JP3054553B2 - Absorption chiller / heater failure diagnosis device - Google Patents

Absorption chiller / heater failure diagnosis device

Info

Publication number
JP3054553B2
JP3054553B2 JP6187756A JP18775694A JP3054553B2 JP 3054553 B2 JP3054553 B2 JP 3054553B2 JP 6187756 A JP6187756 A JP 6187756A JP 18775694 A JP18775694 A JP 18775694A JP 3054553 B2 JP3054553 B2 JP 3054553B2
Authority
JP
Japan
Prior art keywords
concentrated liquid
condenser
cooling water
concentration
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6187756A
Other languages
Japanese (ja)
Other versions
JPH0829027A (en
Inventor
芳男 小澤
雅裕 古川
靖治 黒木
昌司 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6187756A priority Critical patent/JP3054553B2/en
Priority to US08/392,332 priority patent/US5623426A/en
Priority to CNB951006517A priority patent/CN1154824C/en
Priority to KR1019950008214A priority patent/KR100317155B1/en
Publication of JPH0829027A publication Critical patent/JPH0829027A/en
Application granted granted Critical
Publication of JP3054553B2 publication Critical patent/JP3054553B2/en
Priority to CNB01117613XA priority patent/CN1153035C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、吸収式冷温水機の故障
を診断する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for diagnosing a failure of an absorption chiller / heater.

【0002】[0002]

【従来の技術】吸収式冷温水機は、図5に示す如く、上
胴(1)に配置された凝縮器(11)及び低温再生器(12)、下
胴(2)に配置された蒸発器(21)及び吸収器(22)、バーナ
(31)を具えた高温再生器(3)、高温熱交換器(4)、低温
熱交換器(5)等を相互に配管接続し、吸収液ポンプ(6)
によって、吸収液を高温再生器(3)、低温再生器(12)及
び吸収器(22)の間で循環させ、冷凍サイクル或いは放熱
サイクルを実現するものである。蒸発器(21)及び凝縮器
(11)を貫通する冷却水配管には、クーリングタワー(図
示省略)からの冷却水が流れる。
2. Description of the Related Art As shown in FIG. 5, an absorption chiller / heater has a condenser (11) and a low-temperature regenerator (12) disposed on an upper body (1) and an evaporator disposed on a lower body (2). Vessel (21) and absorber (22), burner
A high-temperature regenerator (3) equipped with (31), a high-temperature heat exchanger (4), a low-temperature heat exchanger (5), etc., are connected to each other by piping, and an absorbent pump (6).
Thus, the absorbing liquid is circulated between the high-temperature regenerator (3), the low-temperature regenerator (12) and the absorber (22) to realize a refrigeration cycle or a heat release cycle. Evaporator (21) and condenser
Cooling water from a cooling tower (not shown) flows through the cooling water pipe passing through (11).

【0003】ところで、吸収式冷温水機においては、冷
却水の汚れ、吸収液循環量の異常、真空度の異常、吸収
液の冷媒への混入(冷媒混入)等、各種の異常が発生する
虞れがある。冷却水汚れが進行すると、冷却水配管の内
面にごみ等の異物が付着して熱伝達率が低下し、吸収器
(22)における冷却効果が不十分となるので、吸収液の温
度が上昇し、下胴(2)の蒸気圧力が高くなって、冷凍能
力が低下する。この結果、目標温度の冷水を供給するた
めに、高温再生器(3)での入熱量が増大して、吸収液の
濃度が上昇することとなる。
In the meantime, in the absorption type chiller / heater, various abnormalities may occur, such as contamination of the cooling water, an abnormality in the circulating amount of the absorbing liquid, an abnormality in the degree of vacuum, and mixing of the absorbing liquid into the refrigerant (refrigerant mixing). There is. As the cooling water stain progresses, foreign matter such as dust adheres to the inner surface of the cooling water pipe, lowering the heat transfer coefficient, and
Since the cooling effect in (22) becomes insufficient, the temperature of the absorbing liquid increases, the steam pressure in the lower body (2) increases, and the refrigeration capacity decreases. As a result, the amount of heat input to the high-temperature regenerator (3) increases in order to supply the cold water at the target temperature, and the concentration of the absorbing liquid increases.

【0004】冷媒に吸収液が混入すると、冷媒の沸点が
上がって、蒸発器(21)及び吸収器(22)の能力低下を招来
する。又、下胴(2)の真空度が低下した場合も蒸発器(2
1)及び吸収器(22)の能力が低下することになる。この結
果、同様に高温再生器(3)での入熱量が増大して、吸収
液の濃度が上昇することとなる。
[0004] When the absorbing liquid is mixed with the refrigerant, the boiling point of the refrigerant rises and the performance of the evaporator (21) and the absorber (22) is reduced. Also, when the degree of vacuum in the lower body (2) is reduced, the evaporator (2) is also used.
1) and the capacity of the absorber (22) will be reduced. As a result, the amount of heat input to the high-temperature regenerator (3) similarly increases, and the concentration of the absorbing solution increases.

【0005】上述の如く、各種の異常が吸収液濃度の上
昇を引き起こすため、吸収式冷温水機の全体的な異常の
程度を検知するべく、吸収液濃度を監視することが行な
われている。特に、低温再生器(12)から低温熱交換器
(5)を経て吸収器(22)へ供給される吸収液(濃液)の濃度
の上昇は、吸収液が結晶化する直接の原因となり、これ
によって冷温水機の運転停止を招来する虞れがあるた
め、この様な異常を監視する指標として、濃液濃度が用
いられている。
As described above, since various abnormalities cause an increase in the concentration of the absorbing solution, the concentration of the absorbing solution is monitored in order to detect the degree of the overall abnormality of the absorption type chiller / heater. In particular, the low-temperature heat exchanger (12)
The increase in the concentration of the absorbing liquid (concentrated liquid) supplied to the absorber (22) through (5) directly causes the crystallization of the absorbing liquid, which may cause the operation of the water heater / heater to be stopped. Therefore, the concentration of the concentrated liquid is used as an index for monitoring such an abnormality.

【0006】図4は、吸収式冷温水機が正常な運転状態
にあるときの冷凍負荷と濃液濃度の関係を、冷却水入口
温度をパラメータとしてグラフ化したものである。濃液
濃度の測定値と図4に示す濃液濃度の正常値との偏差を
算出し、該濃液濃度偏差が所定の評価基準値を上回った
とき、これを異常の発生と判断することが出来る。
FIG. 4 is a graph showing the relationship between the refrigeration load and the concentration of the concentrated liquid when the absorption chiller / heater is in a normal operation state, using the cooling water inlet temperature as a parameter. A deviation between the measured value of the concentrated solution concentration and the normal value of the concentrated solution concentration shown in FIG. 4 is calculated, and when the concentrated solution concentration deviation exceeds a predetermined evaluation reference value, it is determined that an abnormality has occurred. I can do it.

【0007】一方、凝縮器(11)や吸収器(22)等の各種熱
交換器の異常を検出するために、下記数2で表わされる
異常度Aを定義して、該異常度に基づいて各種故障を診
断することが行なわれる。
On the other hand, in order to detect an abnormality of various heat exchangers such as the condenser (11) and the absorber (22), an abnormality degree A represented by the following equation 2 is defined, and based on the abnormality degree, Diagnosis of various failures is performed.

【数2】A=(ΔT−ΔTn)/ΔTn ここで、ΔTは対数平均温度差の測定値、ΔTnは対数
平均温度差の正常値である。
A = (ΔT−ΔTn) / ΔTn where ΔT is a measured value of the logarithmic average temperature difference, and ΔTn is a normal value of the logarithmic average temperature difference.

【0008】[0008]

【発明が解決しようとする課題】ところで、吸収器(22)
及び凝縮器(11)内の冷却水配管を流れる冷却水は、クー
リングタワーとの間を循環する過程で外気と接触するた
め、塵や埃等の異物が混入することは避けることが出来
ない。これらの異物は、運転時間の経過に伴って冷却水
配管の内面に付着して、熱伝達率を低下させることにな
る。この様な冷却水汚れの問題は、冷温水機自体の故障
に起因する冷媒混入や真空異常の問題と本質的に異なる
ため、冷却水汚れとそれ以外の異常とは区別することが
妥当である。
The absorber (22)
In addition, since the cooling water flowing through the cooling water pipe in the condenser (11) comes into contact with the outside air in the process of circulating between the cooling tower and the cooling tower, it is inevitable that foreign matters such as dust and dirt are mixed. These foreign substances adhere to the inner surface of the cooling water pipe as the operation time elapses, and lower the heat transfer coefficient. Since the problem of such cooling water contamination is essentially different from the problem of refrigerant mixing and vacuum abnormality caused by the failure of the chiller / heater itself, it is appropriate to distinguish the cooling water contamination from other abnormalities. .

【0009】しかるに従来の故障診断においては、冷却
水汚れとそれ以外の原因を区別することが出来なかった
ため、的確な故障診断が困難である問題があった。本発
明の目的は、濃液濃度の異常を検出する際に、冷却水汚
れによる影響を排除することが出来る故障診断装置を提
供し、これによって的確な故障診断を実現することであ
る。
However, in the conventional failure diagnosis, it was not possible to distinguish between cooling water contamination and other causes, and thus there was a problem that accurate failure diagnosis was difficult. SUMMARY OF THE INVENTION An object of the present invention is to provide a failure diagnosis device that can eliminate the influence of cooling water contamination when detecting an abnormality in the concentration of a concentrated liquid, thereby realizing accurate failure diagnosis.

【0010】[0010]

【課題を解決する為の手段】本発明に係る吸収式冷温水
機の故障診断装置は、凝縮器にて熱交換を行なう冷媒と
冷却水の温度を測定する温度測定手段と、温度測定手段
による測定データに基づいて、冷媒と冷却水の平均温度
差を表わす温度差データを算出し、該温度差データをそ
の正常値と対比して、凝縮器の異常度を表わす異常度デ
ータを算出する凝縮器異常度データ算出手段と、濃液濃
度を測定又は測定データに基づく推定によって導出する
濃液濃度導出手段と、導出された濃液濃度とその正常値
の偏差を算出する濃液濃度偏差算出手段と、算出された
凝縮器異常度データの大きさに応じて、算出された濃液
濃度偏差を修正する濃液濃度偏差修正手段とを具えてい
る。
SUMMARY OF THE INVENTION A failure diagnosis apparatus for an absorption type chiller / heater according to the present invention comprises a temperature measuring means for measuring the temperatures of a refrigerant and a cooling water which exchange heat in a condenser, and a temperature measuring means. Based on the measurement data, temperature difference data representing the average temperature difference between the refrigerant and the cooling water is calculated, and the temperature difference data is compared with its normal value to calculate abnormality degree data representing the degree of abnormality of the condenser. Device abnormality degree data calculating means, a concentrated liquid concentration deriving means for deriving the concentrated liquid concentration by measurement or estimation based on the measured data, and a concentrated liquid concentration deviation calculating means for calculating a deviation between the derived concentrated liquid concentration and a normal value thereof And a concentrated liquid concentration deviation correcting means for correcting the calculated concentrated liquid concentration deviation according to the size of the calculated condenser abnormality degree data.

【0011】具体的構成において、温度差データとして
は対数平均温度差、異常度データとしては前記数2で定
義される異常度Aを採用することが出来る。
In a specific configuration, the logarithmic average temperature difference can be used as the temperature difference data, and the degree of abnormality A defined by the equation 2 can be used as the degree of abnormality data.

【0012】[0012]

【作用】吸収式冷温水機において、冷却水は、吸収器(2
2)を通過した後、凝縮器(11)を通過する。従って、冷却
水汚れが発生した場合、吸収器(22)のみならず、凝縮器
(11)にもその影響が現われる。ところで、一般に凝縮器
(11)は上胴(1)に配置されて、下胴(2)の吸収器(22)と
は隔壁で分離されている。従って、吸収器(22)の真空異
常や冷媒混入の影響は凝縮器(11)には現われず、凝縮器
(11)及び吸収器(22)の異常の原因としては、冷却水汚れ
が共通している。このため、凝縮器(11)及び吸収器(22)
の異常度は、冷却水汚れに関して互いに連動しており、
両者の間に一定の相関が存在することになる。一方、吸
収器(22)については、冷却水汚れが発生すると、前述の
如く冷却水配管の熱伝達率が低下して、吸収器(22)にお
ける冷却効果が不十分となる結果、濃液濃度偏差が増大
する。
[Action] In the absorption type chiller / heater, the cooling water is supplied to the absorber (2
After passing through 2), it passes through a condenser (11). Therefore, when cooling water contamination occurs, not only the absorber (22) but also the condenser
The effect appears in (11). By the way, generally a condenser
(11) is arranged on the upper body (1) and is separated from the absorber (22) of the lower body (2) by a partition. Therefore, the vacuum abnormality of the absorber (22) and the influence of refrigerant mixing do not appear in the condenser (11).
As a cause of the abnormality of (11) and the absorber (22), the contamination of cooling water is common. Therefore, the condenser (11) and the absorber (22)
Abnormalities are linked to each other for cooling water contamination,
There will be a certain correlation between the two. On the other hand, as for the absorber (22), when the cooling water is contaminated, the heat transfer coefficient of the cooling water pipe is reduced as described above, and the cooling effect in the absorber (22) becomes insufficient. The deviation increases.

【0013】この様に、凝縮器異常度の変化と濃液濃度
偏差の変化は、冷却水汚れに関して互いに連動してお
り、両者の間には一定の相関が存在する。図3は両者の
相関関係を定性的に表わしたものであり、冷却水汚れ以
外の異常を全て排除した運転状態において、時間の経過
に伴って、即ち冷却水汚れの進行に伴って、凝縮器(11)
の異常度Acondと濃液濃度偏差dDs_dcoとが
互いに一定の比率で増大している様子を表わしている。
従って、凝縮器異常度に適切な補正係数を乗算すること
によって、冷却水汚れのみに起因する濃液濃度の偏差を
推定することが出来るのである。
As described above, the change in the degree of abnormality of the condenser and the change in the concentration deviation of the concentrated liquid are linked to each other with respect to the contamination of the cooling water, and there is a certain correlation between the two. FIG. 3 qualitatively shows the correlation between the two. In an operation state in which all the abnormalities except for the cooling water contamination are eliminated, the condenser with time elapses, that is, with the progress of the cooling water contamination. (11)
The abnormal degree Acond and the concentrated solution concentration deviation dDs_dco are increasing at a constant rate.
Therefore, by multiplying the condenser abnormality degree by an appropriate correction coefficient, it is possible to estimate the deviation of the concentration of the concentrated liquid caused only by the cooling water contamination.

【0014】そこで本発明においては、凝縮器(11)の異
常度を表わす異常度データを算出し、該異常度データの
大きさに応じて、濃液濃度偏差を修正する。データの修
正量は、例えば凝縮器異常度データに補正係数を乗じて
算出することが可能であって、この場合、濃液濃度偏差
から該修正量を減算して、修正された濃液濃度偏差を得
る。
Therefore, in the present invention, the abnormal degree data representing the abnormal degree of the condenser (11) is calculated, and the concentrated liquid concentration deviation is corrected according to the magnitude of the abnormal degree data. The correction amount of the data can be calculated, for example, by multiplying the condenser abnormality degree data by a correction coefficient. In this case, the correction amount is subtracted from the concentrated concentration deviation to obtain the corrected concentrated concentration deviation. Get.

【0015】一般的には、修正された濃液濃度偏差dD
s′は下記数3に示す様に、測定に基づく濃液濃度偏差
dDsから、冷却水汚れのみに起因する濃液濃度偏差d
Ds_dcoを差し引くことによって得られる。
In general, the corrected concentrated concentration deviation dD
s' is, as shown in the following equation 3, a concentrated liquid concentration deviation dDs caused only by the cooling water stain from the concentrated liquid concentration deviation dDs based on the measurement.
It is obtained by subtracting Ds_dco.

【数3】dDs′=dDs−dDs_dco## EQU3 ## dDs' = dDs-dDs_dco

【0016】ここで濃液濃度偏差dDs_dcoは下記
数4の如く、凝縮器の異常度Acondの関数fとして
規定することが出来、該関数は予め実験的に決定され
る。
Here, the concentrated liquid concentration deviation dDs_dco can be defined as a function f of the degree of abnormality Acond of the condenser as shown in the following equation 4, and this function is experimentally determined in advance.

【数4】dDs_dco=f(Acond)## EQU4 ## dDs_dco = f (Acond)

【0017】図2は、冷却水汚れ及びその他の異常が発
生した場合の濃液濃度偏差の変化において、該変化に含
まれる冷却水汚れの影響とそれ以外の原因による影響を
表わしたもので、濃液濃度偏差から上記数4によって算
出される冷却水汚れの影響を差し引くことによって、冷
却水汚れ以外の影響を定量的に把握することが出来る。
FIG. 2 shows the influence of the cooling water stain included in the change of the concentrated liquid concentration deviation when the cooling water stain and other abnormalities occur, and the influence of other causes. By subtracting the influence of the cooling water stain calculated by the above equation 4 from the concentrated liquid concentration deviation, the influence other than the cooling water stain can be quantitatively grasped.

【0018】[0018]

【発明の効果】本発明に係る吸収式冷温水機の故障診断
装置によれば、濃液濃度の異常を判定する際に、冷却水
汚れによる影響を排除することが出来ので、これによっ
て的確な故障診断が可能となる。
According to the failure diagnosis apparatus for an absorption type water heater / cooler according to the present invention, the influence of cooling water contamination can be eliminated when judging the abnormality of the concentrated liquid concentration. Failure diagnosis can be performed.

【0019】[0019]

【実施例】以下、本発明を図5に示す二重効用型の吸収
式冷温水機に実施した一例につき、図面に沿って詳述す
る。該冷温水機は冷媒として水、吸収液として臭化リチ
ウムを用いており、冷水供給時には、高温再生器(3)に
て蒸発した冷媒が低温再生器(12)を経て凝縮器(11)へ流
れ、凝縮器(11)内を流れる冷却水と熱交換して凝縮液化
した後、蒸発器(21)へ向けて流れる。そして、液化した
冷媒は蒸発器(21)内を流れる冷水と熱交換して蒸発し、
その際の気化熱によって蒸発器(21)内を流れる冷水が冷
却される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a double effect absorption type chiller / heater shown in FIG. 5 will be described in detail with reference to the drawings. The chiller / heater uses water as a refrigerant and lithium bromide as an absorbing liquid. When supplying cold water, the refrigerant evaporated in the high-temperature regenerator (3) passes through the low-temperature regenerator (12) to the condenser (11). The heat exchanges with the cooling water flowing in the condenser (11) to condense and liquefy, and then flows toward the evaporator (21). Then, the liquefied refrigerant evaporates by exchanging heat with cold water flowing in the evaporator (21),
Cold water flowing in the evaporator (21) is cooled by the heat of vaporization at that time.

【0020】蒸発器(21)にて蒸発した冷媒は吸収器(22)
にて吸収液に吸収される。冷媒を吸収して濃度が薄くな
った吸収液は、吸収液ポンプ(6)によって低温熱交換器
(5)及び高温熱交換器(4)を経て高温再生器(3)へ送ら
れる。高温再生器(3)へ送られた吸収液は、バーナ(31)
によって加熱されて冷媒が蒸発し、中濃度の吸収液が高
温熱交換器(4)を経て低温再生器(12)へ流れる。低温再
生器(12)にて、吸収液は高温再生器(3)からの冷媒蒸気
によって加熱され、更に冷媒蒸気が分離されて濃度が高
くなる。高濃度になった吸収液は、低温熱交換器(5)を
経て吸収器(22)へ送られ、散布される。
The refrigerant evaporated in the evaporator (21) is supplied to the absorber (22)
Is absorbed by the absorbing liquid. The absorption liquid whose concentration has been reduced by absorbing the refrigerant is subjected to a low-temperature heat exchanger by an absorption liquid pump (6).
It is sent to the high temperature regenerator (3) via (5) and the high temperature heat exchanger (4). The absorption liquid sent to the high temperature regenerator (3) is burner (31)
As a result, the refrigerant evaporates and the medium-absorbent liquid flows through the high-temperature heat exchanger (4) to the low-temperature regenerator (12). In the low-temperature regenerator (12), the absorbing liquid is heated by the refrigerant vapor from the high-temperature regenerator (3), and the refrigerant vapor is further separated to increase the concentration. The high-concentration absorbent is sent to the absorber (22) via the low-temperature heat exchanger (5) and is sprayed.

【0021】吸収器(22)、蒸発器(21)、凝縮器(11)等の
熱交換器に接続された配管には、冷却水入口温度センサ
ー(71)、冷却水中間温度センサー(72)、吸収液入口温度
センサー(73)、吸収液出口温度センサー(74)、冷水入口
温度センサー(76)、冷水出口温度センサー(77)、凝縮冷
媒温度センサー(79)、冷却水出口温度センサー(70)、低
温再生器温度センサー(701)、上胴圧力センサー(702)等
からなるセンサー群が配備されている。
A piping connected to a heat exchanger such as an absorber (22), an evaporator (21), and a condenser (11) includes a cooling water inlet temperature sensor (71) and a cooling water intermediate temperature sensor (72). , Absorbent inlet temperature sensor (73), Absorbent outlet temperature sensor (74), Chilled water inlet temperature sensor (76), Chilled water outlet temperature sensor (77), Condensed refrigerant temperature sensor (79), Cooling water outlet temperature sensor (70 ), A low-temperature regenerator temperature sensor (701), an upper body pressure sensor (702), and the like.

【0022】図1は本発明の故障診断装置の構成を示し
ており、上述のセンサー群(7)から得られる各種測定デ
ータは、マイクロコンピュータからなる演算装置(8)へ
供給されて、後述の如く異常検出が行なわれ、故障の判
定が行なわれる。該判定結果は、ディスプレイ、プリン
ター、警告ランプ等の表示装置(9)へ出力される。
FIG. 1 shows a configuration of a failure diagnosis apparatus according to the present invention. Various measurement data obtained from the above-mentioned sensor group (7) are supplied to an arithmetic unit (8) composed of a microcomputer, and are described later. The abnormality detection is performed as described above, and the failure is determined. The determination result is output to a display device (9) such as a display, a printer, and a warning lamp.

【0023】演算装置(8)は、夫々コンピュータプログ
ラムから構成される後述の計算回路(81)〜(89)と異常検
出回路(80)を具えている。上胴飽和蒸気温度計算回路(8
1)は、上胴圧力センサー(702)から得られる上胴内の圧
力Pupから、下記数5を用いて上胴飽和蒸気温度Tc
ondを算出するものである。
The arithmetic unit (8) includes calculation circuits (81) to (89) to be described later, each of which is constituted by a computer program, and an abnormality detection circuit (80). Upper body saturated steam temperature calculation circuit (8
1) is the upper body saturated steam temperature Tc from the pressure Pup in the upper body obtained from the upper body pressure sensor (702) using the following equation (5).
on is calculated.

【0024】[0024]

【数5】Tcond=[−b+{b2−4・c・(a−lnPup)}0.5]/{2
・(a−lnPup)}−237.0 ここでa、b、cは定数であって夫々、8.0509、−168
5.1、−90991に設定される。
Tcond = [− b + {b 2 −4 · c · (a−lnPup)} 0.5 ] / {2
・ (A−lnPup)} − 237.0 where a, b, and c are constants and are 8.0509, −168, respectively.
Set to 5.1, -90991.

【0025】凝縮器対数平均温度差計算回路(82)は、上
胴飽和蒸気温度計算回路(81)から得られる上胴飽和蒸気
温度Tcondと、冷却水出口温度センサー(70)から得
られる冷却水出口温度Tco_outと、冷却水中間温
度センサー(72)から得られる冷却水中間温度Tco_m
idから、下記数6を用いて凝縮器(11)の対数平均温度
差ΔTcondを算出するものである。
The condenser logarithmic average temperature difference calculating circuit (82) includes an upper body saturated steam temperature Tcond obtained from the upper body saturated steam temperature calculating circuit (81) and a cooling water obtained from the cooling water outlet temperature sensor (70). Outlet temperature Tco_out and cooling water intermediate temperature Tco_m obtained from cooling water intermediate temperature sensor (72)
The logarithmic average temperature difference ΔTcond of the condenser (11) is calculated from the id by using the following equation (6).

【0026】[0026]

【数6】ΔTcond={(Tcond−Tco_mid)+(Tcond−Tco_ou
t)}/ln{(Tcond−Tco_mid)/(Tcond−Tco_out)}
ΔTcond = {(Tcond−Tco_mid) + (Tcond−Tco_ou)
t)} / ln {(Tcond-Tco_mid) / (Tcond-Tco_out)}

【0027】冷凍負荷計算回路(83)は、冷水流量センサ
ー(78)から得られる冷水流量Vcと、冷水出口温度セン
サー(77)から得られる冷水出口温度Tc_outと、冷
水入口温度センサー(76)から得られる冷水入口温度Tc
_inから、下記数7を用いて冷凍負荷Lcを算出する
ものである。
The refrigeration load calculation circuit (83) calculates the chilled water flow rate Vc obtained from the chilled water flow rate sensor (78), the chilled water outlet temperature Tc_out obtained from the chilled water outlet temperature sensor (77), and the chilled water inlet temperature sensor (76). Obtained cold water inlet temperature Tc
_In is used to calculate the refrigeration load Lc using Equation 7 below.

【0028】[0028]

【数7】Lc=Vc×(Tc_out−Tc_in)Lc = Vc × (Tc_out−Tc_in)

【0029】凝縮器対数平均温度差正常値計算回路(84)
は、冷凍負荷計算回路(83)から得られる冷凍負荷Lcか
ら、下記数8を用いて凝縮器(11)の対数平均温度差の正
常値ΔTcond_nを算出するものである。
A circuit for calculating a normal value of the logarithmic average temperature difference of the condenser (84)
Calculates the normal value ΔTcond_n of the logarithmic average temperature difference of the condenser (11) from the refrigeration load Lc obtained from the refrigeration load calculation circuit (83) using the following equation (8).

【0030】[0030]

【数8】ΔTcond_n=A×Lc ここで、Aは吸収式冷温水機の特性によって決まる定数
であって、実験的に求められる。
ΔTcond_n = A × Lc Here, A is a constant determined by the characteristics of the absorption-type water heater / cooler, and is obtained experimentally.

【0031】濃液濃度推定回路(85)は、低温再生器温度
センサー(701)から得られる低温再生器温度Ts_hi
と、上胴飽和蒸気温度計算回路(81)から得られる上胴飽
和蒸気温度Tcondから、下記数9を用いて濃液濃度
Dsを推定するものである。
The concentrated liquid concentration estimating circuit (85) calculates the low temperature regenerator temperature Ts_hi obtained from the low temperature regenerator temperature sensor (701).
And the concentration Ds of the concentrated liquid is estimated from the upper body saturated steam temperature Tcond obtained from the upper body saturated steam temperature calculation circuit (81) using the following equation (9).

【0032】[0032]

【数9】 Ds={(Ts_hi−283.0)×139.0}/(Tcond+273.0)−102.4Ds = {(Ts_hi−283.0) × 139.0} / (Tcond + 273.0) −102.4

【0033】濃液濃度正常値計算回路(86)は、冷却水入
口温度センサー(71)からの冷却水入口温度Tco_in
と、冷凍負荷計算回路(83)からの冷凍負荷Lcから、図
4に示すグラフを用いて濃液濃度の正常値Ds_nを算
出するものである。ここで、図4のグラフは、複数の冷
却水入口温度の夫々について濃液濃度の変化が2次関数
で近似されており、補間計算によって任意の冷却水入口
温度での濃液濃度が算出される。
The concentrated liquid concentration normal value calculation circuit (86) calculates the cooling water inlet temperature Tco_in from the cooling water inlet temperature sensor (71).
Then, the normal value Ds_n of the concentration of the concentrated liquid is calculated from the refrigeration load Lc from the refrigeration load calculation circuit (83) using the graph shown in FIG. Here, in the graph of FIG. 4, the change of the concentrated liquid concentration is approximated by a quadratic function for each of the plurality of cooling water inlet temperatures, and the concentrated liquid concentration at an arbitrary cooling water inlet temperature is calculated by interpolation calculation. You.

【0034】凝縮器異常度計算回路(87)は、凝縮器対数
平均温度差計算回路(82)から得られる凝縮器(11)の対数
平均温度差ΔTcondと、凝縮器対数平均温度差正常
値計算回路(84)から得られる凝縮器(11)の対数平均温度
差の正常値ΔTcond_nから、下記数10を用いて
凝縮器(11)の異常度Acondを算出するものである。
The condenser abnormality degree calculating circuit (87) calculates a logarithmic average temperature difference ΔTcond of the condenser (11) obtained from the condenser logarithmic average temperature difference calculating circuit (82), and calculates a normal value of the condenser logarithmic average temperature difference. From the normal value ΔTcond_n of the logarithmic average temperature difference of the condenser (11) obtained from the circuit (84), the degree of abnormality Acond of the condenser (11) is calculated using the following equation (10).

【0035】[0035]

【数10】Acond=(ΔTcond−ΔTcond
_n)/ΔTcond_n
Acond = (ΔTcond−ΔTcond)
_N) / ΔTcond_n

【0036】濃液濃度偏差計算回路(88)は、濃液濃度推
定回路(85)から得られる濃液濃度Dsと、濃液濃度正常
値計算回路(86)から得られる濃液濃度の正常値Ds_n
から、下記数11を用いて濃液濃度偏差dDsを算出す
るものである。
The concentrated liquid concentration deviation calculating circuit (88) includes a concentrated liquid concentration Ds obtained from the concentrated liquid concentration estimating circuit (85) and a concentrated liquid concentration normal value obtained from the concentrated liquid concentration normal value calculating circuit (86). Ds_n
Is used to calculate the concentrated solution concentration deviation dDs using the following equation (11).

【0037】[0037]

【数11】dDs=Ds−Ds_n## EQU11 ## dDs = Ds-Ds_n

【0038】更に、修正濃液濃度偏差計算回路(89)は、
濃液濃度偏差計算回路(88)から得られる濃液濃度偏差d
Dsと、凝縮器異常度計算回路(87)から得られる凝縮器
異常度Acondから、下記数12を用いて修正された
濃液濃度偏差dDs′を算出するものである。
Further, the corrected concentrated concentration deviation calculating circuit (89)
The concentrated liquid concentration deviation d obtained from the concentrated liquid concentration deviation calculation circuit (88)
From Ds and the condenser abnormality degree Acond obtained from the condenser abnormality degree calculation circuit (87), the concentrated liquid concentration deviation dDs' corrected using the following equation 12 is calculated.

【0039】[0039]

【数12】dDs′=dDs−k×Acond ここで、kは、図3に示す凝縮器異常度Acondと冷
却水汚れのみによる濃液濃度偏差dDs_dcoの比
(例えば0.01)であって、予め実験的に決定される。
DDs' = dDs-k.times.Acond Here, k is a ratio between the degree of abnormality Acon of the condenser shown in FIG.
(For example, 0.01) and is determined experimentally in advance.

【0040】異常検出回路(80)は、修正濃液濃度偏差計
算回路(89)から得られる修正された濃液濃度偏差dD
s′を所定の閾値と比較して、冷却水汚れ以外の異常の
程度を表わす異常信号を作成し、表示装置(9)へ出力す
る。 例えば、dDs′<t1のとき、 “正常” t1≦dDs′≦t2のとき、“やや異常” dDs′>t2のとき、 “異常” と判定するのである。ここで、t1、t2は所定の閾値
である。
The abnormality detecting circuit (80) has a corrected concentrated liquid concentration deviation dD obtained from the corrected concentrated liquid concentration deviation calculating circuit (89).
By comparing s' with a predetermined threshold value, an abnormal signal indicating the degree of abnormalities other than the cooling water contamination is created and output to the display device (9). For example, when dDs ′ <t1, “normal” When t1 ≦ dDs ′ ≦ t2, “slightly abnormal” When dDs ′> t2, it is determined as “abnormal”. Here, t1 and t2 are predetermined thresholds.

【0041】上記故障診断装置によれば、冷却水汚れの
影響を除去した濃液濃度偏差が得られるので、該濃液濃
度偏差を指標とすることによって、的確な故障診断を行
なうことが出来る。
According to the above fault diagnosis apparatus, since the concentrated liquid concentration deviation from which the influence of the cooling water contamination is removed can be obtained, accurate failure diagnosis can be performed by using the concentrated liquid concentration deviation as an index.

【0042】上記実施例の説明は、本発明を説明するた
めのものであって、特許請求の範囲に記載の発明を限定
し、或は範囲を減縮する様に解すべきではない。又、本
発明の各部構成は上記実施例に限らず、特許請求の範囲
に記載の技術的範囲内で種々の変形が可能であることは
勿論である。例えば濃液濃度偏差の修正式は上記数12
に限らず、他の1次式或いは2次式で表わすことが出来
る。
The description of the above embodiments is for the purpose of illustrating the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope thereof. Further, the configuration of each part of the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made within the technical scope described in the claims. For example, the correction equation for the concentrated concentration deviation is given by Equation 12 above.
However, the present invention is not limited to this, and can be expressed by another linear equation or quadratic equation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る故障診断装置の構成を示すブロッ
ク図である。
FIG. 1 is a block diagram showing a configuration of a failure diagnosis device according to the present invention.

【図2】濃液濃度偏差に含まれる冷却水汚れの影響と冷
却水汚れ以外の影響を示すグラフである。
FIG. 2 is a graph showing the influence of cooling water contamination included in the concentrated liquid concentration deviation and the effect other than cooling water contamination.

【図3】凝縮器異常度と冷却水汚れのみに起因する濃液
濃度偏差の関係を表わすグラフである。
FIG. 3 is a graph showing a relationship between a condenser abnormality degree and a concentrated liquid concentration deviation caused only by cooling water contamination.

【図4】冷凍負荷と濃液濃度の関係を表わすグラフであ
る。
FIG. 4 is a graph showing a relationship between a refrigeration load and a concentration of a concentrated liquid.

【図5】本発明を実施すべき吸収式冷温水機の構成を示
す図である。
FIG. 5 is a diagram showing a configuration of an absorption chiller / heater in which the present invention is to be implemented.

【符号の説明】[Explanation of symbols]

(7) センサー群 (8) 演算装置 (82) 凝縮器対数平均温度差計算回路 (85) 濃液濃度推定回路 (86) 濃液濃度正常値計算回路 (87) 凝縮器異常度計算回路 (88) 濃液濃度偏差計算回路 (89) 修正濃液濃度偏差計算回路 (80) 異常検出回路 (9) 表示装置 (7) Sensor group (8) Arithmetic unit (82) Condenser logarithmic average temperature difference calculation circuit (85) Concentrated liquid concentration estimation circuit (86) Concentrated liquid concentration normal value calculation circuit (87) Condenser abnormal degree calculation circuit (88 ) Concentration deviation calculation circuit (89) Correction concentration deviation calculation circuit (80) Abnormality detection circuit (9) Display

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安田 昌司 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 昭63−297970(JP,A) 特開 平7−91783(JP,A) 高田秋一著,「吸収冷凍機」,第1 版,社団法人日本冷凍協会,1982年3月 15日,p.252−253 (58)調査した分野(Int.Cl.7,DB名) F25B 49/04 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shoji Yasuda 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-63-297970 (JP, A) JP-A Hei 7-91783 (JP, A) Akiichi Takada, "Absorption Refrigerator", 1st edition, Japan Refrigeration Association, March 15, 1982, p. 252-253 (58) Field surveyed (Int. Cl. 7 , DB name) F25B 49/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 凝縮器及び吸収器を具え、吸収器内の冷
却水配管へ向けて吸収液(濃液)が散布される吸収式冷温
水機において、前記濃液濃度の異常を検出することによ
って、故障を診断する装置であって、 凝縮器にて熱交換を行なう冷媒と冷却水の温度を測定す
る温度測定手段と、 温度測定手段による測定データに基づいて、冷媒と冷却
水の平均温度差を表わす温度差データを算出し、該温度
差データをその正常値と対比して、凝縮器の異常度を表
わす異常度データを算出する凝縮器異常度データ算出手
段と、 濃液濃度を測定又は測定データに基づく推定によって導
出する濃液濃度導出手段と、 導出された濃液濃度とその正常値の偏差を算出する濃液
濃度偏差算出手段と、 算出された凝縮器異常度データの大きさに応じて、算出
された濃液濃度偏差を修正する濃液濃度偏差修正手段と
を具え、修正された濃液濃度偏差に基づいて故障診断を
行なうことを特徴とする吸収式冷温水機の故障診断装
置。
1. An absorption type chiller / heater having a condenser and an absorber, in which an absorption liquid (concentrated liquid) is sprayed toward a cooling water pipe in the absorber, for detecting an abnormality in the concentration of the concentrated liquid. An apparatus for diagnosing a failure by: a temperature measuring means for measuring the temperature of the refrigerant and the cooling water, which performs heat exchange in the condenser; and an average temperature of the refrigerant and the cooling water based on the data measured by the temperature measuring means. Calculating a temperature difference data representing the difference, comparing the temperature difference data with a normal value thereof, and calculating an abnormality degree data indicating an abnormality degree of the condenser; and measuring the concentration of the concentrated liquid. Alternatively, a concentrated liquid concentration deriving means derived by estimation based on measurement data, a concentrated liquid concentration deviation calculating means for calculating a deviation between the derived concentrated liquid concentration and a normal value thereof, and a magnitude of the calculated condenser abnormality degree data The concentrated liquid calculated according to Comprising a concentrated solution concentration deviation correction means for correcting the time difference, modified concentrated liquid fault diagnosis device of an absorption chiller-heater and performing failure diagnosis based on the density difference.
【請求項2】 温度差データは対数平均温度差であっ
て、異常度データは、対数平均温度差の測定値ΔT及び
正常値ΔTnを変数として下記数1で定義される異常度
Aである請求項1に記載の故障診断装置。 【数1】A=(ΔT−ΔTn)/ΔTn
2. The temperature difference data is a log average temperature difference, and the abnormality degree data is an abnormality degree A defined by the following equation 1 using a measured value ΔT and a normal value ΔTn of the log average temperature difference as variables. Item 2. The failure diagnosis device according to Item 1. A = (ΔT−ΔTn) / ΔTn
JP6187756A 1994-02-23 1994-07-18 Absorption chiller / heater failure diagnosis device Expired - Fee Related JP3054553B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6187756A JP3054553B2 (en) 1994-07-18 1994-07-18 Absorption chiller / heater failure diagnosis device
US08/392,332 US5623426A (en) 1994-02-23 1995-02-22 Failure diagnosing system for absorption chillers
CNB951006517A CN1154824C (en) 1994-02-23 1995-02-23 Failure diagnosing system for absorption chillers
KR1019950008214A KR100317155B1 (en) 1994-05-19 1995-04-08 Fault diagnosis system of absorption chiller
CNB01117613XA CN1153035C (en) 1994-02-23 2001-05-05 Absorption refrigerating machine fault diagnosis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6187756A JP3054553B2 (en) 1994-07-18 1994-07-18 Absorption chiller / heater failure diagnosis device

Publications (2)

Publication Number Publication Date
JPH0829027A JPH0829027A (en) 1996-02-02
JP3054553B2 true JP3054553B2 (en) 2000-06-19

Family

ID=16211657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6187756A Expired - Fee Related JP3054553B2 (en) 1994-02-23 1994-07-18 Absorption chiller / heater failure diagnosis device

Country Status (1)

Country Link
JP (1) JP3054553B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020050507A (en) * 2000-12-21 2002-06-27 황한규 Absorption chiller-heater
CN107120781B (en) * 2016-02-25 2019-09-20 广州市华德工业有限公司 The cooling system adjustment control method of evaporating type condensing air-conditioner set
US10210155B2 (en) 2016-03-01 2019-02-19 Panasonic Intellectual Property Management Co., Ltd. Apparatus state estimation method, apparatus state estimation device, and data providing device
CN110341622B (en) * 2019-07-12 2020-08-07 合肥工业大学 Asynchronous long acquisition method for electrical performance data of whole vehicle based on abnormal signal sensing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高田秋一著,「吸収冷凍機」,第1版,社団法人日本冷凍協会,1982年3月15日,p.252−253

Also Published As

Publication number Publication date
JPH0829027A (en) 1996-02-02

Similar Documents

Publication Publication Date Title
JP3054553B2 (en) Absorption chiller / heater failure diagnosis device
JP4049610B2 (en) Abnormality detection device for heat pump heat exchanger
JP2018044701A (en) Capacity diagnosis system and capacity diagnosis method for absorptive refrigerator
JP3083930B2 (en) Failure diagnosis system for absorption refrigerator
JP3253190B2 (en) Cooling water flow rate estimation method for absorption chiller / heater
JP3054554B2 (en) Abnormality detector for absorption type water heater
JP3054552B2 (en) Absorption chiller / heater failure diagnosis device
JP2902946B2 (en) Abnormality determination device for absorption type water heater
JP2909368B2 (en) Cooling water dirt diagnosis system for absorption chiller / heater
JP3253211B2 (en) Absorption chiller / heater fault diagnosis system
JPH06249532A (en) Diagnosis system of absorption type refrigerating machine
JP3340814B2 (en) Absorption chiller / heater fault diagnosis system
JP3083931B2 (en) Failure diagnosis system for absorption refrigerator
JP4057354B2 (en) Diagnostic method and apparatus for absorption refrigerator
JP2810430B2 (en) Absorption refrigerator protection device
JP3258692B2 (en) Abnormality detector for absorption refrigerator
JPH07234048A (en) Trouble diagnostic system for absorption type water cooling and heating machine
JP3195085B2 (en) Absorption refrigerator
JP3195087B2 (en) Absorption refrigerator
JP3258687B2 (en) Abnormality detector for absorption refrigerator
JP3058677B2 (en) Absorption refrigerator
KR100317155B1 (en) Fault diagnosis system of absorption chiller
JPS6316245A (en) Measuring instrument for uncondensable gas pressure
JPS613961A (en) Absorption refrigerator
JP3208165B2 (en) Abnormality detector for absorption refrigerator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees