JP3258692B2 - Abnormality detector for absorption refrigerator - Google Patents

Abnormality detector for absorption refrigerator

Info

Publication number
JP3258692B2
JP3258692B2 JP01313992A JP1313992A JP3258692B2 JP 3258692 B2 JP3258692 B2 JP 3258692B2 JP 01313992 A JP01313992 A JP 01313992A JP 1313992 A JP1313992 A JP 1313992A JP 3258692 B2 JP3258692 B2 JP 3258692B2
Authority
JP
Japan
Prior art keywords
temperature
regenerator
detector
low
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01313992A
Other languages
Japanese (ja)
Other versions
JPH05203297A (en
Inventor
雅裕 古川
泰司 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP01313992A priority Critical patent/JP3258692B2/en
Publication of JPH05203297A publication Critical patent/JPH05203297A/en
Application granted granted Critical
Publication of JP3258692B2 publication Critical patent/JP3258692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は吸収式冷凍機に関し、特
に高温再生器から低温再生器に流れた冷媒蒸気によって
吸収液を加熱して冷媒を分離する低温再生器の異常を検
出する吸収式冷凍機の異常検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerating machine, and more particularly to an absorption refrigerating machine for detecting an abnormality in a low-temperature regenerator for separating an refrigerant by heating an absorbing liquid by refrigerant vapor flowing from a high-temperature regenerator to a low-temperature regenerator. The present invention relates to a refrigerator abnormality detection device.

【0002】[0002]

【従来の技術】例えば特開昭64−28454号公報に
は、吸収冷温水機の例えば蒸発器及び各要素間を結ぶ管
路にそれぞれ温度検出器を設け、各検出温度に基づいて
吸収冷温水機の運転状態が過渡であるか安定であるかを
判別し、安定運転状態であることを条件に吸収冷温水機
の冷凍能力診断を実行し、診断結果を表示する診断装置
が開示されている。
2. Description of the Related Art For example, Japanese Patent Application Laid-Open No. 28454/1988 discloses that an absorption chiller / heater is provided with a temperature detector, for example, in an evaporator and a pipe connecting each element. A diagnostic device is disclosed that determines whether the operation state of the machine is transient or stable, executes a refrigeration capacity diagnosis of the absorption chiller / heater under the condition of a stable operation state, and displays a diagnosis result. .

【0003】[0003]

【発明が解決しようとする課題】上記従来の技術におい
て、冷凍能力の低下が診断されたときに、その原因が何
かを判断するには、例えば高温再生器からの冷媒蒸気に
よって吸収液から冷媒を分離する低温再生器、あるいは
蒸発器、吸収器、再生器に流れる稀吸収液と再生器から
吸収器に戻る濃吸収液とを熱交換する溶液熱交換器など
の各構成部分毎に入口出口の温度を検出してINPUT
が100%での設計値と比較する必要がある。このた
め、夏期以外の春あるいは秋などの吸収式冷凍機の部分
負荷時あるいは負荷がほとんどないときには、その運転
状態で異常が正確に検出できないため、冷凍機の異常の
検出が遅れるあるいは運転停止時に異常箇所の検出のた
めに吸収冷温水機を100%運転しなければならないと
いう問題が発生する。
In the above prior art, when a decrease in refrigeration capacity is diagnosed, to determine what is the cause, for example, the refrigerant vapor is removed from the absorbent by the refrigerant vapor from the high temperature regenerator. Inlet and outlet for each component such as a low-temperature regenerator for separating water, or a solution heat exchanger for exchanging heat between the dilute absorbent flowing into the evaporator, the absorber and the regenerator and the concentrated absorbent returning to the absorber from the regenerator Detect temperature of INPUT
Needs to be compared with the design value at 100%. For this reason, when the absorption chiller is partially loaded or has almost no load, such as spring or autumn, except in summer, the abnormality cannot be accurately detected in the operation state, and the detection of the abnormality of the refrigerator is delayed or stopped. There is a problem that the absorption chiller / heater must be operated 100% to detect an abnormal point.

【0004】[0004]

【課題を解決するための手段】本発明は上記課題を解決
するために、高温再生器4、この高温再生器4で冷媒を
分離した吸収液が流入し高温再生器4からの冷媒蒸気に
よって吸収液を加熱して冷媒蒸気を分離する低温再生器
6、凝縮器7、蒸発器1及び吸収器2などを配管接続し
てなる吸収式冷凍機において、蒸発器1の冷水入口温度
及び出口温度をそれぞれ検出する冷水温度出器36、3
7と、吸収液の低温再生器6の入口温度及び出口温度を
それぞれ検出する吸収液温度検出器40、41と、冷媒
の低温再生器の入口温度あるいは出口温度を検出する冷
媒温度検出器38と、各冷水温度検出器の検出温度の差
と100%負荷時の冷水出入口温度差とから冷水負荷を
算出し、かつ、各吸収液温度検出器及び冷媒温度検出器
の検出温度から低温再生器での吸収液と冷媒との実際対
数平均温度差を算出し、冷水負荷に対する理想対数平均
温度差と実際対数平均温度差とを比較して異常信号を出
力する異常検出器とを備え、吸収式冷凍機が部分負荷時
においても低温再生器6の異常を確実に検出する吸収式
冷凍機の異常検出装置を提供するものである。
In order to solve the above-mentioned problems, the present invention provides a high-temperature regenerator 4, in which an absorbent separated from the refrigerant by the high-temperature regenerator 4 flows and is absorbed by refrigerant vapor from the high-temperature regenerator 4. In an absorption refrigerator in which a low-temperature regenerator 6, a condenser 7, an evaporator 1, an absorber 2 and the like for heating a liquid to separate a refrigerant vapor are connected by piping, the cold water inlet temperature and the outlet temperature of the evaporator 1 Chilled water temperature detectors 36 and 3 to detect
7, an absorbent temperature detector 40, 41 for detecting the inlet temperature and the outlet temperature of the absorbent low-temperature regenerator 6, respectively, and a refrigerant temperature detector 38 for detecting the inlet temperature or the outlet temperature of the refrigerant low-temperature regenerator. Calculate the chilled water load from the difference between the detected temperatures of the chilled water temperature detectors and the chilled water inlet / outlet temperature difference at 100% load. Pair of Liquid Absorbent and Refrigerant
Calculate the number average temperature difference and calculate the ideal logarithmic average for the cold water load.
An abnormality detector for comparing the temperature difference with the actual logarithmic average temperature difference and outputting an abnormality signal, wherein the absorption type refrigerator reliably detects the abnormality of the low-temperature regenerator 6 even at a partial load. Is provided.

【0005】また、蒸発器1の冷水入口温度及び出口温
度をそれぞれ検出する冷水温度検出器36、37と、高
温再生器4の圧力を検出する第1の圧力検出器53と、
高温再生器4の温度を検出する再生器温度検出器55
と、上胴内の圧力を検出する第2の圧力検出器54と、
低温再生器6の出口側吸収液温度を検出する吸収液温度
検出器41と、高温再生器4の圧力と飽和ドレン温度と
の関係を記憶し、第1の圧力検出器53が検出した圧力
から飽和ドレン温度を求め、第1の圧力検出器53が検
出した圧力と再生器温度検出器55が検出した高温再生
器4の温度とから低温再生器6に流入する吸収液の濃度
を求め、この濃度と第2の圧力検出器54が検出した圧
力とから低温再生器6の飽和温度を求め、各冷水温度検
出器36、37の検出温度の差と100%負荷時の冷水
出入口温度差とから冷水負荷を算出し、かつ、飽和ドレ
ン温度と低温再生器6の飽和温度と吸収液温度検出器4
1が検出した出口側吸収液温度とから低温再生器6での
吸収液と冷媒との実際対数平均温度差を算出し、冷水負
荷に対する理想対数平均温度差と実際対数平均温度差と
を比較して異常信号を出力する異常検出器とを備え、低
温再生器6の異常を吸収式冷凍機の負荷の状態に関係な
く一層確実に検出する吸収式冷凍機の異常検出器を提供
するものである。
[0005] Further, chilled water temperature detectors 36 and 37 for detecting the chilled water inlet temperature and the outlet temperature of the evaporator 1, respectively, a first pressure detector 53 for detecting the pressure of the high temperature regenerator 4,
Regenerator temperature detector 55 for detecting the temperature of high temperature regenerator 4
A second pressure detector 54 for detecting the pressure in the upper trunk,
An absorbent temperature detector 41 for detecting the temperature of the absorbent on the outlet side of the low-temperature regenerator 6 and a relationship between the pressure of the high-temperature regenerator 4 and the saturated drain temperature are stored, and based on the pressure detected by the first pressure detector 53 The saturated drain temperature is obtained, and the concentration of the absorbent flowing into the low-temperature regenerator 6 is obtained from the pressure detected by the first pressure detector 53 and the temperature of the high-temperature regenerator 4 detected by the regenerator temperature detector 55. The saturation temperature of the low-temperature regenerator 6 is determined from the concentration and the pressure detected by the second pressure detector 54, and the saturation temperature of each of the chilled water temperature detectors 36 and 37 and the chilled water inlet / outlet temperature difference at 100% load are determined. The chilled water load is calculated, and the saturated drain temperature, the saturation temperature of the low-temperature regenerator 6 and the absorbent temperature detector 4 are calculated.
1 to calculate the actual logarithmic average temperature difference between the absorbent and the refrigerant in the low-temperature regenerator 6 from the outlet-side absorbent temperature detected by
Ideal log average temperature difference and actual log average temperature difference
And an abnormality detector that outputs an abnormality signal by comparing the abnormal conditions with each other, and an abnormality detector of the absorption refrigerator that more reliably detects the abnormality of the low-temperature regenerator 6 regardless of the load state of the absorption refrigerator. Things.

【0006】[0006]

【0007】[0007]

【作用】吸収式冷凍機の運転時、異常検出器43が冷水
温度検出器36、37、冷媒温度検出器38、中間吸収
液温度検出器40及び濃吸収液温度検出器41から温度
信号を入力し、100%負荷時の冷水出入口温度差と実
際の冷水出入口温度差とから負荷を算出すると共に、低
温再生器6の実際対数平均温度差を算出する。そして、
この実際対数平均温度差がその時の負荷に対応した理想
対数平均温度差によって決まる異常ラインを越えている
場合には、異常検出器43が異常信号を出力して低温再
生器6の異常を知らせるので、夏期以外の春または秋な
どで吸収式冷凍機が部分負荷のときにも異常を検出する
ことができ、低温再生器6の異常に対して早期に保守点
検作業を行うことが可能になる。
During operation of the absorption refrigerator, the abnormality detector 43 inputs temperature signals from the chilled water temperature detectors 36 and 37, the refrigerant temperature detector 38, the intermediate absorbent temperature detector 40, and the concentrated absorbent temperature detector 41. Then, the load is calculated from the chilled water inlet / outlet temperature difference at the time of a 100% load and the actual chilled water inlet / outlet temperature difference, and the actual logarithmic average temperature difference of the low-temperature regenerator 6 is calculated. And
This actual logarithmic average temperature difference is ideal for the load at that time.
If the temperature exceeds the abnormal line determined by the logarithmic average temperature difference , the abnormality detector 43 outputs an abnormality signal to notify the abnormality of the low-temperature regenerator 6, so that the absorption chiller is used in spring or autumn other than summer. An abnormality can be detected even at a partial load, and maintenance and inspection work can be performed early on an abnormality of the low-temperature regenerator 6.

【0008】[0008]

【実施例】以下、本発明の第1の実施例を図面に基づい
て詳細に説明する。図1は冷媒に例えば水、吸収液(溶
液)に臭化リチウム(LiBr)溶液を用いた吸収式冷
凍機である吸収冷温水機の概略構成図であり、1は蒸発
器、2は吸収器、3は蒸発器1及び吸収器2を収納した
蒸発器吸収器胴(以下、下胴という)、4は例えばガス
バーナ5を備え高温熱源によって加熱される高温再生
器、6は低温再生器、7は凝縮器、8は低温再生器6及
び凝縮器7を収納した上胴、9は吸収器2から高温再生
器4に流れる稀吸収液収液と低温再生器6から吸収器2
に流れる濃吸収液とを熱交換する溶液熱交換器である低
温熱交換器、10は吸収器2から低温熱交換器9を経て
高温再生器4に流れる稀吸収液と高温再生器4から低温
再生器6に流れる中間濃度の濃吸収液とを熱交換する溶
液熱交換器である高温熱交換器、11ないし15は吸収
液配管、16は吸収液ポンプ、17及び18は冷媒配
管、19は冷媒循環配管、20は冷媒ポンプ、23は途
中に蒸発器熱交換器24が設けられた冷水配管であり、
それぞれは図1に示したように配管接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of an absorption chiller / heater which is an absorption refrigerator using, for example, water as a refrigerant and a lithium bromide (LiBr) solution as an absorption liquid (solution), wherein 1 is an evaporator, and 2 is an absorber. Reference numeral 3 denotes an evaporator absorber body (hereinafter, referred to as a lower body) containing the evaporator 1 and the absorber 2, 4 denotes a high-temperature regenerator equipped with, for example, a gas burner 5 and is heated by a high-temperature heat source, 6 denotes a low-temperature regenerator, 7 Is a condenser, 8 is an upper body containing the low-temperature regenerator 6 and the condenser 7, 9 is a rare absorbing liquid collected from the absorber 2 to the high-temperature regenerator 4 and the low-temperature regenerator 6 is an absorber 2
The low-temperature heat exchanger 10 is a solution heat exchanger for exchanging heat with the concentrated absorbent flowing to the low-temperature heat exchanger 9 through the low-temperature heat exchanger 9 from the absorber 2 and the low-temperature heat exchanger from the high-temperature regenerator 4. A high-temperature heat exchanger which is a solution heat exchanger for exchanging heat with an intermediate-concentration concentrated absorbent flowing into the regenerator 6, 11 to 15 are absorbent pipes, 16 is an absorbent pump, 17 and 18 are refrigerant pipes, and 19 is a refrigerant pipe. Refrigerant circulation pipe, 20 is a refrigerant pump, 23 is a cold water pipe provided with an evaporator heat exchanger 24 in the middle,
Each is connected by piping as shown in FIG.

【0009】また、25は冷却水配管であり、この冷却
水配管25の途中に吸収器熱交換器26及び凝縮器熱交
換器27が設けられている。28は蒸発器1の冷媒溜り
29と吸収器2の吸収液溜り30とを配管接続する冷媒
バイパス管、31は開閉弁、32は吸収液配管12と吸
収器2とを接続する吸収液バイパス管、33は開閉弁、
34は冷媒配管17と吸収器2とを接続する冷媒蒸気バ
イパス管、35は開閉弁であり、各開閉弁31、33、
35は冷水の供給時に閉じ、温水の供給時に開く。
Reference numeral 25 denotes a cooling water pipe, and an absorber heat exchanger 26 and a condenser heat exchanger 27 are provided in the cooling water pipe 25. 28 is a refrigerant bypass pipe connecting the refrigerant reservoir 29 of the evaporator 1 to the absorbent reservoir 30 of the absorber 2, 31 is an on-off valve, 32 is an absorbent bypass pipe connecting the absorbent pipe 12 and the absorber 2. , 33 is an on-off valve,
34 is a refrigerant vapor bypass pipe connecting the refrigerant pipe 17 and the absorber 2, and 35 is an on-off valve, and each of the on-off valves 31, 33,
35 is closed when supplying cold water and opened when supplying hot water.

【0010】36、37はそれぞれ蒸発器1の冷水入口
温度及び出口温度を検出する冷水温度検出器、38は冷
媒配管17の低温再生器6の出口側に設けられ低温再生
器6から凝縮器7へ流れる冷媒の温度即ち冷媒ドレン温
度を検出する冷媒温度検出器、40及び41はそれぞれ
低温再生器6の入口側及び出口側の吸収液配管13、1
4に設けられ低温再生器6へ流入する中間吸収液の温度
を検出する中間吸収液温度検出器、低温再生器6から流
出した濃吸収液温度を検出するれた濃吸収液温度検出器
である。
Reference numerals 36 and 37 denote chilled water temperature detectors for detecting the chilled water inlet temperature and the outlet temperature of the evaporator 1, respectively, and reference numeral 38 denotes a refrigerant pipe 17 provided on the outlet side of the cryogenic regenerator 6 from the cryogenic regenerator 6. The refrigerant temperature detectors 40 and 41 detect the temperature of the refrigerant flowing to the refrigerant, that is, the refrigerant drain temperature, and the absorption liquid pipes 13 and 1 on the inlet side and the outlet side of the low temperature regenerator 6 respectively.
4 is an intermediate absorption liquid temperature detector for detecting the temperature of the intermediate absorption liquid flowing into the low temperature regenerator 6 and a concentrated absorption liquid temperature detector for detecting the temperature of the concentrated absorption liquid flowing out of the low temperature regenerator 6. .

【0011】43は上記各温度検出器から温度信号を入
力して低温再生器6の異常を検出する異常検出器であ
り、この異常検出器43は例えば吸収式冷凍機の制御盤
(図示せず)に設けられ、マイクロコンピュ−タで構成
されている。また、44は異常検出器43と同様に制御
盤に設けられ、異常検出器からの信号を入力して動作す
る報知装置である。この報知装置44は例えば複数のセ
グメント素子を備えた表示装置45とブザ−46とから
構成されている。そして、表示装置45は異常検出器4
3からの信号に基づいて例えばALARMの文字を点滅
する。
Reference numeral 43 denotes an abnormality detector which inputs a temperature signal from each of the temperature detectors and detects an abnormality of the low-temperature regenerator 6. The abnormality detector 43 is, for example, a control panel (not shown) of an absorption refrigerator. ), And is composed of a microcomputer. An alarm device 44 is provided on the control panel similarly to the abnormality detector 43 and operates by inputting a signal from the abnormality detector. The notification device 44 includes, for example, a display device 45 having a plurality of segment elements and a buzzer 46. Then, the display device 45 displays the abnormality detector 4.
For example, the character “ALARM” blinks on the basis of the signal from “3”.

【0012】以下、異常検出器43の構成について図2
に基づいて説明する。47は冷水温度検出器36、3
7、冷媒温度検出器38、中間吸収液温度検出器40及
び濃吸収液温度検出器41から信号を入力して信号変換
して中央演算処理装置(以下CPUという)48へ出力
する入力インタ−フェ−ス、49は本発明に関する演算
プログラムなどが記憶されている記憶装置(以下ROM
という)、50はCPU48からの信号を入力して報知
装置44へ出力する出力インタ−フェ−ス、51は所定
時間毎に信号を出力する信号発生器(以下CLOOCK
という)、52は各温度検出器が検出した温度を記憶す
る読み込み消去可能な記憶装置(以下RAMという)で
ある。
Hereinafter, the configuration of the abnormality detector 43 will be described with reference to FIG.
It will be described based on. 47 is a cold water temperature detector 36, 3
7. An input interface for inputting signals from the refrigerant temperature detector 38, the intermediate absorbent temperature detector 40, and the concentrated absorbent temperature detector 41, converting the signals, and outputting them to a central processing unit (hereinafter referred to as CPU) 48. And 49, a storage device (hereinafter referred to as a ROM) storing an operation program and the like related to the present invention.
Reference numeral 50 denotes an output interface for inputting a signal from the CPU 48 and outputting the signal to the notification device 44, and reference numeral 51 denotes a signal generator (hereinafter referred to as a CLOOK) for outputting a signal every predetermined time.
, 52 is a readable and erasable storage device (hereinafter referred to as RAM) for storing the temperature detected by each temperature detector.

【0013】上記ROM49には、冷媒ドレン温度T
1、中間吸収液温度T2及び濃吸収液温度T3から低温
再生器6の実際の温度差の平均値である対数平均温度差
Tlmを算出する
The ROM 49 stores a refrigerant drain temperature T.
1. The logarithmic average temperature difference Tlm, which is the average value of the actual temperature difference of the low-temperature regenerator 6, is calculated from the intermediate absorption solution temperature T2 and the concentrated absorption solution temperature T3.

【0014】[0014]

【数1】 (Equation 1)

【0015】と、吸収式冷凍機の正常運転時における1
00%負荷時の冷水入口温度と冷水出口温度との差と実
際に検出した冷水入口温度と冷水出口温度との差とから
冷水負荷を算出するプログラム、図3に示した冷水負荷
と低温再生器6の対数平均温度差との関係が記憶されて
いる。図3に示したように、ROM49には、吸収式冷
凍機が正常に運転しているときの冷水負荷と理想対数平
均温度差との関係を示す理想ライン及び異常信号を出力
する異常ラインが記憶されている。
And 1 during normal operation of the absorption refrigerator.
A program for calculating the chilled water load from the difference between the chilled water inlet temperature and the chilled water outlet temperature at the time of the 00% load and the actually detected difference between the chilled water inlet temperature and the chilled water outlet temperature. The relationship with the logarithmic average temperature difference of No. 6 is stored. As shown in FIG. 3, the ROM 49 stores the chilled water load and the ideal logarithmic flatness when the absorption chiller is operating normally.
An ideal line indicating the relationship with the average temperature difference and an abnormal line for outputting an abnormal signal are stored.

【0016】上記吸収式冷凍機の冷水供給の運転時、従
来の吸収式冷凍機と同様に高温再生器4で蒸発した冷媒
蒸気は低温再生器6へ流れ、高温再生器4から流れてき
た中間吸収液を加熱して凝縮し、凝縮した冷媒は凝縮器
7へ流れる。低温再生器6で蒸発した冷媒蒸気は凝縮器
7へ流れ、凝縮器熱交換器27を流れる冷却水と熱交換
して凝縮液化する。そして、冷媒液が凝縮器7から冷媒
配管18を介して蒸発器1へ流れる。そして、冷媒が蒸
発器熱交換器24を流れる水と熱交換して蒸発し、気化
熱によって蒸発器熱交換器24を流れる水が冷却され
る。そして、冷水が負荷に循環する。また、蒸発器1で
蒸発した冷媒は吸収器2で吸収液に吸収される。冷媒を
吸収して濃度が薄くなった稀吸収液が吸収液ポンプ16
の運転によって低温熱交換器9及び高温熱交換器10を
経て高温再生器4へ送られる。高温再生器4へ送られた
吸収液はバ−ナ5によって加熱されて冷媒が蒸発し、中
間吸収液が高温熱交換器10を経て低温再生器6は流れ
る。低温再生器6で吸収液は高温再生器10から冷媒配
管17を流れてきた冷媒蒸気によって加熱され、さらに
冷媒蒸気が分離され濃度が高くなる。高濃度になった濃
吸収液は低温熱交換器9を経て温度低下して吸収器2へ
送られて散布される。
During the operation of the absorption chiller for supplying cold water, the refrigerant vapor evaporated in the high-temperature regenerator 4 flows to the low-temperature regenerator 6 as in the conventional absorption chiller, and the intermediate vapor flows from the high-temperature regenerator 4. The absorption liquid is heated and condensed, and the condensed refrigerant flows to the condenser 7. The refrigerant vapor evaporated in the low-temperature regenerator 6 flows to the condenser 7 and exchanges heat with the cooling water flowing through the condenser heat exchanger 27 to be condensed and liquefied. Then, the refrigerant liquid flows from the condenser 7 to the evaporator 1 via the refrigerant pipe 18. Then, the refrigerant exchanges heat with water flowing through the evaporator heat exchanger 24 to evaporate, and the water flowing through the evaporator heat exchanger 24 is cooled by heat of vaporization. Then, cold water circulates through the load. Further, the refrigerant evaporated in the evaporator 1 is absorbed by the absorbing liquid in the absorber 2. The rare absorbing liquid whose concentration has been reduced by absorbing the refrigerant is supplied to the absorbing liquid pump 16.
Is sent to the high-temperature regenerator 4 via the low-temperature heat exchanger 9 and the high-temperature heat exchanger 10. The absorbing liquid sent to the high-temperature regenerator 4 is heated by the burner 5 to evaporate the refrigerant, and the intermediate absorbing liquid flows through the high-temperature heat exchanger 10 to the low-temperature regenerator 6. In the low-temperature regenerator 6, the absorbing liquid is heated by the refrigerant vapor flowing from the high-temperature regenerator 10 through the refrigerant pipe 17, and the refrigerant vapor is further separated to increase the concentration. The concentrated absorbent having a high concentration passes through the low-temperature heat exchanger 9 and its temperature is lowered and sent to the absorber 2 for dispersion.

【0017】以上のように、吸収式冷凍機が運転されて
いるときの異常検出について図4のフロ−チャ−トに基
づいて説明する。冷水温度検出器36、37、冷媒温度
検出器38、中間吸収液温度検出器40及び濃吸収液温
度検出器41が検出する各温度は入力インタ−フェ−ス
47及びCPU48を介してRAM52に一時記憶され
る。そして、CLOCK51からの信号に基づいて所定
時間毎にRAM52に記憶されている冷水入口温度、冷
水出口温度、冷媒ドレン温度、中間収液温度及び濃吸収
液温度がCPU48へ読み込まれると共に、ROM49
から上記式の数1、プログラム及び冷水負荷と対数平均
温度差との関係が読み込まれる。そして、実際の冷水出
入口温度差と100%負荷時の冷水出入口温度差(5
℃)とから負荷(%)が算出される。ここで、例えば冷
水入口温度が10℃で、冷水出口温が7℃であり、温度
差が3℃のときには負荷は3/5=0.6(60%)に
なる。
As described above, the abnormality detection when the absorption refrigerator is in operation will be described with reference to the flowchart of FIG. The temperatures detected by the chilled water temperature detectors 36 and 37, the refrigerant temperature detector 38, the intermediate absorbent temperature detector 40, and the concentrated absorbent temperature detector 41 are temporarily stored in the RAM 52 via the input interface 47 and the CPU 48. It is memorized. Then, based on the signal from the CLOCK 51, the cold water inlet temperature, the cold water outlet temperature, the refrigerant drain temperature, the intermediate liquid collecting temperature, and the thick absorbing liquid temperature stored in the RAM 52 at predetermined time intervals are read into the CPU 48, and read from the ROM 49.
Is read from equation (1), the program, and the relationship between the chilled water load and the logarithmic average temperature difference. Then, the difference between the actual chilled water inlet / outlet temperature and the chilled water inlet / outlet temperature at 100% load (5
° C) and the load (%) is calculated. Here, for example, when the cold water inlet temperature is 10 ° C., the cold water outlet temperature is 7 ° C., and the temperature difference is 3 ° C., the load becomes 3/5 = 0.6 (60%).

【0018】また、CPU48にて、冷媒ドレン温度、
中間吸収液温度及び濃吸収液温度と上記式の数1から実
際の対数平均温度差Tlmが算出される。ここで、例え
ば、高温発生器4から低温再生器6へ流れる冷媒への吸
収液の混入により熱源流体である冷媒蒸気の温度の上
昇、あるいは不凝縮ガスの混入により低温再生器6で冷
媒蒸気が凝縮せず低温再生器6での冷媒蒸気の分離性能
が低下して冷媒ドレン温度が例えば91℃、中間吸収液
温度が例えば80℃、濃吸収液温度が例えば84℃のと
きには、実際の対数平均温度差は略8.7℃になる。そ
して、実際の対数平均温度差が図3に示した異常ライン
の負荷60%の時の値(6.2℃)より高いため、CP
U48は出力インタ−フェ−ス50を介して異常信号を
出力し、異常検出器43から異常信号が報知装置44へ
出力される。そして、報知装置44の表示装置45にA
LARMが表示されると共に、ブザ−46が発音して、
吸収器2の異常が報知される。
In the CPU 48, the refrigerant drain temperature,
The actual logarithmic mean temperature difference Tlm is calculated from the temperature of the intermediate absorbent and the temperature of the concentrated absorbent and Equation 1 of the above equation. Here, for example, the temperature of the refrigerant vapor as the heat source fluid rises due to the mixing of the absorbing liquid into the refrigerant flowing from the high temperature generator 4 to the low temperature regenerator 6, or the refrigerant vapor is generated at the low temperature regenerator 6 by mixing the non-condensable gas. When the refrigerant drain temperature is, for example, 91 ° C., the intermediate absorbing liquid temperature is, for example, 80 ° C., and the concentrated absorbing liquid temperature is, for example, 84 ° C., the actual logarithmic average is obtained. The temperature difference is approximately 8.7 ° C. Since the actual logarithmic average temperature difference is higher than the value (6.2 ° C.) when the load of the abnormal line is 60% shown in FIG.
U48 outputs an abnormal signal through the output interface 50, and an abnormal signal is output from the abnormality detector 43 to the notification device 44. A is displayed on the display device 45 of the notification device 44.
LARM is displayed and the buzzer-46 sounds,
An abnormality of the absorber 2 is notified.

【0019】また、冷水負荷が例えば60%のとき冷媒
ドレン温度、中間吸収液温度及び濃吸収液温度と上記式
の数1から算出された実際の対数平均温度差Tlmが例
えば7.8℃であり、負荷60%のときの異常ライン上
の値(8.2℃)より低いときにはCPU48は異常信
号を出力せず、報知装置44は異常を報知しない。上記
実施例によれば、異常検出器43が冷媒ドレン温度、中
間吸収液温度及び濃吸収液温度と上記式の数1に基づい
て実際の対数平均温度差を算出し、低温再生器6に異常
即ち、冷媒への吸収液の混入、不凝縮ガスの混入による
加熱効率の低下が発生して実際の対数平均温度差が予め
記憶されている異常ラインを越えている場合には、異常
検出器43が信号を出力するので、夏期あるいは冬期以
外の中間期においても、低温再生器6に異常が発生した
場合には、吸収式冷温水機の部分負荷時に異常を検出し
て異常発生の初期に対処することができ、この結果、吸
収式冷温水機の保守点検を一層確実に行うことができ
る。
When the load of the chilled water is, for example, 60%, the actual logarithmic mean temperature difference Tlm calculated from the refrigerant drain temperature, the intermediate absorbing solution temperature, the concentrated absorbing solution temperature and the equation (1) is, for example, 7.8 ° C. When the load is lower than the value (8.2 ° C.) on the abnormal line when the load is 60%, the CPU 48 does not output the abnormal signal and the notifying device 44 does not notify the abnormality. According to the above embodiment, the abnormality detector 43 calculates the actual logarithmic average temperature difference based on the refrigerant drain temperature, the intermediate absorption liquid temperature, and the concentrated absorption liquid temperature and the above equation (1). That is, if the heating efficiency is reduced due to the mixing of the absorbing liquid into the refrigerant and the mixing of the non-condensable gas and the actual logarithmic average temperature difference exceeds the abnormal line stored in advance, the abnormality detector 43 Outputs a signal. If an abnormality occurs in the low-temperature regenerator 6 even in an intermediate period other than summer or winter, the abnormality is detected at the time of partial load of the absorption chiller / heater, and the early stage of the abnormality occurrence is dealt with. As a result, maintenance and inspection of the absorption chiller / heater can be performed more reliably.

【0020】さらに、低温再生器6の能力低下を実際の
対数平均温度差によって定量的に把握することができ、
また、吸収液の冷媒への混入あるいは不凝縮ガスの発生
によって能力が大幅に低下する前に対処することがで
き、保守点検を異常発生の初期に行うことができる。
Further, it is possible to quantitatively grasp the decrease in the performance of the low-temperature regenerator 6 based on the actual logarithmic average temperature difference.
Further, it is possible to cope with the situation before the capacity is significantly reduced due to the mixing of the absorbing liquid into the refrigerant or the generation of the non-condensable gas, and the maintenance and inspection can be performed in the early stage of the occurrence of the abnormality.

【0021】上記実施例において、低温再生器6の冷媒
ドレン温度を上記式数1に代入したが、冷媒ドレン温度
と低温再生器6の出口側の蒸気温度とはほぼ等しいため
低温再生器6の出口側の蒸気温度を検出し、この温度を
上記冷媒ドレン温度と同様に数1に代入しても良い。ま
た、実際の対数平均温度差を算出し、予め記憶させてお
いた負荷と理想の対数平均温度差との関係から求めた負
荷に対応した理想の対数平均温度差と実際の対数平均温
度差とを比較して例えば実際の対数平均温度差と理想の
対数平均温度差との差あるいは理想の対数平均温度差に
対する実際の対数平均温度差の比が所定値以上になった
ときに異常を報知するようにしても良い。
In the above embodiment, the refrigerant drain temperature of the low-temperature regenerator 6 is substituted into the above equation (1). However, since the refrigerant drain temperature and the steam temperature at the outlet side of the low-temperature regenerator 6 are almost equal, The temperature of the steam at the outlet side may be detected, and this temperature may be substituted into Equation 1 in the same manner as the refrigerant drain temperature. Further, the actual log average temperature difference is calculated, and the ideal log average temperature difference and the actual log average temperature difference corresponding to the load obtained from the relationship between the load stored in advance and the ideal log average temperature difference are calculated. For example, when the difference between the actual log-average temperature difference and the ideal log-average temperature difference or the ratio of the actual log-average temperature difference to the ideal log-average temperature difference exceeds a predetermined value, an abnormality is notified. You may do it.

【0022】さらに、温度差の平均値して対数平均温度
差を算出して異常報知に用いたが、この対数平均温度差
の代わりに冷媒ドレン温度T1と中間吸収液温度T2と
の差を求め、冷媒ドレン温度T1と濃吸収液温度T3と
の差を求め、さらにそれぞれの温度差の差を算出して2
で割った値を温度差の平均値として用いても良い。この
場合には上記対数平均温度差の場合と比較して温度差の
平均値を簡単に求めることができるが、温度差の平均値
の精度は対数平均温度差より低下する。
Further, the average value of the temperature differences was used to calculate the logarithmic average temperature difference, which was used for abnormality notification. Instead of this logarithmic average temperature difference, the difference between the refrigerant drain temperature T1 and the intermediate absorbent temperature T2 was obtained. , The difference between the refrigerant drain temperature T1 and the concentrated absorption liquid temperature T3 is determined, and the difference between the respective temperature differences is calculated to obtain 2
May be used as the average value of the temperature difference. In this case, the average value of the temperature difference can be easily obtained as compared with the case of the logarithmic average temperature difference, but the accuracy of the average value of the temperature difference is lower than the logarithmic average temperature difference.

【0023】以下本発明の第2の実施例について図5に
基づいて説明する。なお、特に説明がない構成について
は上記実施例と同様のものとして詳細な説明は省略す
る。53は高温再生器4に接続された第1の圧力検出
器、54は上胴8に設けられた第2の圧力検出器、55
は高温発生器4の温度T7を検出する高温再生器温度検
出器であり、第1の圧力検出器53は高温発生器4の圧
力を検出し、第2の圧力検出器54は凝縮器7の圧力を
検出する。
Hereinafter, a second embodiment of the present invention will be described with reference to FIG. It should be noted that a configuration that is not particularly described is the same as the above-described embodiment, and a detailed description is omitted. 53 is a first pressure detector connected to the high temperature regenerator 4, 54 is a second pressure detector provided on the upper body 8, 55
Is a high-temperature regenerator temperature detector for detecting the temperature T7 of the high-temperature generator 4, the first pressure detector 53 detects the pressure of the high-temperature generator 4, and the second pressure detector 54 detects the temperature of the condenser 7. Detect pressure.

【0024】また、異常検出器43のROMには水の飽
和線及び吸収冷温水機のデュ−リング線図が記憶され、
さらに、上記の飽和ドレン温度T4と低温再生器6の飽
和温度T5と低温再生器6の吸収液出口温度である濃吸
収液温度T6とから低温再生器6の実際の対数平均温度
差を求めるための式である
The ROM of the abnormality detector 43 stores a water saturation line and a During diagram of the absorption chiller / heater.
Further, an actual logarithmic mean temperature difference of the low-temperature regenerator 6 is obtained from the above-mentioned saturated drain temperature T4, the saturation temperature T5 of the low-temperature regenerator 6 and the thick absorbing solution temperature T6 which is the absorbent outlet temperature of the low-temperature regenerator 6. Is the expression

【0025】[0025]

【数2】 (Equation 2)

【0026】が記憶されている。そして、吸収式冷温水
機の運転時、第1の圧力検出器53が検出した高温再生
器4の圧力P1から水の飽和線に基づいて図6に示した
ように飽和ドレン温度T4を求める。さらに、高温再生
器4の圧力P1と高温再生器4の温度T7とから高温再
生器4から流出する中間吸収液の濃度を求める。そし
て、第2の圧力検出器54が検出した凝縮器7の圧力P
2と中間吸収液の濃度より図6に示したように低温再生
器6の飽和温度T5を求める。さらに、濃吸収液温度検
出器41が検出した濃吸収液温度T6と飽和ドレン温度
T4と低温再生器6の飽和温度T5を上記式数2に代入
して低温再生器6の実際の対数平均温度差を求める。こ
こで、第1の圧力検出器53が検出した高温再生器4の
圧力P1が例えば542mmHgであり、飽和ドレン温
度が90.8℃であり、高温再生器4の温度T4が例え
ば140℃で中間吸収液の濃度が60%であり、凝縮器
7の圧力P2が例えば44mmHgでこの圧力と中間吸
収液の濃度とから求めた低温再生器6の飽和温度T6が
例えば80℃のときには、上記式数2に各温度を代入し
て低温再生器6の実際の対数平均温度差は8.7℃にな
る。そして、実際の対数平均温度差が図2に示した異常
ラインより高い場合には、異常検出器43から異常信号
が報知装置44へ出力される。そして、報知装置44の
表示装置45にALARMが表示されると共に、ブザ−
46が発音して、吸収器2の異常が報知される。
Has been stored. Then, during the operation of the absorption chiller / heater, the saturated drain temperature T4 is obtained from the pressure P1 of the high-temperature regenerator 4 detected by the first pressure detector 53 based on the water saturation line as shown in FIG. Further, the concentration of the intermediate absorbent flowing out of the high-temperature regenerator 4 is obtained from the pressure P1 of the high-temperature regenerator 4 and the temperature T7 of the high-temperature regenerator 4. Then, the pressure P of the condenser 7 detected by the second pressure detector 54
The saturation temperature T5 of the low-temperature regenerator 6 is determined from FIG. 2 and the concentration of the intermediate absorbing solution as shown in FIG. Further, the actual logarithmic average temperature of the low-temperature regenerator 6 is substituted by substituting the rich-absorbent temperature T6, the saturated drain temperature T4, and the saturation temperature T5 of the low-temperature regenerator 6 detected by the high-absorbent liquid temperature detector 41 into the above equation (2). Find the difference. Here, the pressure P1 of the high-temperature regenerator 4 detected by the first pressure detector 53 is, for example, 542 mmHg, the saturated drain temperature is 90.8 ° C., and the temperature T4 of the high-temperature regenerator 4 is, for example, 140 ° C. When the concentration of the absorbing solution is 60%, the pressure P2 of the condenser 7 is, for example, 44 mmHg, and the saturation temperature T6 of the low temperature regenerator 6 obtained from this pressure and the concentration of the intermediate absorbing solution is, for example, 80 ° C., Substituting each temperature into 2, the actual logarithmic average temperature difference of the low temperature regenerator 6 becomes 8.7 ° C. If the actual logarithmic average temperature difference is higher than the abnormal line shown in FIG. 2, an abnormality signal is output from the abnormality detector 43 to the notification device 44. Then, ALARM is displayed on the display device 45 of the notification device 44 and a buzzer is displayed.
46 is sounded to notify the abnormality of the absorber 2.

【0027】上記のように凝縮器7の圧力P2と中間吸
収液の濃度とから低温再生器6の飽和温度T6すなわち
中間吸収液の飽和温度を求めた場合には、低温再生器6
の中間吸収液温度を検出温度を検出する場合と同様の作
用効果を得ることができ、さらに、中間吸収液温度検出
器40で検出した中間吸収液の温度を用いて実際の対数
平均温度差を求める場合と比較してより正確に実際の対
数平均温度差を求めることにができ、低温再生器6の異
常検出の精度をさらに向上することができる。
As described above, when the saturation temperature T6 of the low-temperature regenerator 6, that is, the saturation temperature of the intermediate absorbent, is obtained from the pressure P2 of the condenser 7 and the concentration of the intermediate absorbent,
The same operation and effect can be obtained as in the case where the temperature of the intermediate absorbent is detected, and the actual logarithmic average temperature difference is calculated using the temperature of the intermediate absorbent detected by the intermediate absorbent temperature detector 40. The actual logarithmic average temperature difference can be obtained more accurately than in the case of obtaining the temperature, and the accuracy of the abnormality detection of the low-temperature regenerator 6 can be further improved.

【0028】また、上記実施例に示したように低温再生
器6の実際の対数平均温度差あるいは温度差の平均値を
求める。そして、この対数平均温度差あるいは温度差の
平均値に対する冷水負荷の割合を算出する。例えば、冷
水負荷が60%、実際の対数平均温度差が8.7℃であ
り、対数平均温度差に対する負荷の割合が0.10℃/
%で、この割合が所定値の例えば0.13℃/%を越え
ているときに異常検出装置43が異常信号を出力するよ
うにした場合にも、上記実施例と同様の作用効果を得る
ことができる。
Further, as shown in the above embodiment, the actual logarithmic average temperature difference of the low temperature regenerator 6 or the average value of the temperature difference is obtained. Then, the logarithmic average temperature difference or the ratio of the cold water load to the average value of the temperature difference is calculated. For example, the cold water load is 60%, the actual log average temperature difference is 8.7 ° C, and the ratio of the load to the log average temperature difference is 0.10 ° C /
In the case where the abnormality detection device 43 outputs an abnormality signal when the ratio exceeds a predetermined value, for example, 0.13 ° C./%, the same operation and effect as in the above embodiment can be obtained. Can be.

【0029】さらに、実際の対数平均温度差あるいは温
度差の平均値の理想の対数平均温度差あるいは温度差の
平均値に対する比を算出する。そして、この比が所定値
を越えたときに異常検出器43が異常信号を出力する。
例えば、負荷が60%で実際の対数平均温度差が8.7
℃、理想対数平均温度差が6.2℃のときには、上記比
が8.7/6.2=1.4であり、所定値(例えば1.
3)以上の場合には異常検出器43は異常信号を出力す
る。また、上記比の逆数である実際の熱貫流率を算出
し、この熱貫流率が所定値(例えば80%)以下になっ
た場合に異常検出器43が異常信号を出力するようにし
た場合にも同様の作用効果を得ることができる。
Further, the ratio of the actual log average temperature difference or the average value of the temperature difference to the ideal log average temperature difference or the average value of the temperature difference is calculated. Then, when this ratio exceeds a predetermined value, the abnormality detector 43 outputs an abnormality signal.
For example, if the load is 60% and the actual log average temperature difference is 8.7
When the ideal logarithmic average temperature difference is 6.2 ° C., the above ratio is 8.7 / 6.2 = 1.4, which is a predetermined value (for example, 1.
3) In the above case, the abnormality detector 43 outputs an abnormality signal. Further, the actual heat transmission coefficient which is the reciprocal of the above ratio is calculated, and when the heat transmission coefficient becomes a predetermined value (for example, 80%) or less, the abnormality detector 43 outputs an abnormality signal. Can obtain the same effect.

【0030】上記実施例において、冷水或いは温水を供
給できる吸収式冷温水機に基づいて説明したが、冷水の
みを供給する吸収式冷凍機においても、上記実施例と同
様に異常検出器を設けることにより、同様の作用効果を
得ることができる。
Although the above embodiment has been described based on the absorption type chiller / heater capable of supplying cold or hot water, the absorption type chiller which supplies only cold water may be provided with an abnormality detector similarly to the above embodiment. Thereby, the same operation and effect can be obtained.

【0031】[0031]

【発明の効果】本発明は上記実施例のように構成された
吸収式冷凍機の異常検出装置であり、蒸発器の冷水入口
温度及び出口温度をそれぞれ冷水温度出器で検出し、吸
収液の低温再生器の入口温度及び出口温度をそれぞれ吸
収液温度検出器で検出し、冷媒の低温再生器の入口温度
あるいは出口温度を検出する冷媒温度検出器で検出し、
各冷水温度検出器の検出温度の差と100%負荷時の冷
水出入口温度差とから冷水負荷を算出し、かつ、各吸収
液温度検出器及び冷媒温度検出器の検出温度からかつ、
各吸収液温度検出器及び冷媒温度検出器の検出温度から
低温再生器での吸収液と冷媒との実際対数平均温度差を
算出し、冷水負荷に対する理想対数平均温度差と実際対
数平均温度差とを比較して異常信号を出力するので、実
際対数平均温度差の比較対象である理想対数平均温度差
を実験などを実際に行うことなく例えばシミュレーショ
ンによって容易に算出することができ、また、低温再生
器の能力を定量的に検出することができ、吸収式冷凍機
の部分負荷時においても低温再生器の異常を確実に検出
することができ、この結果、吸収式冷凍機の保守点検を
早期に実施して吸収式冷凍機の休止を回避することがで
きる。
According to the present invention, there is provided an abnormality detecting device for an absorption refrigerator configured as in the above embodiment, in which a chilled water inlet temperature and an outlet temperature of an evaporator are detected by a chilled water temperature output device, respectively. The inlet temperature and the outlet temperature of the low-temperature regenerator are respectively detected by the absorbent temperature detector, and the refrigerant temperature detector that detects the inlet temperature or the outlet temperature of the low-temperature regenerator of the refrigerant is detected.
Calculate the chilled water load from the difference between the detected temperature of each chilled water temperature detector and the chilled water inlet / outlet temperature difference at the time of 100% load, and from the detected temperature of each absorbent temperature detector and the refrigerant temperature detector, and
The actual logarithmic average temperature difference between the absorbent and the refrigerant in the low-temperature regenerator is calculated from the temperatures detected by each of the absorbent temperature detector and the refrigerant temperature detector.
Calculate the ideal logarithmic mean temperature difference and actual
Outputs an abnormal signal by comparing with the number average temperature difference.
Logarithmic mean temperature difference to compare the logarithmic mean temperature difference
Without actually performing an experiment etc.
It can easily calculate the low-temperature regenerator capacity, and can reliably detect the low-temperature regenerator abnormality even when the absorption chiller is partially loaded. As a result, maintenance of the absorption chiller can be performed at an early stage, and the suspension of the absorption chiller can be avoided.

【0032】また、蒸発器の冷水入口温度及び出口温度
をそれぞれ検出しる冷水温度検出器デ検出し、高温再生
器の圧力を第1の圧力検出器で検出し、高温再生器の温
度を再生器温度検出器で検出し、上胴内の圧力を第2の
圧力検出器で検出し、低温再生器の出口側吸収液温度を
吸収液温度検出器で検出し、第1の圧力検出器が検出し
た圧力から飽和ドレン温度を求め、第1の圧力検出器が
検出した圧力と再生器温度検出器が検出した高温再生器
の温度とから低温再生器に流入する吸収液の濃度を求
め、この濃度と第2の圧力検出器が検出した圧力とから
低温再生器の飽和温度を求め、各冷水温度検出器の検出
温度の差と100%負荷時の冷水出入口温度差とから
水負荷を算出し、かつ、飽和ドレン温度と低温再生器の
飽和温度と吸収液温度検出器の検出温度とから低温再生
器での吸収液と冷媒との実際対数平均温度差を算出し、
冷水負荷に対する理想対数平均温度差と実際対数平均温
度差とを比較して異常検出器が異常信号を出力するの
で、冷媒の飽和ドレン温度及び低温再生器に流入する吸
収液の温度である中間吸収液の温度を正確に求めること
ができ、吸収式冷凍機が運転中に低温再生器の異常を一
層正確に検出することができ、かつ、実際対数平均温度
差の比較対象である理想対数平均温度差を実験などを実
際に行うことなく例えばシミュレーションによって容易
に算出することができ、また、吸収式冷凍機の部分負荷
時においても低温再生器の異常を一層正確に検出するこ
とができる。
Further, a chilled water temperature detector for detecting a chilled water inlet temperature and an outlet temperature of the evaporator is detected, a pressure of the high temperature regenerator is detected by a first pressure detector, and a temperature of the high temperature regenerator is regenerated. The temperature inside the upper body is detected by the second pressure detector, the temperature of the absorbent on the outlet side of the low-temperature regenerator is detected by the absorbent temperature detector, and the first pressure detector detects The saturated drain temperature is determined from the detected pressure, and the concentration of the absorbent flowing into the low-temperature regenerator is determined from the pressure detected by the first pressure detector and the temperature of the high-temperature regenerator detected by the regenerator temperature detector. concentration and determine the saturation temperature of the low temperature regenerator and a second pressure that the pressure detector detects the cold from the cold water inlet and outlet temperature difference during differential 100% load of the detected temperature of the chilled water temperature detector
Calculate the water load, and calculate the actual logarithmic average temperature difference between the absorbent and the refrigerant in the low-temperature regenerator from the saturated drain temperature, the saturation temperature of the low-temperature regenerator, and the detection temperature of the absorbent temperature detector ,
Ideal log average temperature difference and actual log average temperature for chilled water load
The abnormality detector outputs an abnormality signal by comparing the temperature difference with the temperature difference, so that the temperature of the saturated drain of the refrigerant and the temperature of the intermediate absorbent, which is the temperature of the absorbent flowing into the low-temperature regenerator, can be accurately obtained. An abnormal condition of the low-temperature regenerator can be detected more accurately while the refrigerator is operating , and the actual logarithmic average temperature
The ideal logarithmic mean temperature difference to be compared
Easier with simulation, for example
And the partial load of the absorption refrigerator
Even at low temperatures, it is possible to more accurately detect abnormalities in the low-temperature regenerator.
Can be.

【0033】[0033]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す吸収式冷凍機の概略構
成図である。
FIG. 1 is a schematic configuration diagram of an absorption refrigerator showing one embodiment of the present invention.

【図2】異常検出器のブロック・ダイアグラムである。FIG. 2 is a block diagram of an anomaly detector.

【図3】負荷と対数平均温度差との関係図である。FIG. 3 is a relationship diagram between a load and a logarithmic average temperature difference.

【図4】異常検出装置の動作を説明するフロ−チャ−ト
である。
FIG. 4 is a flowchart illustrating the operation of the abnormality detection device.

【図5】本発明の第2の実施例を示す吸収式冷凍機の概
略構成図である。
FIG. 5 is a schematic configuration diagram of an absorption refrigerator showing a second embodiment of the present invention.

【図6】高温再生器の温度、低温再生器の飽和温度ある
いは冷媒の飽和ドレン温度と高温再生器の圧力あるいは
凝縮器の圧力との関係図である。
FIG. 6 is a diagram showing the relationship between the temperature of the high-temperature regenerator, the saturation temperature of the low-temperature regenerator or the saturated drain temperature of the refrigerant, and the pressure of the high-temperature regenerator or the pressure of the condenser.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 吸収器 4 高温再生器 6 低温再生器 36 冷水温度検出器 37 冷水温度検出器 38 冷媒温度検出器 40 中間吸収液温度検出器 41 濃吸収液温度検出器 43 異常検出器 DESCRIPTION OF SYMBOLS 1 Evaporator 2 Absorber 4 High temperature regenerator 6 Low temperature regenerator 36 Cold water temperature detector 37 Cold water temperature detector 38 Refrigerant temperature detector 40 Intermediate absorption liquid temperature detector 41 Rich absorption liquid temperature detector 43 Abnormality detector

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭56−146966(JP,A) 特開 平3−67966(JP,A) 実開 昭61−15468(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 15/00,49/04 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-56-146966 (JP, A) JP-A-3-67966 (JP, A) JP-A-61-15468 (JP, U) (58) Survey Field (Int. Cl. 7 , DB name) F25B 15/00, 49/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高温再生器、この高温再生器で冷媒を分
離した吸収液が流入し高温再生器からの冷媒蒸気によっ
て吸収液を加熱して冷媒蒸気を分離する低温再生器、凝
縮器、蒸発器及び吸収器などを配管接続してなる吸収式
冷凍機において、蒸発器の冷水入口温度及び出口温度を
それぞれ検出する冷水温度出器と、吸収液の低温再生器
の入口温度及び出口温度をそれぞれ検出する吸収液温度
検出器と、冷媒の低温再生器の入口温度あるいは出口温
度を検出する冷媒温度検出器と、各冷水温度検出器の検
出温度の差と100%負荷時の冷水出入口温度差とから
冷水負荷を算出し、かつ、各吸収液温度検出器及び冷媒
温度検出器の検出温度から低温再生器での吸収液と冷媒
との実際対数平均温度差を算出し、冷水負荷に対する理
想対数平均温度差と実際対数平均温度差とを比較して
常信号を出力する異常検出器とを備えたことを特徴とす
る吸収式冷凍機の異常検出装置。
1. A high-temperature regenerator, a low-temperature regenerator, a condenser, and an evaporator, in which an absorbing liquid from which a refrigerant has been separated by the high-temperature regenerator flows in, and the refrigerant vapor is separated by heating the absorbing liquid with the refrigerant vapor from the high-temperature regenerator. Chiller temperature detector that detects the chilled water inlet temperature and outlet temperature of the evaporator, and the inlet temperature and outlet temperature of the absorbent low-temperature regenerator, respectively. An absorption liquid temperature detector for detecting, a refrigerant temperature detector for detecting an inlet temperature or an outlet temperature of the low temperature regenerator of the refrigerant, a difference between detection temperatures of the respective chilled water temperature detectors, and a difference between the chilled water inlet / outlet temperatures at 100% load. And the actual logarithmic average temperature difference between the absorbent and the refrigerant in the low-temperature regenerator from the detected temperatures of each of the absorbent temperature detector and the refrigerant temperature detector.
An abnormality detection device for an absorption refrigerator, comprising: an abnormality detector that compares an imaginary log average temperature difference with an actual log average temperature difference and outputs an abnormality signal.
【請求項2】 高温再生器、この高温再生器で冷媒を分
離した吸収液が流入し高温再生器からの冷媒蒸気によっ
て吸収液を加熱して冷媒蒸気を分離する低温再生器、凝
縮器、この凝縮器と低温再生器とを収納した上胴、蒸発
器及び吸収器などを配管接続してなる吸収式冷凍機にお
いて、蒸発器の冷水入口温度及び出口温度をそれぞれ検
出する冷水温度検出器と、高温再生器の圧力を検出する
第1の圧力検出器と、高温再生器の温度を検出する再生
器温度検出器と、上胴内の圧力を検出する第2の圧力検
出器と、低温再生器の出口側吸収液温度を検出する吸収
液温度検出器と、高温再生器の圧力と飽和ドレン温度と
の関係を記憶し、第1の圧力検出器が検出した圧力から
飽和ドレン温度を求め、第1の圧力検出器が検出した圧
力と再生器温度検出器が検出した高温再生器の温度とか
ら低温再生器に流入する吸収液の濃度を求め、この濃度
と第2の圧力検出器が検出した圧力とから低温再生器の
飽和温度を求め、各冷水温度検出器の検出温度の差と1
00%負荷時の冷水出入口温度差とから冷水負荷を算出
し、かつ、飽和ドレン温度と低温再生器の飽和温度と吸
収液温度検出器が検出した出口側吸収液温度から低温再
生器での吸収液と冷媒との実際対数平均温度差を算出
し、冷水負荷に対する理想対数平均温度差と実際対数平
均温度差とを比較して異常信号を出力する異常検出器と
を備えたことを特徴とする吸収式冷凍機の異常検出装
置。
2. A high-temperature regenerator, a low-temperature regenerator and a condenser in which an absorbing liquid from which a refrigerant has been separated by the high-temperature regenerator flows in, and the absorbing liquid is heated by the refrigerant vapor from the high-temperature regenerator to separate the refrigerant vapor. In an absorption refrigerator in which a condenser and a low-temperature regenerator are housed, an evaporator and an absorber are connected by piping, a chilled water temperature detector that detects a chilled water inlet temperature and an outlet temperature of the evaporator, A first pressure detector for detecting the pressure of the high temperature regenerator, a regenerator temperature detector for detecting the temperature of the high temperature regenerator, a second pressure detector for detecting the pressure in the upper body, and a low temperature regenerator An absorption liquid temperature detector for detecting the outlet side absorption liquid temperature, and a relationship between the pressure of the high-temperature regenerator and the saturated drain temperature, and obtain a saturated drain temperature from the pressure detected by the first pressure detector. Pressure detected by pressure sensor 1 and regenerator temperature detection The concentration of the absorbent flowing into the low-temperature regenerator is determined from the temperature of the high-temperature regenerator detected by the regenerator, and the saturation temperature of the low-temperature regenerator is determined from the concentration and the pressure detected by the second pressure detector. Difference between temperature detected by temperature detector and 1
The chilled water load is calculated from the chilled water inlet / outlet temperature difference at the time of the 00% load, and the absorption at the low temperature regenerator is performed based on the saturated drain temperature, the saturation temperature of the low temperature regenerator, and the outlet side absorption liquid temperature detected by the absorption liquid temperature detector. Calculate actual logarithmic average temperature difference between liquid and refrigerant
And the ideal logarithmic mean temperature difference and the actual logarithmic
An abnormality detector for comparing the average temperature difference with the abnormality temperature and outputting an abnormality signal.
JP01313992A 1992-01-28 1992-01-28 Abnormality detector for absorption refrigerator Expired - Fee Related JP3258692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01313992A JP3258692B2 (en) 1992-01-28 1992-01-28 Abnormality detector for absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01313992A JP3258692B2 (en) 1992-01-28 1992-01-28 Abnormality detector for absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH05203297A JPH05203297A (en) 1993-08-10
JP3258692B2 true JP3258692B2 (en) 2002-02-18

Family

ID=11824833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01313992A Expired - Fee Related JP3258692B2 (en) 1992-01-28 1992-01-28 Abnormality detector for absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3258692B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7123988B2 (en) * 2020-01-24 2022-08-23 矢崎エナジーシステム株式会社 Absorption chiller

Also Published As

Publication number Publication date
JPH05203297A (en) 1993-08-10

Similar Documents

Publication Publication Date Title
JP3258692B2 (en) Abnormality detector for absorption refrigerator
JP3258687B2 (en) Abnormality detector for absorption refrigerator
JP3195087B2 (en) Absorption refrigerator
JP3208165B2 (en) Abnormality detector for absorption refrigerator
JP3258684B2 (en) Abnormality detector for absorption refrigerator
JP3054553B2 (en) Absorption chiller / heater failure diagnosis device
JP3195085B2 (en) Absorption refrigerator
JP3258686B2 (en) Abnormality detector for absorption refrigerator
JP2810430B2 (en) Absorption refrigerator protection device
JP3253211B2 (en) Absorption chiller / heater fault diagnosis system
JP3195086B2 (en) Absorption refrigerator
JPS6210349B2 (en)
JP2902946B2 (en) Abnormality determination device for absorption type water heater
JP3083929B2 (en) Failure diagnosis system for absorption refrigerator
JP3054554B2 (en) Abnormality detector for absorption type water heater
JP2708900B2 (en) Absorption refrigerator
JP3187878B2 (en) Absorption refrigerator protection device
JP2823265B2 (en) Absorption refrigerator
JP2771626B2 (en) Absorption refrigerator
JP3203552B2 (en) Absorption chiller controller
JP3081314B2 (en) Control device for absorption refrigerator
JPH06159853A (en) Absorption type freezer
JPH06159871A (en) Absorption type refrigerating machine
JPS6316245A (en) Measuring instrument for uncondensable gas pressure
JP2876154B2 (en) Dirty detection method for cooling water heat transfer tubes of refrigerators and chillers

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees