medium, and evaporates water from the condenser to generate cold water of the heat medium. An evaporator that absorbs water from the evaporator into an aqueous solution containing a high concentration of the hygroscopic compound and cools the aqueous solution with the cooling water that exits the condenser and is cooled by a cooling tower; In the abnormality diagnosing method of the absorption refrigeration machine provided with each device of the heat exchanger for exchanging heat when returning the aqueous solution from the refrigerator to the regenerator,
Wherein the entrance of one of equipment the heat is subject to the heat transfer model and the heat transfer model simulating the heat transfer characteristics of the pipe for flowing the heat medium flowing through said device in the medium of the respective devices Calculating the other temperature of the inlet / outlet of the heat medium of the device flowing in the pipe by the actually measured temperature;
Heat transfer of the pipe using as an index the difference between the temperature obtained by the calculation and the temperature of the heat medium flowing in the pipe actually measured at a position corresponding to the temperature obtained by the calculation And determining whether or not the heat medium has leaked based on the degree of deterioration of characteristics or the magnitude of the difference.
吸湿性化合物を有する水溶液を熱媒体により加熱し水蒸気を発生させる再生器、前記水蒸気を熱媒体の冷却水により凝縮させる凝縮器、該凝縮器より出た水を蒸発させ熱媒体の冷水を発生させる蒸発器、該蒸発器より出た水を高濃度の前記吸湿性化合物を含む水溶液に吸収させると共に前記凝縮器を出てクーリングタワーにより冷却された前記冷却水により前記水溶液を冷却する吸収器及び該吸収器より出た前記水溶液を前記再生器に戻す際に熱交換させる熱交換器の各機器を備えた吸収式冷凍機の異常診断方法において、
前記各機器のうちの1つの機器内に前記熱媒体を流通させる配管の伝熱特性を模擬した伝熱モデルと該伝熱モデルの対象となる前記機器内を流れる前記熱媒体の出入口の一方で実測される温度とにより前記配管内を流れる前記機器の前記熱媒体の出入口の他方の温度を計算する工程と、
該計算によって求められた前記温度と、前記計算によって求められた前記温度に対応する位置での前記吸収式冷凍機の正常状態で実際に測定される前記配管内を流れる前記熱媒体の温度との差が少なくなるように前記伝熱モデルに設定した熱伝達率、伝熱面積及び熱伝達率と伝熱面積との積のいずれかからなる伝熱特性パラメータを調整して伝熱特性パラメータ設定値を求める工程と、
該調整された伝熱特性パラメータ設定値を用いて前記伝熱モデルで計算した前記温度と前記実際に測定された前記温度との差を指標として前記配管の伝熱特性の劣化の程度又は前記差の大きさに基づいて前記熱媒体の漏洩の有無を判定する工程とを有することを特徴とする吸収式冷凍機の異常診断方法。
A regenerator that heats an aqueous solution containing a hygroscopic compound with a heat medium to generate water vapor, a condenser that condenses the water vapor with cooling water of the heat medium, and evaporates water from the condenser to generate cold water of the heat medium. An evaporator that absorbs water from the evaporator into an aqueous solution containing a high concentration of the hygroscopic compound and cools the aqueous solution with the cooling water that exits the condenser and is cooled by a cooling tower; In the abnormality diagnosing method of the absorption refrigeration machine provided with each device of the heat exchanger for exchanging heat when returning the aqueous solution from the refrigerator to the regenerator,
Wherein the entrance of one of equipment the heat is subject to the heat transfer model and the heat transfer model simulating the heat transfer characteristics of the pipe for flowing the heat medium flowing through said device in the medium of the respective devices Calculating the other temperature of the inlet / outlet of the heat medium of the device flowing in the pipe by the actually measured temperature;
The temperature obtained by the calculation and the temperature of the heat medium flowing in the pipe actually measured in a normal state of the absorption chiller at a position corresponding to the temperature obtained by the calculation. Heat transfer characteristic parameter setting value by adjusting the heat transfer characteristic parameter set to any one of the heat transfer coefficient, heat transfer area and product of heat transfer coefficient and heat transfer area set in the heat transfer model so as to reduce the difference The process of seeking
Degree of deterioration of the heat transfer characteristics of the pipe or the difference using the difference between the temperature calculated by the heat transfer model using the adjusted heat transfer characteristic parameter setting value and the actually measured temperature as an index And determining whether or not the heat medium has leaked based on the size of the absorption medium .
吸湿性化合物を有する水溶液を熱媒体により加熱し水蒸気を発生させる再生器、前記水蒸気を熱媒体の冷却水により凝縮させる凝縮器、該凝縮器より出た水を蒸発させ熱媒体の冷水を発生させる蒸発器、該蒸発器より出た水を高濃度の前記吸湿性化合物を含む水溶液に吸収させると共に前記凝縮器を出てクーリングタワーにより冷却された前記冷却水により前記水溶液を冷却する吸収器及び該吸収器より出た前記水溶液を前記再生器に戻す際に熱交換させる熱交換器の各機器を備えた吸収式冷凍機の異常診断方法において、
前記各機器のうちの1つの機器内に前記熱媒体を流通させる配管の伝熱特性を模擬した伝熱モデルと該伝熱モデルの対象となる前記機器内を流れる前記熱媒体の出入口の一方で実測された温度とにより前記配管内を流れる前記機器の前記熱媒体の出入口の他方の温度を計算する工程と、
該計算によって求められた前記温度と、前記計算によって求められた前記温度に対応する位置での前記吸収式冷凍機の正常状態で実際に測定される前記配管内を流れる前記熱媒体の温度との差が少なくなるように前記伝熱モデルに設定した熱伝達率、伝熱面積及び熱伝達率と伝熱面積との積のいずれかからなる伝熱特性パラメータを調整して伝熱特性パラメータ設定値を求める工程と、
前記伝熱モデルと前記実際に測定された前記温度とに基づいて前記伝熱特性パラメータを計算して伝熱特性パラメータ計算値を求める工程と、
前記伝熱特性パラメータ計算値と前記伝熱特性パラメータ設定値との差を指標として前記配管の伝熱特性の劣化の程度又は前記差の大きさに基づいて前記熱媒体の漏洩の有無を判定する工程とを有することを特徴とする吸収式冷凍機の異常診断方法。
A regenerator that heats an aqueous solution containing a hygroscopic compound with a heat medium to generate water vapor, a condenser that condenses the water vapor with cooling water of the heat medium, and evaporates water from the condenser to generate cold water of the heat medium. An evaporator that absorbs water from the evaporator into an aqueous solution containing a high concentration of the hygroscopic compound and cools the aqueous solution with the cooling water that exits the condenser and is cooled by a cooling tower; In the abnormality diagnosing method of the absorption refrigeration machine provided with each device of the heat exchanger for exchanging heat when returning the aqueous solution from the refrigerator to the regenerator,
Wherein the entrance of one of equipment the heat is subject to the heat transfer model and the heat transfer model simulating the heat transfer characteristics of the pipe for flowing the heat medium flowing through said device in the medium of the respective devices Calculating the other temperature of the inlet / outlet of the heat medium of the device flowing in the pipe according to the actually measured temperature;
The temperature obtained by the calculation and the temperature of the heat medium flowing in the pipe actually measured in a normal state of the absorption chiller at a position corresponding to the temperature obtained by the calculation. Heat transfer characteristic parameter setting value by adjusting the heat transfer characteristic parameter set to any one of the heat transfer coefficient, heat transfer area and product of heat transfer coefficient and heat transfer area set in the heat transfer model so as to reduce the difference The process of seeking
Calculating the heat transfer characteristic parameter based on the heat transfer model and the actually measured temperature to obtain a heat transfer characteristic parameter calculated value;
Using the difference between the calculated value of the heat transfer characteristic parameter and the set value of the heat transfer characteristic parameter as an index, the presence or absence of leakage of the heat medium is determined based on the degree of deterioration of the heat transfer characteristic of the pipe or the magnitude of the difference And a method for diagnosing an abnormality of the absorption refrigerator.
吸湿性化合物を有する水溶液を熱媒体により加熱し水蒸気を発生させる再生器、前記水蒸気を熱媒体の冷却水により凝縮させる凝縮器、該凝縮器より出た水を蒸発させ熱媒体の冷水を発生させる蒸発器、該蒸発器より出た水を高濃度の前記吸湿性化合物を含む水溶液に吸収させると共に前記凝縮器を出てクーリングタワーにより冷却された前記冷却水により前記水溶液を冷却する吸収器及び該吸収器より出た前記水溶液を前記再生器に戻す際に熱交換させる熱交換器の各機器を備えた吸収式冷凍機の異常診断装置において、
前記各機器のうちの1つの機器内に前記熱媒体を流通させる配管の伝熱特性を模擬した伝熱モデルと該伝熱モデルの対象となる前記機器内を流れる前記熱媒体の出入口の一方で実測される温度とにより前記配管内を流れる前記機器の前記熱媒体の出入口の他方の温度を計算によって求める温度計算手段と、
該計算によって求められた前記温度と、前記計算によって求められた前記温度に対応する位置で実際に測定された前記配管内を流れる前記熱媒体の温度との差を指標として前記配管の伝熱特性の劣化の程度又は前記差の大きさに基づいて前記熱媒体の漏洩の有無を判定する異常判定手段とを有することを特徴とする吸収式冷凍機の異常診断装置。
A regenerator that heats an aqueous solution containing a hygroscopic compound with a heat medium to generate water vapor, a condenser that condenses the water vapor with cooling water of the heat medium, and evaporates water from the condenser to generate cold water of the heat medium. An evaporator that absorbs water from the evaporator into an aqueous solution containing a high concentration of the hygroscopic compound and cools the aqueous solution with the cooling water that exits the condenser and is cooled by a cooling tower; In the abnormality diagnosing device for an absorption refrigeration machine provided with each device of a heat exchanger for exchanging heat when returning the aqueous solution from the refrigerator to the regenerator,
Wherein the entrance of one of equipment the heat is subject to the heat transfer model and the heat transfer model simulating the heat transfer characteristics of the pipe for flowing the heat medium flowing through said device in the medium of the respective devices On the other hand, temperature calculation means for calculating the other temperature of the inlet / outlet of the heat medium of the device flowing in the pipe by the actually measured temperature;
It said temperature determined by said calculation, the pipe of the heat transfer the difference between the temperature of the heat medium flowing in said measured pipe in reality at a position corresponding to the temperature obtained by the calculation as an index An abnormality diagnosing device for an absorption refrigerating machine, comprising abnormality determining means for determining the presence or absence of leakage of the heat medium based on the degree of deterioration of characteristics or the magnitude of the difference.
吸湿性化合物を有する水溶液を熱媒体により加熱し水蒸気を発生させる再生器、前記水蒸気を熱媒体の冷却水により凝縮させる凝縮器、該凝縮器より出た水を蒸発させ熱媒体の冷水を発生させる蒸発器、該蒸発器より出た水を高濃度の前記吸湿性化合物を含む水溶液に吸収させると共に前記凝縮器を出てクーリングタワーにより冷却された前記冷却水により前記水溶液を冷却する吸収器及び該吸収器より出た前記水溶液を前記再生器に戻す際に熱交換させる熱交換器の各機器を備えた吸収式冷凍機の異常診断装置において、
前記各機器のうちの1つの機器内に前記熱媒体を流通させる配管の伝熱特性を模擬した伝熱モデルと該伝熱モデルの対象となる前記機器内を流れる前記熱媒体の出入口の一方で実測される温度とにより前記配管内を流れる前記機器の前記熱媒体の出入口の他方の温度を計算によって求める温度計算手段と、
該計算によって求められた前記温度と、前記計算によって求められた前記温度に対応する位置での前記吸収式冷凍機の正常状態で実際に測定された前記配管内を流れる前記熱媒体の温度との差が少なくなるように前記伝熱モデルに設定した熱伝達率、伝熱面積及び熱伝達率と伝熱面積との積のいずれかからなる伝熱特性パラメータを調整して伝熱特性パラメータ設定値を求めるパラメータ調整手段と、
該調整された伝熱特性パラメータ設定値を用いて前記伝熱モデルで計算した前記温度と前記実際に測定された前記温度との差を指標として前記配管の伝熱特性の劣化の程度又は前記差の大きさに基づいて前記熱媒体の漏洩の有無を判定する異常判定手段とを有することを特徴とする吸収式冷凍機の異常診断装置。
A regenerator that heats an aqueous solution containing a hygroscopic compound with a heat medium to generate water vapor, a condenser that condenses the water vapor with cooling water of the heat medium, and evaporates water from the condenser to generate cold water of the heat medium. An evaporator that absorbs water from the evaporator into an aqueous solution containing a high concentration of the hygroscopic compound and cools the aqueous solution with the cooling water that exits the condenser and is cooled by a cooling tower; In the abnormality diagnosing device for an absorption refrigeration machine provided with each device of a heat exchanger for exchanging heat when returning the aqueous solution from the refrigerator to the regenerator,
Wherein the entrance of one of equipment the heat is subject to the heat transfer model and the heat transfer model simulating the heat transfer characteristics of the pipe for flowing the heat medium flowing through said device in the medium of the respective devices On the other hand, temperature calculation means for calculating the other temperature of the inlet / outlet of the heat medium of the device flowing in the pipe by the actually measured temperature;
The temperature obtained by the calculation and the temperature of the heat medium flowing in the pipe actually measured in a normal state of the absorption chiller at a position corresponding to the temperature obtained by the calculation. Heat transfer characteristic parameter setting value by adjusting the heat transfer characteristic parameter set to any one of the heat transfer coefficient, heat transfer area and product of heat transfer coefficient and heat transfer area set in the heat transfer model so as to reduce the difference Parameter adjustment means for obtaining
Degree of deterioration of the heat transfer characteristics of the pipe or the difference using the difference between the temperature calculated by the heat transfer model using the adjusted heat transfer characteristic parameter setting value and the actually measured temperature as an index abnormality diagnosis apparatus for an absorption refrigerator, characterized in that it comprises an abnormality determination means for determining the presence or absence of leakage of the heat medium body based on the size of the.
吸湿性化合物を有する水溶液を熱媒体により加熱し水蒸気を発生させる再生器、前記水蒸気を熱媒体の冷却水により凝縮させる凝縮器、該凝縮器より出た水を蒸発させ熱媒体の冷水を発生させる蒸発器、該蒸発器より出た水を高濃度の前記吸湿性化合物を含む水溶液に吸収させると共に前記凝縮器を出てクーリングタワーにより冷却された前記冷却水により前記水溶液を冷却する吸収器及び該吸収器より出た前記水溶液を前記再生器に戻す際に熱交換させる熱交換器の各機器を備えた吸収式冷凍機の異常診断装置において、
前記各機器のうちの1つの機器内に前記熱媒体を流通させる配管の伝熱特性を模擬した伝熱モデルと該伝熱モデルの対象となる前記機器内を流れる前記熱媒体の出入口の一方で実測された温度とにより前記配管内を流れる前記機器の前記熱媒体の出入口の他方の温度を計算によって求める温度計算手段と、
該計算によって求められた前記温度と、前記計算によって求められた前記温度に対応する位置での前記吸収式冷凍機の正常状態で実際に測定される前記配管内を流れる前記熱媒体の温度との差が少なくなるように前記伝熱モデルに設定した熱伝達率、伝熱面積及び熱伝達率と伝熱面積との積のいずれかからなる伝熱特性パラメータを調整して伝熱特性パラメータ設定値を求める調整手段と、
前記伝熱モデルと前記実際に測定された前記温度とに基づいて前記伝熱特性パラメータを計算して伝熱特性パラメータ計算値を求める計算手段と、
前記伝熱特性パラメータ計算値と前記伝熱特性パラメータ設定値との差を指標として前記配管の伝熱特性の劣化の程度又は前記差の大きさに基づいて前記熱媒体の漏洩の有無を判定する異常判定手段とを有することを特徴とする吸収式冷凍機の異常診断装置。
A regenerator that heats an aqueous solution containing a hygroscopic compound with a heat medium to generate water vapor, a condenser that condenses the water vapor with cooling water of the heat medium, and evaporates water from the condenser to generate cold water of the heat medium. An evaporator that absorbs water from the evaporator into an aqueous solution containing a high concentration of the hygroscopic compound and cools the aqueous solution with the cooling water that exits the condenser and is cooled by a cooling tower; In the abnormality diagnosing device for an absorption refrigeration machine provided with each device of a heat exchanger for exchanging heat when returning the aqueous solution from the refrigerator to the regenerator,
Wherein the entrance of one of equipment the heat is subject to the heat transfer model and the heat transfer model simulating the heat transfer characteristics of the pipe for flowing the heat medium flowing through said device in the medium of the respective devices On the other hand, a temperature calculation means for calculating the other temperature of the inlet / outlet of the heat medium of the device flowing in the pipe by the actually measured temperature,
The temperature obtained by the calculation and the temperature of the heat medium flowing in the pipe actually measured in a normal state of the absorption chiller at a position corresponding to the temperature obtained by the calculation. Heat transfer characteristic parameter setting value by adjusting the heat transfer characteristic parameter set to any one of the heat transfer coefficient, heat transfer area and product of heat transfer coefficient and heat transfer area set in the heat transfer model so as to reduce the difference Adjusting means for obtaining
Calculation means for calculating the heat transfer characteristic parameter based on the heat transfer model and the actually measured temperature to obtain a heat transfer characteristic parameter calculation value;
Determining the presence or absence of leakage of the heat medium body based on the size of the extent or the difference of the degradation of heat transfer characteristics of the pipe a difference between the heat transfer characteristic parameter setting value and the heat transfer characteristic parameter calculated value as an index An abnormality diagnosing device for an absorption refrigeration machine, comprising:
JP2005131001A 2005-04-28 2005-04-28 Absorption diagnosis method and apparatus for absorption refrigerator Expired - Fee Related JP4231024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005131001A JP4231024B2 (en) 2005-04-28 2005-04-28 Absorption diagnosis method and apparatus for absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005131001A JP4231024B2 (en) 2005-04-28 2005-04-28 Absorption diagnosis method and apparatus for absorption refrigerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001056564A Division JP3690992B2 (en) 2001-03-01 2001-03-01 Abnormality diagnosis method and apparatus for thermal power plant

Publications (2)

Publication Number Publication Date
JP2005233609A JP2005233609A (en) 2005-09-02
JP4231024B2 true JP4231024B2 (en) 2009-02-25

Family

ID=35016749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005131001A Expired - Fee Related JP4231024B2 (en) 2005-04-28 2005-04-28 Absorption diagnosis method and apparatus for absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4231024B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3024254B1 (en) * 2014-07-25 2018-08-03 Suez Environnement METHOD FOR DETECTING ANOMALIES IN A DISTRIBUTION NETWORK, ESPECIALLY WATER DISTRIBUTION
JP6682301B2 (en) * 2016-03-08 2020-04-15 三菱重工サーマルシステムズ株式会社 Vapor compression refrigerator and control method thereof
CN110594983B (en) * 2019-09-20 2021-04-02 东北大学 Temperature control method suitable for small data center
JP7225182B2 (en) * 2020-10-28 2023-02-20 矢崎エナジーシステム株式会社 Absorption chiller control system and absorption chiller

Also Published As

Publication number Publication date
JP2005233609A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
US7631508B2 (en) Apparatus and method for determining refrigerant charge level
US8775123B2 (en) Method for determination of the coefficient of performanace of a refrigerating machine
Jia et al. Characteristic physical parameter approach to modeling chillers suitable for fault detection, diagnosis, and evaluation
JP6750091B2 (en) Air conditioner performance diagnostic device and performance diagnostic method
JP4231024B2 (en) Absorption diagnosis method and apparatus for absorption refrigerator
Tran et al. Refrigerant-based measurement method of heat pump seasonal performances
JP4301085B2 (en) Deterioration diagnosis system for heat source equipment
Bellanco et al. Common fault effects on a natural refrigerant, variable-speed heat pump
JP3690992B2 (en) Abnormality diagnosis method and apparatus for thermal power plant
JP2012172925A (en) Dirt evaluation method in coolant line in refrigeration system
JP4049610B2 (en) Abnormality detection device for heat pump heat exchanger
JP4672019B2 (en) Fuel gas supply facility and fuel gas moisture monitoring method
JP2018044701A (en) Capacity diagnosis system and capacity diagnosis method for absorptive refrigerator
JP5957242B2 (en) Ultrasonic flowmeter simple diagnostic device
JP4253648B2 (en) Performance evaluation method and diagnostic system of absorption chiller / heater
JP2007322051A (en) Heat pump type water heater
JP6357954B2 (en) Heat loss measurement system for steam piping and its arithmetic unit
JP6900303B2 (en) Refrigerator performance diagnostic system
JP4694185B2 (en) Method for measuring input energy of equipment and method for measuring steam flow rate
JP3083930B2 (en) Failure diagnosis system for absorption refrigerator
JP3054553B2 (en) Absorption chiller / heater failure diagnosis device
JPH0791764A (en) Cooling water flow rate estimating system for absorption type chilled and warm water machine
KR20100007234A (en) Diagnostic equipment of cooling system, cooling system having the same and diagnostic method of cooling system
JP6948756B1 (en) Performance diagnosis method for absorption chiller-heater
JP7486008B1 (en) Determination device, container refrigeration device, container, determination system, determination method, and program

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081204

R150 Certificate of patent or registration of utility model

Ref document number: 4231024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees