JPH06159871A - Absorption type refrigerating machine - Google Patents
Absorption type refrigerating machineInfo
- Publication number
- JPH06159871A JPH06159871A JP34328892A JP34328892A JPH06159871A JP H06159871 A JPH06159871 A JP H06159871A JP 34328892 A JP34328892 A JP 34328892A JP 34328892 A JP34328892 A JP 34328892A JP H06159871 A JPH06159871 A JP H06159871A
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- cold water
- cooling water
- evaporator
- condenser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は吸収式冷凍機に関し、特
に詳しくは蒸発器または凝縮器における異常を検出する
ことのできる吸収式冷凍機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator, and more particularly to an absorption refrigerator capable of detecting an abnormality in an evaporator or a condenser.
【0002】[0002]
【従来の技術】冷水経路や冷却水経路に流量計を設置
し、冷水や冷却水の流量を計測することにより、冷水・
冷却水流量の不足、冷却水系のスケール付着、冷水ポン
プあるいは冷却水ポンプの異常を監視する技術がある。2. Description of the Related Art A flow meter is installed in a cold water path or a cooling water path to measure the flow rate of the cold water or the cooling water.
There is a technology to monitor insufficient cooling water flow rate, adhesion of scale in the cooling water system, chilled water pump or abnormality of chilled water pump.
【0003】[0003]
【発明が解決しようとする課題】しかし、精度の高い流
量計は高価であり、このような高性能の流量計を使用し
たのでは設備費が高く付くと云った問題点があり、低コ
ストで精度よく冷水や冷却水の流量を検知し、蒸発器や
吸収器における異常を監視することのできる技術の開発
が望まれていた。However, a flow meter with high accuracy is expensive, and there is a problem that using such a high-performance flow meter causes a high equipment cost, which is low in cost. It has been desired to develop a technique capable of accurately detecting the flow rate of cold water or cooling water and monitoring abnormality in the evaporator or absorber.
【0004】[0004]
【課題を解決するための手段】本発明は上記従来技術の
課題を解決するための具体的手段として、再生器・凝縮
器・蒸発器・吸収器・温熱交換器などを配管接続して構
成する吸収式冷凍機であって、蒸発器を通る冷水の入口
/出口間の圧力差を計測し、この圧力差と、予め記憶し
ている冷水流量と圧力差との関係から現時点の冷水流量
を算出し、この冷水流量が所定流量以下になった時、警
報を出力する警報手段を備えたことを特徴とする吸収式
冷凍機と、As a concrete means for solving the above-mentioned problems of the prior art, the present invention is constituted by connecting a regenerator, a condenser, an evaporator, an absorber, a heat exchanger and the like by piping. An absorption chiller that measures the pressure difference between the inlet and outlet of cold water that passes through the evaporator, and calculates the current cold water flow rate from this pressure difference and the relationship between the stored cold water flow rate and pressure difference. However, when this chilled water flow rate becomes equal to or less than a predetermined flow rate, an absorption refrigerator having an alarm means for outputting an alarm,
【0005】再生器・凝縮器・蒸発器・吸収器・温熱交
換器などを配管接続して構成する吸収式冷凍機であっ
て、吸収器および凝縮器を通る冷却水の吸収器入口/凝
縮器出口間の圧力差を計測し、この圧力差と、予め記憶
している冷却水流量と圧力差との関係から現時点の冷却
水流量を算出し、この冷却水流量が第1の所定流量以下
になった時に第1の警報を出力し、且つ、冷却水流量が
第1の所定流量より少ない第2の所定流量以下になった
時に第2の警報を出力する警報手段を備えたことを特徴
とする吸収式冷凍機と、An absorption type refrigerating machine comprising a regenerator, a condenser, an evaporator, an absorber, a heat exchanger and the like connected by pipes, which is an inlet / condenser of cooling water passing through the absorber and the condenser. The pressure difference between the outlets is measured, and the current cooling water flow rate is calculated from this pressure difference and the relationship between the cooling water flow rate and the pressure difference stored in advance, and this cooling water flow rate becomes equal to or lower than the first predetermined flow rate. And a warning unit that outputs a first alarm when the cooling water flow rate becomes less than or equal to a second predetermined flow rate that is less than the first predetermined flow rate. Absorption type refrigerator
【0006】再生器・凝縮器・蒸発器・吸収器・温熱交
換器などを配管接続して構成する吸収式冷凍機であっ
て、蒸発器を通る冷水の流量と、蒸発器入口/出口部の
冷水温度と、吸収器および凝縮器を通る冷却水の吸収器
入口/凝縮器出口部の冷却水温度に基づいて現時点の冷
却水流量を算出し、この冷却水流量が所定流量以下にな
った時、警報を出力する警報手段を備えたことを特徴と
する吸収式冷凍機と、を提供することにより、前記した
従来技術の課題を解決するものである。[0006] An absorption refrigerator comprising a regenerator, a condenser, an evaporator, an absorber, a heat exchanger and the like connected by piping, wherein the flow rate of cold water passing through the evaporator and the inlet / outlet of the evaporator are When the current cooling water flow rate is calculated based on the cold water temperature and the cooling water temperature at the absorber inlet / condenser outlet of the cooling water that passes through the absorber and condenser, and when this cooling water flow rate falls below the specified flow rate By providing an absorption refrigerating machine characterized by comprising alarm means for outputting an alarm, the above-mentioned problems of the prior art are solved.
【0007】[0007]
【作用】廉価な圧力計を使用するか、圧力計と温度計を
併用して冷水や冷却水の流量を求め、蒸発器や吸収器の
異常を監視するので、コスト低減が図れる。The cost can be reduced because an inexpensive pressure gauge is used, or a pressure gauge and a thermometer are used together to determine the flow rate of cold water or cooling water and the abnormality of the evaporator or the absorber is monitored.
【0008】[0008]
(実施例1)以下、本発明の第1の実施例を図1〜図4
に基づいて詳細に説明する。図1は冷媒に例えば水、吸
収液(溶液)に臭化リチウム(LiBr)溶液を用いた
吸収式冷凍機である吸収冷温水機の概略構成図であり、
1は蒸発器、2は吸収器、3は蒸発器1および吸収器2
を収納した蒸発器吸収器胴、4は例えばガスバーナ5な
どの高温熱源によって加熱される高温再生器、6は低温
再生器、7は凝縮器、8は低温再生器6および凝縮器7
を収納した低温再生器凝縮器胴、9は吸収器2から高温
再生器4に流れる濃度の薄い吸収液と低温再生器6から
吸収器2に流れる濃度の濃い吸収液とを熱交換する溶液
熱交換器である低温熱交換器、10は吸収器2から低温
熱交換器9を経て高温再生器4に流れる稀吸収液と高温
再生器4から低温再生器6に流れる中間濃度の吸収液と
を熱交換する溶液熱交換器である高温熱交換器、11〜
15は吸収液配管、16は吸収液ポンプ、17および1
8は冷媒配管、19は冷媒循環配管、20は冷媒ポン
プ、21はガスバーナ5に接続されたガス配管、22は
加熱量制御弁、23は途中に蒸発器熱交換器24が設け
られた冷水配管、25は途中に冷却水ポンプ26と吸収
器熱交換器27と凝縮器熱交換器28とが設けられた冷
却水配管あり、それぞれは図1に示したように配管接続
されている。(Embodiment 1) Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
It will be described in detail based on. FIG. 1 is a schematic configuration diagram of an absorption chiller-heater which is an absorption refrigerator using water as a refrigerant and lithium bromide (LiBr) solution as an absorption liquid (solution),
1 is an evaporator, 2 is an absorber, 3 is an evaporator 1 and an absorber 2
An evaporator absorber cylinder 4 in which is housed 4 is a high temperature regenerator heated by a high temperature heat source such as a gas burner 5, 6 is a low temperature regenerator, 7 is a condenser, 8 is a low temperature regenerator 6 and a condenser 7
A low-temperature regenerator condenser barrel containing 9 is a solution heat for exchanging heat between a low-concentration absorption liquid flowing from the absorber 2 to the high-temperature regenerator 4 and a high-concentration absorption liquid flowing from the low-temperature regenerator 6 to the absorber 2. The low-temperature heat exchanger 10 serving as an exchanger stores a rare absorption liquid flowing from the absorber 2 to the high-temperature regenerator 4 via the low-temperature heat exchanger 9 and an intermediate-concentration absorption liquid flowing from the high-temperature regenerator 4 to the low-temperature regenerator 6. High temperature heat exchangers 11 to 11 which are solution heat exchangers for heat exchange
Reference numeral 15 is an absorption liquid pipe, 16 is an absorption liquid pump, and 17 and 1
8 is a refrigerant pipe, 19 is a refrigerant circulation pipe, 20 is a refrigerant pump, 21 is a gas pipe connected to the gas burner 5, 22 is a heating amount control valve, and 23 is cold water pipe in which an evaporator heat exchanger 24 is provided in the middle. , 25 are cooling water pipes provided with a cooling water pump 26, an absorber heat exchanger 27, and a condenser heat exchanger 28 on the way, and they are connected by pipes as shown in FIG.
【0009】また、29は蒸発器1の冷媒溜り30と吸
収器2の吸収液溜り31とを配管接続する冷媒バイパス
管、32は開閉弁、33は吸収液配管12と吸収器2と
を接続する吸収液バイパス管、34は開閉弁、35は冷
媒配管17と吸収器2とを接続する冷媒蒸気バイパス
管、36は開閉弁であり、37は吸収液配管11と吸収
液バイパス管33とを接続するバイパス管、38は低温
再生器6と吸収器2とを接続するバイパス管、39は吸
収液配管11とバイパス管38とを接続するバイパス管
であり、それぞれ図のように接続され、各開閉弁32・
34・36は冷水の供給時に閉じ、温水の供給時に開
く。Further, 29 is a refrigerant bypass pipe for connecting the refrigerant reservoir 30 of the evaporator 1 and the absorbing liquid reservoir 31 of the absorber 2 to each other, 32 is an opening / closing valve, and 33 is connecting the absorbing liquid pipe 12 and the absorber 2. Absorbing liquid bypass pipe, 34 is an opening / closing valve, 35 is a refrigerant vapor bypass pipe connecting the refrigerant pipe 17 and the absorber 2, 36 is an opening / closing valve, and 37 is the absorbing liquid pipe 11 and the absorbing liquid bypass pipe 33. A bypass pipe for connection, a bypass pipe for connecting the low temperature regenerator 6 and the absorber 2 and a bypass pipe for connecting the absorbing liquid pipe 11 and the bypass pipe 38 are connected to each other as shown in FIG. Open / close valve 32.
34 and 36 are closed when cold water is supplied and open when hot water is supplied.
【0010】S1・S2は、冷水配管23の蒸発器1入
口側と出口側圧力に設置され、それぞれの部位の圧力P
1・P2を検出する冷水圧力検出器である。S1 and S2 are installed at the inlet side and outlet side pressures of the evaporator 1 of the cold water pipe 23, and the pressure P of each portion is set.
This is a cold water pressure detector that detects 1.P2.
【0011】40は、上記冷水圧力検出器S1・S2か
ら圧力信号を入力して蒸発器1の異常を検出する異常検
出装置であり、この異常検出装置40は例えば吸収冷温
水機の制御盤(図示せず)に設けられ、マイクロコンピ
ュータで構成されている。また、41は異常検出装置4
0と同様に制御盤に設けられ、異常検出装置40からの
信号を入力して動作する警報装置である。この警報装置
41は、例えば複数のセグメント素子を備えた表示装置
42とブザー43とから構成されている。そして、表示
装置42は異常検出装置40からの信号に基づいて例え
ばALARMの文字を点滅する。Reference numeral 40 is an abnormality detecting device for detecting an abnormality of the evaporator 1 by inputting a pressure signal from the cold water pressure detectors S1 and S2. The abnormality detecting device 40 is, for example, a control panel ( (Not shown), and is composed of a microcomputer. Further, 41 is the abnormality detection device 4
The alarm device is provided on the control panel similarly to 0 and operates by receiving a signal from the abnormality detection device 40. The alarm device 41 includes a display device 42 having a plurality of segment elements and a buzzer 43, for example. Then, the display device 42 blinks, for example, the characters ALARM based on the signal from the abnormality detection device 40.
【0012】以下、異常検出装置40の構成を図2に基
づいて説明する。44は冷水圧力検出器S1・S2から
の圧力信号を入力し、信号変換して中央演算処理装置
(以下CPUと云う)45へ出力する入力インターフェ
イス、46は所定の演算プログラムなどが記憶されてい
る記憶装置(以下ROMという)、47はCPU45か
らの信号を入力して警報装置41へ出力する出力インタ
ーフェイス、48は所定時間毎に信号を出力する信号発
生器(以下CLOCKという)、49は各冷水圧力検出
器が検出した圧力を記憶する読込/消去可能な記憶装置
(以下RAMという)である。The configuration of the abnormality detecting device 40 will be described below with reference to FIG. Reference numeral 44 denotes an input interface for inputting a pressure signal from the cold water pressure detectors S1 and S2, converting the signal, and outputting the signal to a central processing unit (hereinafter referred to as CPU) 45. Reference numeral 46 stores a predetermined calculation program and the like. A storage device (hereinafter referred to as ROM), 47 is an output interface for inputting a signal from the CPU 45 and outputting it to the alarm device 41, 48 is a signal generator (hereinafter referred to as CLOCK) that outputs a signal at predetermined time intervals, and 49 is each cold water. It is a readable / erasable storage device (hereinafter referred to as RAM) that stores the pressure detected by the pressure detector.
【0013】上記ROM46には、冷水圧力検出器S1
・S2が検出する冷水圧力P1・P2から圧力差ΔP12
を求める演算式(ΔP12=P1−P2)と、圧力差ΔP
12と冷水配管23を流れる冷水流量(%)との関係式
(例えば、図3の関係)と、冷水流量によって蒸発器1
の状態を判定する判定基準とが記憶されている。The ROM 46 has a chilled water pressure detector S1.
・ Pressure difference ΔP 12 from cold water pressures P1 and P2 detected by S2
Equation (ΔP 12 = P 1 -P 2) for calculating the pressure difference ΔP
12 and the cold water flow rate (%) flowing through the cold water pipe 23 (for example, the relationship of FIG. 3) and the cold water flow rate, the evaporator 1
The determination criteria for determining the state of are stored.
【0014】図3においては、冷水圧力検出器S1・S
2が検出する冷水圧力P1・P2の圧力差ΔP12が、例
えば1.5mAq以上あれば、冷水流量は規格の60%
以上が確保されて冷房運転などが問題なく機能するの
で、この状態を領域A;正常状態とし、前記圧力差ΔP
12が、例えば0.8〜1.5mAqの間にあれば、冷水
流量は規格の40〜60%が確保され、やや異常はある
が運転不能と判定する程ではないので、この状態を領域
B;やや異常な状態とし、前記圧力差ΔP12が、例えば
0.8mAq以下になると、冷水流量は規格の40%以
下しか確保できず、したがって冷水を正常な状態では供
給することができなくなるため、この状態を領域C;異
常状態と区分している。In FIG. 3, cold water pressure detectors S1 and S are shown.
If the pressure difference ΔP 12 between the cold water pressures P1 and P2 detected by 2 is 1.5 mAq or more, the cold water flow rate is 60% of the standard.
Since the above is secured and the cooling operation or the like functions without any problem, this state is set as the region A; normal state, and the pressure difference ΔP is set.
If 12 is between 0.8 and 1.5 mAq, for example, the chilled water flow rate is 40 to 60% of the standard, and there is some abnormality, but it is not enough to determine that operation is impossible. When the pressure difference ΔP 12 becomes 0.8 mAq or less, for example, the cold water flow rate can be secured to 40% or less of the standard, and therefore cold water cannot be supplied in a normal state. This state is classified as area C; abnormal state.
【0015】上記吸収冷温水機の冷水供給の運転時、従
来の吸収式冷凍機と同様に高温再生器4で蒸発した冷媒
は低温再生器6を経て凝縮器7へ流れ、凝縮器熱交換器
28を流れる冷却水と熱交換して凝縮したのち冷媒配管
18を介して蒸発器1へ流れる。そして、冷媒が蒸発器
熱交換器24を流れる水と熱交換して蒸発し、気化熱に
よって蒸発器熱交換器24を流れる水が冷却される。そ
して、冷水が負荷に循環する。また、蒸発器1で蒸発し
た冷媒は吸収器2で吸収液に吸収される。冷媒を吸収し
て濃度が薄くなった稀吸収液が吸収液ポンプ16の運転
によって低温熱交換器9および高温熱交換器10を経て
高温再生器4へ送られる。高温再生器4へ送られた吸収
液はバーナ5によって加熱されて冷媒が蒸発し、中濃度
の吸収液が高温熱交換器10を経て低温再生6へ流れ
る。低温再生器6で吸収液は高温再生器10から冷媒配
管17を流れてきた冷媒蒸気によって加熱され、さらに
冷媒蒸気が分離され濃度が高くなる。高濃度になった吸
収液は低温熱交換器9を経て温度低下して吸収器2へ送
られて散布される。During the cold water supply operation of the absorption chiller-heater, the refrigerant evaporated in the high temperature regenerator 4 flows to the condenser 7 via the low temperature regenerator 6 as in the conventional absorption chiller, and then the condenser heat exchanger. After exchanging heat with the cooling water flowing through 28 to condense, it flows to the evaporator 1 through the refrigerant pipe 18. The refrigerant exchanges heat with the water flowing through the evaporator heat exchanger 24 to evaporate, and the water flowing through the evaporator heat exchanger 24 is cooled by the heat of vaporization. Then, cold water circulates through the load. Further, the refrigerant evaporated in the evaporator 1 is absorbed by the absorbing liquid in the absorber 2. The dilute absorption liquid that has absorbed the refrigerant and becomes thin in concentration is sent to the high temperature regenerator 4 through the low temperature heat exchanger 9 and the high temperature heat exchanger 10 by the operation of the absorption liquid pump 16. The absorbing liquid sent to the high temperature regenerator 4 is heated by the burner 5 to evaporate the refrigerant, and the medium concentration absorbing liquid flows to the low temperature regeneration 6 through the high temperature heat exchanger 10. In the low temperature regenerator 6, the absorbing liquid is heated by the refrigerant vapor flowing from the high temperature regenerator 10 through the refrigerant pipe 17, and the refrigerant vapor is further separated to have a high concentration. The absorbing liquid having a high concentration is cooled by the low temperature heat exchanger 9 and is sent to the absorber 2 to be dispersed.
【0016】以上のように、吸収冷温水機が運転されて
いる時の異常検出について、図4のフローチャートに基
づいて説明する。As described above, the abnormality detection when the absorption chiller-heater is operating will be described with reference to the flowchart of FIG.
【0017】冷水圧力検出器S1・S2が検出する冷水
圧力P1・P2は、入力インターフェイス44およびC
PU45を介してRAM49に一時記憶される。The cold water pressures P1 and P2 detected by the cold water pressure detectors S1 and S2 are the input interfaces 44 and C, respectively.
It is temporarily stored in the RAM 49 via the PU 45.
【0018】次に、CLOCK48からの信号に基づい
て、所定時間毎にRAM49に記憶されている冷水圧力
P1・P2がCPU45へ読み込まれると共に、ROM
46から、圧力差ΔP12を求める演算式と、図3の前記
関係式とが読み込まれ、CPU45にて、圧力差ΔP12
と冷水流量(%)とを算出する。Next, on the basis of the signal from the CLOCK 48, the cold water pressures P1 and P2 stored in the RAM 49 are read into the CPU 45 at predetermined time intervals, and the ROM 45 is read.
From 46, the arithmetic expression for obtaining the pressure difference ΔP 12 and the relational expression of FIG. 3 are read, and the CPU 45 reads the pressure difference ΔP 12
And the cold water flow rate (%) are calculated.
【0019】そして、冷水流量による蒸発器1の状態判
定を、図3に規定した領域判定に基づいて行う。例え
ば、入口側の冷水圧力P1が例えば0.8kgf/cm
2 、出口側の冷水圧力P2が0.6kgf/cm2 であ
ったとすると、圧力差ΔP12は2mAqとなり、この時
の冷水流量は70%と算出され、領域A(正常)に位置
していると判定される。したがって、この場合CPU4
5は異常信号を出力しない。Then, the state determination of the evaporator 1 based on the flow rate of cold water is performed based on the region determination defined in FIG. For example, the cold water pressure P1 on the inlet side is, for example, 0.8 kgf / cm.
2 , assuming that the cold water pressure P2 on the outlet side is 0.6 kgf / cm 2 , the pressure difference ΔP 12 is 2 mAq, and the cold water flow rate at this time is calculated to be 70%, which is located in the area A (normal). Is determined. Therefore, in this case, the CPU 4
5 does not output an abnormal signal.
【0020】しかし、冷水圧力P1が例えば0.65k
gf/cm2 、冷水圧力P2が0.6kgf/cm2 で
あれば、圧力差ΔP12は0.5mAqとなり、この時の
冷水流量は30%と算出され、領域C(異常)に位置し
ていると判定される。そして、この場合はCPU45か
ら出力インターフェイス47を介して異常信号が出力さ
れる。すなわち、異常検出装置41の表示装置42にA
LARMの文字を点滅させると共に、ブザー43を吹鳴
させ、同時に吸収冷温水機の運転を停止させる。However, the cold water pressure P1 is, for example, 0.65 k.
If the gf / cm 2 and the cold water pressure P2 are 0.6 kgf / cm 2 , the pressure difference ΔP 12 is 0.5 mAq, and the cold water flow rate at this time is calculated to be 30%, which is located in the region C (abnormal). It is determined that In this case, the CPU 45 outputs an abnormal signal through the output interface 47. That is, A is displayed on the display device 42 of the abnormality detection device 41.
The character of LARM is made to blink, the buzzer 43 is sounded, and at the same time, the operation of the absorption chiller-heater is stopped.
【0021】また、冷水圧力P1が例えば0.72kg
f/cm2 、冷水圧力P2が0.6kgf/cm2 であ
れば、圧力差ΔP12は1.2mAqとなり、この時の冷
水流量は50%と算出され、領域B(やや異常)に位置
していると判定される。そして、この場合はCPU45
から警報装置41にやや異常の信号を出力し、表示装置
42にALARMの文字を点滅させて管理者の注意を喚
起し、早期の点検を促す(吸収冷温水機の運転停止は行
わない)。The cold water pressure P1 is, for example, 0.72 kg.
If f / cm 2 and the cold water pressure P2 are 0.6 kgf / cm 2 , the pressure difference ΔP 12 is 1.2 mAq, and the cold water flow rate at this time is calculated to be 50%, which is located in the region B (somewhat abnormal). It is determined that And in this case, the CPU 45
Outputs a slightly abnormal signal to the alarm device 41, causes the display device 42 to blink the ALARM character to call the attention of the administrator, and prompts an early inspection (the operation of the absorption chiller / heater is not stopped).
【0022】上記実施例において、冷水或いは温水を供
給できる吸収式冷温水機に基づいて説明したが、冷水の
みを供給する吸収冷温水機においても、上記実施例と同
様に異常検出装置を設けることにより、同様の作用効果
を得ることができる。In the above embodiment, the description has been given based on the absorption type chiller-heater capable of supplying cold water or hot water. However, even in the absorption chiller-heater supplying only chilled water, the abnormality detecting device is provided similarly to the above embodiment. As a result, the same operational effect can be obtained.
【0023】上記実施例により、冷水ポンプ(図示せ
ず)の故障などによる冷水あるいは温水の流量異常など
を容易に検知することが可能であり、吸収冷温水機の保
守点検がタイムリーに行なえ、しかも低コスト化が図れ
る。According to the above-described embodiment, it is possible to easily detect an abnormal flow rate of cold water or hot water due to a failure of a cold water pump (not shown), so that maintenance and inspection of the absorption chiller water heater can be performed in a timely manner. Moreover, cost reduction can be achieved.
【0024】(実施例2)本発明の第2の実施例を図5
〜図7に基づいて説明する。なお、特に説明がない構成
については、実施例1と同様であるとして省略した部分
である。(Embodiment 2) A second embodiment of the present invention is shown in FIG.
~ It demonstrates based on FIG. It should be noted that configurations that are not particularly described are omitted because they are similar to those of the first embodiment.
【0025】図5において、S3・S4は、冷却水配管
25の吸収器2入口側と凝縮器7の出口側とに設置さ
れ、それぞれの部位の圧力P3・P4を検知する冷却水
圧力検出器であり、各圧力検出器からの圧力信号が異常
検出装置40に入力され、この異常検出装置で前記実施
例1と同様に冷却水流量を算出し、こうして求めた冷却
水流量を予め定めた所定値と比較してやや異常、異常の
警報を出力するようになっている。In FIG. 5, S3 and S4 are installed on the inlet side of the absorber 2 of the cooling water pipe 25 and the outlet side of the condenser 7, and are cooling water pressure detectors for detecting the pressures P3 and P4 at the respective portions. The pressure signal from each pressure detector is input to the abnormality detecting device 40, the cooling water flow rate is calculated by this abnormality detecting device as in the first embodiment, and the cooling water flow rate thus obtained is set to a predetermined value. Compared with the value, it outputs a little abnormality and an alarm of abnormality.
【0026】図6は、冷却水圧力P3・P4の圧力差Δ
P34(P3−P4)と、冷却水流量(%)との関係式の
一例であり、図7は制御の一例であり、実施例1と同様
に制御され、吸収器2および凝縮器7を流れる冷却水流
路の異常が検知されるFIG. 6 shows the pressure difference Δ between the cooling water pressures P3 and P4.
FIG. 7 is an example of a relational expression between P 34 (P3-P4) and the cooling water flow rate (%), and FIG. 7 is an example of control, and the absorber 2 and the condenser 7 are controlled in the same manner as in Example 1. Abnormality of flowing cooling water flow path is detected
【0027】上記実施例により、冷却水ポンプ26の故
障などによる冷水あるいは温水の流量異常などを容易に
検知することが可能であり、しかも、異常状態を2段階
に分けて報知するため、冷却水流量の状態を管理者に簡
潔に知らせて吸収冷温水機の保守点検がタイムリーに行
なえる上、低コスト化も図れる。According to the above-described embodiment, it is possible to easily detect an abnormal flow rate of cold water or hot water due to a failure of the cooling water pump 26, and to notify the abnormal state in two stages. The administrator can be informed briefly about the flow rate status, and maintenance and inspection of the absorption chiller-heater can be performed in a timely manner, and the cost can be reduced.
【0028】(実施例3)本発明の第3の実施例を図8
に基づいて説明する。なお、特に説明がない構成につい
ては、実施例1と同様であるとして省略した部分であ
る。(Embodiment 3) A third embodiment of the present invention is shown in FIG.
It will be described based on. It should be noted that configurations that are not particularly described are omitted because they are similar to those of the first embodiment.
【0029】実施例3の装置においては、前記実施例1
において使用した冷水圧力検出器S1・S2と共に、蒸
発器1の入口側と出口側の冷水温度T5・T6を検出す
るための冷水温度検出器S5・S6と、吸収器2の入口
側と凝縮器7出口側の冷却水温度T7・T8を検出する
冷却水温度検出器S7・S8とが設置されている。In the apparatus of the third embodiment, the above-mentioned first embodiment is used.
Together with the cold water pressure detectors S1 and S2 used in the above, the cold water temperature detectors S5 and S6 for detecting the cold water temperatures T5 and T6 at the inlet side and the outlet side of the evaporator 1, the inlet side of the absorber 2 and the condenser. The cooling water temperature detectors S7 and S8 for detecting the cooling water temperatures T7 and T8 on the 7 outlet side are installed.
【0030】図8に示した二重効用吸収冷温水機の熱収
支は、冷水系からの入熱をQE 、再生器からの入熱をQ
G 、冷却水系への出熱をQA+C とすると、 QE +QG =QA+C であり、 QE =VE ×ΔTE (VE ;冷水系流量、ΔTE ;冷水
系温度差) QG =VE ×ΔTE ×(1/COP)(COP;成績係
数) QA+C =VC ×ΔTC (VC ;冷却水系流量、ΔTC ;
冷却水系温度差) であるので、 VE ×ΔTE +VE ×ΔTE ×(1/COP)=VC ×
ΔTC と書き替えることができる。そして、これから、 VC ={VE ×ΔTE (1+1/COP)}/ΔTC と変形可能であり、しかも冷却水系冷凍機の内部COP
は略一定(例えば、1.2)であるから、冷却水系の流
量VC は、冷水系の流量および温度差ならびに冷却水系
の温度差が判れば演算により算出することができる。The heat balance of the double-effect absorption chiller-heater shown in FIG. 8 has a heat input Q E from the cold water system and a heat input Q from the regenerator.
G , where the heat output to the cooling water system is Q A + C , Q E + Q G = Q A + C , and Q E = V E × ΔT E (V E ; cold water system flow rate, ΔT E ; cold water system temperature difference) Q G = V E × ΔT E × (1 / COP) (COP; coefficient of performance) Q A + C = V C × ΔT C (V C; cooling water flow rate, [Delta] T C;
Cooling water system temperature difference), so V E × ΔT E + V E × ΔT E × (1 / COP) = V C ×
It can be rewritten as ΔT C. Then, from this, V C can be transformed into V C = {V E × ΔT E (1 + 1 / COP)} / ΔT C , and the internal COP of the cooling water refrigerator can be changed.
Is substantially constant (for example, 1.2), the flow rate V C of the cooling water system can be calculated by calculation if the flow rate and temperature difference of the cooling water system and the temperature difference of the cooling water system are known.
【0031】この実施例の異常検出装置40において
は、COP=1.2として冷却水流量VC を求める演算
式と、求めた冷却水流量VC が、例えば60%以上あ
れば正常と判定し、40〜60%の時にはやや異常があ
ると判定し、40%以下の時には異常があると判定する
判定基準がROM46に記憶され、正常な時にはCPU
45は異常信号を出力せず、やや異常の時には出力イン
ターフェイス47を介してCPU45がALARMの文
字を表示装置42に点滅させる、やや異常の信号を警報
装置41に出力し、異常の時には出力インターフェイス
47を介してCPU45が表示装置42にALARMの
文字を点滅させると共に、ブザー43を吹鳴させる異常
信号を警報装置41に出力し、同時に吸収冷温水機の運
転を停止させる信号が出力されるように設けてある。In the abnormality detecting device 40 of this embodiment, it is determined that the operation formula for obtaining the cooling water flow rate V C with COP = 1.2 and that the obtained cooling water flow rate V C is 60% or more is normal. , 40 to 60%, it is determined that there is some abnormality, and when it is 40% or less, the determination criteria to determine that there is abnormality is stored in the ROM 46.
45 does not output an abnormal signal, and when it is slightly abnormal, the CPU 45 causes the display device 42 to blink the ALARM character via the output interface 47, and outputs a slightly abnormal signal to the alarm device 41, and when it is abnormal, the output interface 47. The CPU 45 causes the display device 42 to blink the character ALARM and outputs an abnormal signal for sounding the buzzer 43 to the alarm device 41, and at the same time, a signal for stopping the operation of the absorption chiller-heater is output via the CPU 45. There is.
【0032】例えば、100RTの吸収冷温水機の定格
冷水流量が60.5m3 /hrであって、冷水圧力P1
が0.8kgf/cm2 、P2が0.6kgf/cm2
で冷水流量が70%、冷水温度T5が10℃、T6が7
℃、冷却水温度T7が32℃、T8が35.3℃である
と、CPU45にて冷却水流量VC は略117%(7
0.6m3 /hr)と算出され、正常であると判定され
る。For example, the rated cold water flow rate of an absorption chiller-heater of 100 RT is 60.5 m 3 / hr, and the cold water pressure P1
Is 0.8 kgf / cm 2 and P2 is 0.6 kgf / cm 2.
Cold water flow rate is 70%, cold water temperature T5 is 10 ° C, T6 is 7
C, the cooling water temperature T7 is 32 ° C., and T8 is 35.3 ° C., the cooling water flow rate V C in the CPU 45 is about 117% (7
0.6 m 3 / hr), which is determined to be normal.
【0033】しかし、冷水の圧力P1が0.68kgf
/cm2 、P2が0.6kgf/cm2 、冷水温度T5
が10℃、T6が7℃、冷却水温度T7が32℃、T8
が36.5℃であると、冷却水流量VC は略49%と算
出され、やや異常であると判定されてALARMの文字
が表示装置42に点滅される。However, the cold water pressure P1 is 0.68 kgf.
/ Cm 2 , P2 is 0.6 kgf / cm 2 , cold water temperature T5
Is 10 ° C, T6 is 7 ° C, cooling water temperature T7 is 32 ° C, T8
Is 36.5 ° C., the cooling water flow rate V C is calculated to be approximately 49%, it is determined to be somewhat abnormal, and the character ALARM is blinked on the display device 42.
【0034】また、冷水圧力P1が0.68kgf/c
m2 、P2が0.6kgf/cm2、冷水温度T5が1
0℃、T6が7℃、冷却水温度T7が32℃、T8が3
8℃であると、冷却水流量VC は略37%と算出され、
異常であると判定されるので、ALARMの文字を表示
装置42に点滅させると共にブザー43を吹鳴させ、同
時に吸収冷温水機の運転が停止される。The cold water pressure P1 is 0.68 kgf / c.
m 2 , P2 is 0.6 kgf / cm 2 , cold water temperature T5 is 1
0 ℃, T6 is 7 ℃, cooling water temperature T7 is 32 ℃, T8 is 3
At 8 ° C., the cooling water flow rate V C was calculated to be approximately 37%,
Since it is determined to be abnormal, the character ALARM is caused to blink on the display device 42 and the buzzer 43 is sounded, and at the same time, the operation of the absorption chiller-heater is stopped.
【0035】上記実施例によっても、冷却水ポンプ26
の故障などによる冷水あるいは温水の流量異常などを容
易に検知することが可能であり、吸収冷温水機の保守点
検がタイムリーに行なえ、しかも低コスト化が図れる。The cooling water pump 26 is also used in the above embodiment.
It is possible to easily detect abnormalities in the flow rate of cold or hot water due to a malfunction of the, etc., which enables timely maintenance and inspection of the absorption chiller-hot water machine, and also enables cost reduction.
【0036】なお、本発明は上記実施例に限定されるも
のではないので、特許請求の範囲に記載の趣旨から逸脱
しない範囲で各種の変形実施が可能である。Since the present invention is not limited to the above-described embodiments, various modifications can be made without departing from the spirit of the claims.
【0037】例えば、図3における冷水流量、図6にお
ける冷却水流量などを、正常と異常の二領域に分けて判
定するようにしても良い。For example, the flow rate of cold water in FIG. 3 and the flow rate of cooling water in FIG. 6 may be divided into two regions, normal and abnormal.
【0038】また、冷水圧力検出器S1・S2などは、
直接圧力差が検出できる差圧計などで代替することが可
能である。The cold water pressure detectors S1 and S2, etc.
It is possible to use a differential pressure gauge or the like that can directly detect the pressure difference.
【0039】[0039]
【発明の効果】以上説明したように本発明は、再生器・
凝縮器・蒸発器・吸収器・温熱交換器などを配管接続し
て構成する吸収式冷凍機であって、蒸発器を通る冷水の
入口/出口間の圧力差を計測し、この圧力差と、予め記
憶している冷水流量と圧力差との関係から現時点の冷水
流量を算出し、この冷水流量が所定流量以下になった時
に警報を出力する警報手段を備えたことを特徴とする吸
収式冷凍機であり、As described above, according to the present invention, the regenerator
An absorption refrigerating machine configured by connecting a condenser, an evaporator, an absorber, a heat exchanger, etc. with piping, measuring a pressure difference between an inlet and an outlet of cold water passing through the evaporator, and the pressure difference, Absorption-type refrigeration characterized by comprising alarm means for calculating a current cold water flow rate from a relationship between a cold water flow rate and a pressure difference stored in advance and outputting an alarm when the cold water flow rate falls below a predetermined flow rate. Machine,
【0040】再生器・凝縮器・蒸発器・吸収器・温熱交
換器などを配管接続して構成する吸収式冷凍機であっ
て、吸収器および凝縮器を通る冷却水の吸収器入口/凝
縮器出口間の圧力差を計測し、この圧力差と、予め記憶
している冷却水流量と圧力差との関係から現時点の冷却
水流量を算出し、この冷却水流量が第1の所定流量以下
になった時に第1の警報を出力し、且つ、冷却水流量が
第1の所定流量より少ない第2の所定流量以下になった
時に第2の警報を出力する警報手段を備えたことを特徴
とする吸収式冷凍機であり、An absorption type refrigerator comprising a regenerator, a condenser, an evaporator, an absorber, a heat exchanger and the like connected by pipes, which is an inlet / condenser of cooling water passing through the absorber and the condenser. The pressure difference between the outlets is measured, and the current cooling water flow rate is calculated from this pressure difference and the relationship between the cooling water flow rate and the pressure difference stored in advance, and this cooling water flow rate becomes equal to or lower than the first predetermined flow rate. And a warning unit that outputs a first alarm when the cooling water flow rate becomes less than or equal to a second predetermined flow rate that is less than the first predetermined flow rate. Is an absorption chiller that
【0041】再生器・凝縮器・蒸発器・吸収器・温熱交
換器などを配管接続して構成する吸収式冷凍機であっ
て、蒸発器を通る冷水の流量と、蒸発器入口/出口部の
冷水温度と、吸収器および凝縮器を通る冷却水の吸収器
入口/凝縮器出口部の冷却水温度に基づいて現時点の冷
却水流量を算出し、この冷却水流量が所定流量以下にな
った時、警報を出力する警報手段を備えたことを特徴と
する吸収式冷凍機であるので、An absorption refrigerator comprising a regenerator, a condenser, an evaporator, an absorber, a heat exchanger and the like connected by piping, wherein the flow rate of cold water passing through the evaporator and the inlet / outlet of the evaporator are Calculate the current cooling water flow rate based on the cold water temperature and the cooling water temperature at the absorber inlet / condenser outlet of the cooling water that passes through the absorber and condenser, and when this cooling water flow rate falls below the specified flow rate. Since the absorption refrigerating machine is equipped with an alarm means for outputting an alarm,
【0042】冷水や冷却水流量が減少した場合にも、異
常検出の精度を維持しながらコストを大幅に低減するこ
とが可能であり、顕著な効果を奏するものである。Even when the cold water or the flow rate of the cooling water is reduced, the cost can be significantly reduced while maintaining the accuracy of the abnormality detection, and the remarkable effect is achieved.
【図1】実施例1の機器構成を示す説明図である。FIG. 1 is an explanatory diagram showing a device configuration of a first embodiment.
【図2】実施例1の警報手段の構成を示す説明図であ
る。FIG. 2 is an explanatory diagram showing a configuration of an alarm unit according to the first embodiment.
【図3】実施例1の冷水圧力と冷水流量との関係を示す
説明図である。FIG. 3 is an explanatory diagram showing the relationship between cold water pressure and cold water flow rate in the first embodiment.
【図4】実施例1の制御フローを示す説明図である。FIG. 4 is an explanatory diagram showing a control flow of the first embodiment.
【図5】実施例2の機器構成を示す説明図である。FIG. 5 is an explanatory diagram showing a device configuration of a second embodiment.
【図6】実施例2の冷却水圧力と冷却水流量との関係を
示す説明図である。FIG. 6 is an explanatory diagram showing the relationship between the cooling water pressure and the cooling water flow rate according to the second embodiment.
【図7】実施例2の制御フローを示す説明図である。FIG. 7 is an explanatory diagram showing a control flow of the second embodiment.
【図8】実施例3の機器構成を示す説明図である。FIG. 8 is an explanatory diagram showing a device configuration of a third embodiment.
1 蒸発器 2 吸収器 3 蒸発器吸収器胴 4 高温再生器 5 ガスバーナ 6 低温再生器器 7 凝縮器 8 低温再生器凝縮器胴 9 低温熱交換器 10 高温熱交換器 11・12・13・14・15 吸収液配管 16 吸収液ポンプ 17・18 冷媒配管 19 冷媒循環配管 20 冷媒ポンプ 21 ガス配管 22 加熱量制御弁 23 冷水配管 24 蒸発器熱交換器 25 冷却水配管 26 冷却水ポンプ 27 吸収器熱交換器 28 凝縮器熱交換器 29 冷媒バイパス管 30 冷媒溜り 31 吸収液溜り 32 開閉弁 33 吸収液バイパス管 34 開閉弁 35 冷媒蒸気バイパス管 36 開閉弁 37・38・39 バイパス管 40 異常検出装置 41 警報装置 42 表示装置 43 ブザー 44 入力インターフェイス 45 中央演算処理装置(CPU) 46 記憶装置(ROM) 47 出力インターフェイス 48 信号発生器(CLOCK) 49 記憶装置(RAM) S1・S2 冷水圧力検出器 S3・S4 冷却水圧力検出器 S5・S6 冷水温度検出器 S7・S8 冷却水温度検出器 A (正常)領域 B (やや異常)領域 C (異常)領域 1 Evaporator 2 Absorber 3 Evaporator Absorber cylinder 4 High temperature regenerator 5 Gas burner 6 Low temperature regenerator 7 Condenser 8 Low temperature regenerator Condenser cylinder 9 Low temperature heat exchanger 10 High temperature heat exchanger 11, 12, 13, 14・ 15 Absorbing liquid piping 16 Absorbing liquid pump 17 ・ 18 Refrigerant piping 19 Refrigerant circulating piping 20 Refrigerant pump 21 Gas piping 22 Heating amount control valve 23 Cold water piping 24 Evaporator heat exchanger 25 Cooling water piping 26 Cooling water pump 27 Absorber heat Exchanger 28 Condenser heat exchanger 29 Refrigerant bypass pipe 30 Refrigerant pool 31 Refrigerant reservoir 31 Absorbing liquid reservoir 32 Open / close valve 33 Absorbing liquid bypass pipe 34 Open / close valve 35 Refrigerant vapor bypass pipe 36 Open / close valve 37/38/39 Bypass pipe 40 Abnormality detector 41 Alarm device 42 Display device 43 Buzzer 44 Input interface 45 Central processing unit (CPU) 46 Storage device ( OM) 47 Output interface 48 Signal generator (CLOCK) 49 Storage device (RAM) S1 / S2 Cold water pressure detector S3 / S4 Cooling water pressure detector S5 / S6 Cold water temperature detector S7 / S8 Cooling water temperature detector A ( Normal area B (somewhat abnormal) area C (abnormal) area
フロントページの続き (72)発明者 吉井 一寛 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 岸本 哲郎 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内Front page continuation (72) Inventor Kazuhiro Yoshii 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Inventor Tetsuro Kishimoto 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. Within
Claims (3)
交換器などを配管接続して構成する吸収式冷凍機であっ
て、蒸発器を通る冷水の入口/出口間の圧力差を計測
し、この圧力差と、予め記憶している冷水流量と圧力差
との関係から現時点の冷水流量を算出し、この冷水流量
が所定流量以下になった時、警報を出力する警報手段を
備えたことを特徴とする吸収式冷凍機。1. An absorption refrigerator comprising a regenerator, a condenser, an evaporator, an absorber, a heat exchanger, etc., which are connected by pipes, wherein the pressure difference between the inlet / outlet of cold water passing through the evaporator is Equipped with alarm means for measuring, calculating the current cold water flow rate from the relationship between this pressure difference and the previously stored cold water flow rate and pressure difference, and outputting an alarm when this cold water flow rate falls below a predetermined flow rate. An absorption chiller characterized by that.
交換器などを配管接続して構成する吸収式冷凍機であっ
て、吸収器および凝縮器を通る冷却水の吸収器入口/凝
縮器出口間の圧力差を計測し、この圧力差と、予め記憶
している冷却水流量と圧力差との関係から現時点の冷却
水流量を算出し、この冷却水流量が第1の所定流量以下
になった時に第1の警報を出力し、且つ、冷却水流量が
第1の所定流量より少ない第2の所定流量以下になった
時に第2の警報を出力する警報手段を備えたことを特徴
とする吸収式冷凍機。2. An absorption refrigerator comprising a regenerator, a condenser, an evaporator, an absorber, a heat exchanger, and the like, which are connected to each other by pipes, wherein an inlet / outlet of cooling water passing through the absorber and the condenser. The pressure difference between the condenser outlets is measured, and the current cooling water flow rate is calculated from this pressure difference and the relationship between the cooling water flow rate and the pressure difference stored in advance, and this cooling water flow rate is the first predetermined flow rate. A warning means is provided for outputting a first warning when the temperature becomes below and a second warning when the cooling water flow rate becomes less than or equal to a second predetermined flow rate that is less than the first predetermined flow rate. A characteristic absorption refrigerator.
交換器などを配管接続して構成する吸収式冷凍機であっ
て、蒸発器を通る冷水の流量と、蒸発器入口/出口部の
冷水温度と、吸収器および凝縮器を通る冷却水の吸収器
入口/凝縮器出口部の冷却水温度に基づいて現時点の冷
却水流量を算出し、この冷却水流量が所定流量以下にな
った時、警報を出力する警報手段を備えたことを特徴と
する吸収式冷凍機。3. An absorption refrigerator comprising a regenerator, a condenser, an evaporator, an absorber, a heat exchanger, etc., which are connected by piping, wherein the flow rate of cold water passing through the evaporator and the inlet / outlet of the evaporator. The cooling water flow rate at the present time is calculated based on the cooling water temperature of the section and the cooling water temperature at the inlet / condenser outlet of the cooling water that passes through the absorber and the condenser. An absorption chiller, which is equipped with an alarm means for outputting an alarm when the temperature rises.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34328892A JPH06159871A (en) | 1992-11-30 | 1992-11-30 | Absorption type refrigerating machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34328892A JPH06159871A (en) | 1992-11-30 | 1992-11-30 | Absorption type refrigerating machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06159871A true JPH06159871A (en) | 1994-06-07 |
Family
ID=18360362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34328892A Pending JPH06159871A (en) | 1992-11-30 | 1992-11-30 | Absorption type refrigerating machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06159871A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018044701A (en) * | 2016-09-13 | 2018-03-22 | 株式会社日立ビルシステム | Capacity diagnosis system and capacity diagnosis method for absorptive refrigerator |
-
1992
- 1992-11-30 JP JP34328892A patent/JPH06159871A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018044701A (en) * | 2016-09-13 | 2018-03-22 | 株式会社日立ビルシステム | Capacity diagnosis system and capacity diagnosis method for absorptive refrigerator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4895658B2 (en) | Absorption cold / hot water combined supply device | |
JPH06159871A (en) | Absorption type refrigerating machine | |
JP2902946B2 (en) | Abnormality determination device for absorption type water heater | |
JP3083930B2 (en) | Failure diagnosis system for absorption refrigerator | |
JP3054553B2 (en) | Absorption chiller / heater failure diagnosis device | |
JPH0791764A (en) | Cooling water flow rate estimating system for absorption type chilled and warm water machine | |
JP2810430B2 (en) | Absorption refrigerator protection device | |
JPH11223432A (en) | Method and apparatus for diagnosing fault of absorption type refrigerator | |
JP3195085B2 (en) | Absorption refrigerator | |
JP3195087B2 (en) | Absorption refrigerator | |
JP2771600B2 (en) | Control panel of absorption refrigerator | |
JP3253211B2 (en) | Absorption chiller / heater fault diagnosis system | |
JP3258692B2 (en) | Abnormality detector for absorption refrigerator | |
JPS6365258A (en) | Efficiency lowering annunciator for absorption refrigerator | |
JP3187878B2 (en) | Absorption refrigerator protection device | |
JP3258687B2 (en) | Abnormality detector for absorption refrigerator | |
JP2771626B2 (en) | Absorption refrigerator | |
JP3208165B2 (en) | Abnormality detector for absorption refrigerator | |
JP3258684B2 (en) | Abnormality detector for absorption refrigerator | |
JPH06159853A (en) | Absorption type freezer | |
JP3258686B2 (en) | Abnormality detector for absorption refrigerator | |
JP3081314B2 (en) | Control device for absorption refrigerator | |
JPS63220051A (en) | Protective device for absorption refrigerator | |
JPH0791783A (en) | Trouble diagnosing system for absorption chilled and warm water machine | |
JPS6131864A (en) | Controller for absorption refrigerator |