JPH0791764A - Cooling water flow rate estimating system for absorption type chilled and warm water machine - Google Patents

Cooling water flow rate estimating system for absorption type chilled and warm water machine

Info

Publication number
JPH0791764A
JPH0791764A JP23932993A JP23932993A JPH0791764A JP H0791764 A JPH0791764 A JP H0791764A JP 23932993 A JP23932993 A JP 23932993A JP 23932993 A JP23932993 A JP 23932993A JP H0791764 A JPH0791764 A JP H0791764A
Authority
JP
Japan
Prior art keywords
cooling water
flow rate
temperature
water flow
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23932993A
Other languages
Japanese (ja)
Other versions
JP3253190B2 (en
Inventor
Ryuichiro Kawakami
隆一郎 川上
Kazuaki Mizukami
和明 水上
Yoshio Ozawa
芳男 小澤
Masahiro Furukawa
雅裕 古川
Kazuya Sawakura
一哉 澤倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Osaka Gas Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Sanyo Electric Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP23932993A priority Critical patent/JP3253190B2/en
Publication of JPH0791764A publication Critical patent/JPH0791764A/en
Application granted granted Critical
Publication of JP3253190B2 publication Critical patent/JP3253190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To accurately estimate a flow rate of cooling water for cooling absorbent liquid to be scattered at an absorber by calculating a cooling water flow rate based on a flow rate and, outlet/inlet temperatures of chilled water, inlet and intermediate temperatures of the cooling water and a predetermined heat exchange efficiency. CONSTITUTION:A sensor group 6 has a thermometer and a flow meter for measuring a flow rate of chilled water flowing through an evaporator, inlet and outlet temperatures, and inlet and intermediate temperature of cooling water. A refrigerating load calculator 7 of an arithmetic processor 7 calculates a refrigerating load based on the flow rate and outlet and inlet temperatures of the chilled water. A heat exchanger coefficient calculator 72 calculates a heat exchanger coefficient based on the inlet temperature of cooling water and a calculated refrigerating load. Further, a cooling water flow rate calculator 73 calculates a cooling water flow rate based on the flow rate and, the outlet and inlet temperatures of the chilled water, the inlet and intermediate temperatures of the cooling water and the calculated coefficient. On the other hand, the calculated cooling water flow rate is sent to an output unit 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吸収式冷凍機に代表さ
れる吸収式冷温水機に関し、特に吸収器にて散布される
吸収液を冷却するための冷却水の流量を推定する方式に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption chiller-heater typified by an absorption chiller, and more particularly to a method for estimating the flow rate of cooling water for cooling the absorption liquid sprinkled in the absorber. It is a thing.

【0002】[0002]

【従来の技術】吸収式冷凍機においては、凝縮器、蒸発
器、吸収器、再生器等を相互に配管接続して1つの冷凍
サイクルが構成される。特に二重効用型の吸収式冷凍機
は冷凍効率が高いため、広く採用されている(例えば特
開昭62-77567号〔F25B15/00〕参照)。
2. Description of the Related Art In an absorption chiller, a condenser, an evaporator, an absorber, a regenerator and the like are connected to each other by piping to form one refrigeration cycle. In particular, double-effect absorption chillers are widely used because of their high refrigeration efficiency (see, for example, JP-A-62-77567 [F25B15 / 00]).

【0003】図1は二重効用型の吸収式冷凍機の構成を
示しており、凝縮器(11)及び低温再生器(12)からなる上
胴(1)、蒸発器(21)及び吸収器(22)からなる下胴(2)、
バーナ(31)を内蔵した高温再生器(3)、高温熱交換器
(4)、低温熱交換器(5)等が相互に配管接続されてい
る。
FIG. 1 shows the structure of a double-effect type absorption refrigerator. The upper body (1) is composed of a condenser (11) and a low temperature regenerator (12), an evaporator (21) and an absorber. Lower body (2) consisting of (22),
High temperature regenerator (3) with built-in burner (31), high temperature heat exchanger
(4), the low temperature heat exchanger (5), etc. are connected to each other by piping.

【0004】ところで吸収式冷凍機においては、冷凍機
を構成する複数の熱交換ユニットの異常を診断するため
の基礎データとして、吸収器(22)を流れる冷却水の流量
を検出する必要がある。冷却水流量を正確に検出するに
は、冷却水管に流量計を取り付けて冷却水流量を実測す
ることが必要であるが、この場合、設備が大掛かりとな
り、コスト面、スペース面で問題がある。
By the way, in the absorption refrigerator, it is necessary to detect the flow rate of the cooling water flowing through the absorber (22) as basic data for diagnosing an abnormality of a plurality of heat exchange units constituting the refrigerator. In order to accurately detect the cooling water flow rate, it is necessary to attach a flow meter to the cooling water pipe and measure the cooling water flow rate, but in this case, the equipment becomes large and there are problems in terms of cost and space.

【0005】そこで従来は、蒸発器(21)にて冷水から受
け取る熱量Qaと吸収器(22)にて冷却水へ放出される熱
量Qeの比(熱交換係数K)が一定値になるものとの仮定
し、下記数1に基づいて、冷却水流量Vcoを推定するこ
とが行なわれている。
Therefore, conventionally, the ratio (heat exchange coefficient K) of the heat quantity Qa received from the cold water in the evaporator (21) and the heat quantity Qe released to the cooling water in the absorber (22) is assumed to be a constant value. Based on the following equation, the cooling water flow rate Vco is estimated.

【0006】[0006]

【数1】 Vc(Tc_in−Tc_out)×K=Vco(Tco_mid−Tco_in) ここで、 Vc :冷水流量 Tc_in :冷水入口温度 Tc_out :冷水出口温度 Tco_mid :冷却水中間温度(吸収器出口の冷却水温度) Tco_in :冷却水入口温度## EQU00001 ## Vc (Tc_in-Tc_out) * K = Vco (Tco_mid-Tco_in) where Vc: cold water flow rate Tc_in: cold water inlet temperature Tc_out: cold water outlet temperature Tco_mid: cooling water intermediate temperature (cooling water temperature at absorber outlet ) Tco_in: cooling water inlet temperature

【0007】熱交換係数Kは、予め実験的に決定され
る。即ち、冷却水管に流量計を取り付けた上、冷水流量
Vc、冷水入口温度Tc_in、冷水出口温度Tc_out、冷却
水流量Vco、冷却水中間温度Tco_mid、及び冷却水入口
温度Tco_inを実測し、平均化処理を経て熱交換係数K
(一定値)を決定する。そして、冷却水流量の推定時に
は、冷水流量Vc、冷水入口温度Tc_in、冷水出口温度
Tc_out、冷却水中間温度Tco_mid、及び冷却水入口温
度Tco_inの実測値を数1に代入して、冷却水流量Vco
を算出するのである。
The heat exchange coefficient K is experimentally determined in advance. That is, after mounting a flow meter on the cooling water pipe, the chilled water flow rate Vc, the chilled water inlet temperature Tc_in, the chilled water outlet temperature Tc_out, the chilled water flow rate Vco, the chilled water intermediate temperature Tco_mid, and the chilled water inlet temperature Tco_in are measured and averaged. Through the heat exchange coefficient K
Determine (constant value). Then, when the cooling water flow rate is estimated, the measured values of the cooling water flow rate Vc, the cooling water inlet temperature Tc_in, the cooling water outlet temperature Tc_out, the cooling water intermediate temperature Tco_mid, and the cooling water inlet temperature Tco_in are substituted into Equation 1 to obtain the cooling water flow rate Vco.
Is calculated.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、熱交換
係数Kの値は一定ではなく、冷却水温度や冷凍負荷に依
存して変動する値であるため、冷却水流量の推定値に大
きな誤差が伴う問題があった。本発明の目的は、冷却水
流量を正確に推定することが出来る新規な推定方式を明
らかにすることである。
However, since the value of the heat exchange coefficient K is not constant and varies depending on the cooling water temperature and the refrigerating load, the estimated value of the cooling water flow rate has a large error. There was a problem. An object of the present invention is to clarify a new estimation method capable of accurately estimating the cooling water flow rate.

【0009】[0009]

【課題を解決する為の手段】本発明に係る第1の冷却水
流量推定方式は、蒸発器を流れる冷水の流量、冷水の入
口温度、出口温度、及び前記冷却水の温度を検出する検
出手段と、冷水流量、冷水の入口温度及び出口温度から
冷凍負荷の現在値を算出する第1演算手段と、冷却水温
度及び冷凍負荷を入力変数として、冷水から受け取る熱
量Qaと冷却水へ放出される熱量Qeの比(熱交換係数
K)が関数化されて格納されている格納手段と、冷却水
温度及び冷凍負荷の現在値に基づいて、前記格納手段か
ら対応する熱交換係数Kを導出する第2演算手段と、導
出された熱交換係数に基づいて、冷却水流量の現在値を
算出する第3演算手段とを具えている。尚、格納手段に
おける関数化の手段としては、冷却水温度及び冷凍負荷
を入力変数とする関数式に表わす方法の他、冷却水温度
及び冷凍負荷をパラメータとするテーブルに表わす方法
等が採用出来る。
A first cooling water flow rate estimating method according to the present invention is a detection means for detecting a flow rate of cold water flowing through an evaporator, a cold water inlet temperature, an outlet temperature, and the cooling water temperature. And a first calculation means for calculating the present value of the refrigeration load from the cold water flow rate, the inlet temperature and the outlet temperature of the cold water, and the heat quantity Qa received from the cold water and the heat quantity released to the cooling water with the cooling water temperature and the refrigeration load as input variables. A storage means in which a ratio of the heat quantity Qe (heat exchange coefficient K) is stored as a function, and a corresponding heat exchange coefficient K is derived from the storage means based on the cooling water temperature and the current value of the refrigeration load. It is provided with two calculation means and a third calculation means for calculating the current value of the cooling water flow rate based on the derived heat exchange coefficient. As a functioning means in the storing means, not only a method of expressing a cooling water temperature and a refrigerating load as an input variable but also a method of expressing in a table using a cooling water temperature and a refrigerating load as parameters can be adopted.

【0010】又本発明に係る第2の冷却水流量推定方式
は、吸収器における熱交換が正常に行なわれるものとの
前提で、冷却水温度及び冷凍負荷の現在値から、冷却水
流量の現在値を算出する第1次推定手段と、吸収器の対
数平均温度差の現在値と正常値の偏差を変数として、冷
却水流量の推定値に対する補正量が予め関数化されて格
納されている格納手段と、吸収器の対数平均温度差の現
在値に基づいて、前記格納手段から対応する補正量を導
出し、前記第1次推定手段による冷却水流量の推定値に
前記補正量を加算して出力する第2次推定手段とを具え
ている。
Further, the second cooling water flow rate estimating method according to the present invention is based on the assumption that the heat exchange in the absorber is normally performed, from the current values of the cooling water temperature and the refrigeration load, to the current value of the cooling water flow rate. A primary estimation means for calculating a value, and a storage in which a correction amount for the estimated value of the cooling water flow rate is made into a function and stored in advance by using the deviation between the present value and the normal value of the logarithmic mean temperature difference of the absorber as a variable. Means and the current value of the logarithmic mean temperature difference between the absorbers, a corresponding correction amount is derived from the storage means, and the correction amount is added to the estimated value of the cooling water flow rate by the primary estimation means. And a second estimating means for outputting.

【0011】[0011]

【作用】本発明の完成に至る過程において、図3に示す
如く冷凍負荷を変数、冷却水温度をパラメータにとっ
て、熱交換係数Kの実測値をプロットしたところ、冷凍
負荷及び冷却水温度との間に高い相関が得られた。本発
明の冷却水流量推定方式は、この相関関係の発見に基づ
いている。即ち、熱交換係数の値は、冷凍負荷や冷却水
温度の他、下胴圧力や吸収液濃度等の種々のパラメータ
に依存していると考えられるが、この中でも、冷凍負荷
と冷却水温度が支配的であって、これらの値が決まれ
ば、図3の関係に基づいて正確な熱交換係数の値を求め
ることが出来るのである。
In the process of completion of the present invention, when the measured value of the heat exchange coefficient K is plotted using the refrigeration load as a variable and the cooling water temperature as a parameter as shown in FIG. A high correlation was obtained. The cooling water flow rate estimation method of the present invention is based on the discovery of this correlation. That is, the value of the heat exchange coefficient is considered to depend on various parameters such as the lower body pressure and the absorption liquid concentration in addition to the refrigeration load and the cooling water temperature. It is dominant, and if these values are determined, an accurate heat exchange coefficient value can be obtained based on the relationship shown in FIG.

【0012】図3に示される様に、熱交換係数Kは、冷
凍負荷に関しては下に凸の曲線を描いており、冷凍負荷
が低くなるにつれて、熱交換係数Kの値が増大してい
る。これは、負荷が比較的低い状態では、冷水から冷凍
機へ入る熱量が減少し、吸収液に吸収される冷媒蒸気も
減少するので、冷凍機全体の熱効率が低下するからであ
る。又、冷却水温度が低い程、熱交換係数Kの値が小さ
くなっている。これは、冷却水温度が低ければ、吸収器
内でより多くの冷媒蒸気が吸収液に吸収され、この結
果、冷凍機の熱効率が向上するからである。
As shown in FIG. 3, the heat exchange coefficient K has a downwardly convex curve with respect to the refrigeration load, and the value of the heat exchange coefficient K increases as the refrigeration load decreases. This is because when the load is relatively low, the amount of heat entering the refrigerator from cold water decreases and the refrigerant vapor absorbed in the absorbing liquid also decreases, so the thermal efficiency of the entire refrigerator decreases. Also, the lower the cooling water temperature, the smaller the value of the heat exchange coefficient K. This is because if the cooling water temperature is low, a larger amount of refrigerant vapor is absorbed in the absorber in the absorber, and as a result, the thermal efficiency of the refrigerator is improved.

【0013】そこで、上記第1の冷却水流量推定方式で
は、予め図3の関係を関数化して格納手段に格納してお
き、冷却水流量の推定時には、冷却水温度の検出値及び
冷凍負荷の算出値に基づき、図3の関係から対応する熱
交換係数Kを導出するのである。そして、該熱交換係数
Kを用いて、冷却水流量の現在値を算出する。
Therefore, in the first cooling water flow rate estimation method, the relationship shown in FIG. 3 is converted into a function and stored in the storage means in advance, and when the cooling water flow rate is estimated, the detected value of the cooling water temperature and the refrigeration load are stored. Based on the calculated value, the corresponding heat exchange coefficient K is derived from the relationship shown in FIG. Then, the current value of the cooling water flow rate is calculated using the heat exchange coefficient K.

【0014】上記第1の冷却水流量推定方式は吸収器の
熱交換が正常に行なわれているとの前提に立っている
が、第2の冷却水流量推定方式は、吸収器の熱交換に異
常が発生している場合を対象としている。吸収器内部の
冷却水管の熱伝導特性が低下する等の異常が発生した場
合は、冷却水温度と吸収液温度の差が大きくため、吸収
器の対数平均温度差は、正常時の値とは異なってくる。
The first cooling water flow rate estimation method is premised on that the heat exchange of the absorber is normally performed, but the second cooling water flow rate estimation method is applied to the heat exchange of the absorber. It is intended when an abnormality occurs. When an abnormality such as a decrease in the heat conduction characteristics of the cooling water pipe inside the absorber occurs, the difference between the cooling water temperature and the absorbing liquid temperature is large, so the logarithmic mean temperature difference of the absorber is not the value at normal times. Will be different.

【0015】本発明の完成に至る過程で、吸収器の対数
平均温度差の実測値と正常値の偏差をパラメータにとっ
て、冷却水流量の実測値と上記第1の推定方式による冷
却水流量の推定値との偏差をプロットしたところ、図5
の如く高い相関が得られた。本発明の第2の冷却水流量
推定方式は、この相関関係の発見に基づいている。即
ち、異常時の冷却水流量の偏差は、種々のパラメータに
よって決まると考えられるが、吸収器の対数平均温度差
の偏差が最も支配的であって、この値が決まれば、図5
の関係に基づいて冷却水流量の偏差、即ち正常時を想定
した冷却水流量の推定値に対する補正量を決定すること
が出来るのである。
In the course of the completion of the present invention, the measured value of the cooling water flow rate and the estimation of the cooling water flow rate by the first estimation method are set by using the deviation between the measured value and the normal value of the logarithmic mean temperature difference of the absorber as a parameter. When the deviation from the value is plotted,
A high correlation was obtained. The second cooling water flow rate estimation method of the present invention is based on the discovery of this correlation. That is, it is considered that the deviation of the cooling water flow rate at the time of abnormality is determined by various parameters, but the deviation of the logarithmic mean temperature difference of the absorber is the most dominant, and if this value is determined,
Based on the relationship, it is possible to determine the deviation of the cooling water flow rate, that is, the correction amount for the estimated value of the cooling water flow rate assuming a normal time.

【0016】そこで、第2の冷却水流量推定方式では、
図5の関係を予め関数化して格納手段に格納しておき、
吸収器の対数平均温度差の偏差に基づいて、図5の関係
から対応する冷却水流量偏差(補正量)を導出する。そし
て、例えば上記第1の冷却水流量推定方式によって算出
した冷却水流量の現在値(第1次推定値)に対し、前記補
正量を加算して、補正された第2次推定値を算出するの
である。
Therefore, in the second cooling water flow rate estimation method,
The relationship of FIG. 5 is converted into a function in advance and stored in the storage means,
Based on the deviation of the logarithmic average temperature difference of the absorber, the corresponding cooling water flow rate deviation (correction amount) is derived from the relationship of FIG. Then, for example, the correction amount is added to the current value (first estimated value) of the cooling water flow rate calculated by the first cooling water flow rate estimation method to calculate a corrected second estimated value. Of.

【0017】[0017]

【発明の効果】本発明に係る吸収式冷温水機の冷却水流
量推定方式によれば、熱交換係数Kを一定値としていた
従来方式に比べ、精度の高い推定値が得られる。
According to the cooling water flow rate estimation method for the absorption chiller-heater according to the present invention, a highly accurate estimated value can be obtained as compared with the conventional method in which the heat exchange coefficient K is kept constant.

【0018】[0018]

【実施例】以下、本発明を二重効用型の吸収式冷凍機に
実施した一例につき、図面に沿って詳述する。図1に示
す如く吸収式冷凍機は、冷媒として水、吸収液として臭
化リチウム(LiBr)溶液を用いたもので、凝縮器(11)
及び低温再生器(12)からなる上胴(1)、蒸発器(21)及び
吸収器(22)からなる下胴(2)、バーナ(31)を内蔵した高
温再生器(3)、高温熱交換器(4)、低温熱交換器(5)等
を相互に配管接続して構成されている。尚、これら複数
の機器の媒体入出力部には、必要なセンサー(図示省略)
が取り付けられており、後述の各種物理量が測定され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example in which the present invention is applied to a double-effect absorption refrigerator is described below in detail with reference to the drawings. As shown in FIG. 1, the absorption refrigerator uses water as a refrigerant and lithium bromide (LiBr) solution as an absorption liquid, and a condenser (11)
And an upper body (1) including a low temperature regenerator (12), a lower body (2) including an evaporator (21) and an absorber (22), a high temperature regenerator (3) including a burner (31), and high temperature heat The exchanger (4), the low temperature heat exchanger (5) and the like are connected to each other by piping. In addition, necessary sensors (not shown) are installed in the medium input / output unit of these multiple devices.
Is attached, and various physical quantities described later are measured.

【0019】クーリングタワー(図示省略)から供給され
る温度の低い冷却水は、先ず吸収器(22)を通過した後、
凝縮器(11)を通過し、これによって温度が上昇した冷却
水は再びクーリングタワーへ戻される。又、室内ユニッ
ト(図示省略)からの温度の高い冷水は蒸発器(21)を通過
し、これによって冷却された温度の低い冷水が室内ユニ
ットへ供給される。
Cooling water having a low temperature supplied from a cooling tower (not shown) first passes through the absorber (22) and then
The cooling water, which has passed through the condenser (11) and the temperature of which has risen, is returned to the cooling tower again. Further, cold water having a high temperature from the indoor unit (not shown) passes through the evaporator (21), and cold water having a low temperature cooled by this is supplied to the indoor unit.

【0020】第1実施例 図2は、第1次推定のみを行なう冷却水流量推定方式の
構成を示している。センサー群(6)は、冷却水中間温度
(吸収器(22)の出口温度)Tco_mid、冷却水入口温
度Tco_in、蒸発器(21)の冷水出口温度Tc_ou
t、冷水入口温度Tc_in、及び冷水流量Vcを夫々
測定するための温度計、流量計を具えている。
First Embodiment FIG. 2 shows the configuration of a cooling water flow rate estimation system that performs only the first estimation. Sensor group (6) is cooling water intermediate temperature
(Outlet temperature of absorber (22)) Tco_mid, cooling water inlet temperature Tco_in, cold water outlet temperature Tc_ou of evaporator (21)
t, a cold water inlet temperature Tc_in, and a cold water flow rate Vc are respectively provided with a thermometer and a flow meter.

【0021】演算処理回路(7)はマイクロコンピュータ
によって構成され、冷凍負荷計算部(71)、熱交換係数計
算部(72)、及び冷却水流量計算部(73)を具えている。冷
凍負荷計算部(71)は、冷水出口温度Tc_out、冷水
入口温度Tc_in、及び冷水流量Vcの実測値に基づ
いて、下記数2から冷凍負荷Lcを算出する。
The arithmetic processing circuit (7) is composed of a microcomputer, and comprises a refrigeration load calculating section (71), a heat exchange coefficient calculating section (72), and a cooling water flow rate calculating section (73). The refrigeration load calculation unit (71) calculates the refrigeration load Lc from the following Equation 2 based on the measured values of the cold water outlet temperature Tc_out, the cold water inlet temperature Tc_in, and the cold water flow rate Vc.

【0022】[0022]

【数2】Lc=Vc(Tc_in−Tc_out)## EQU2 ## Lc = Vc (Tc_in-Tc_out)

【0023】熱交換係数計算部(72)には、図3に示す如
く冷凍負荷Lcを変数、冷却水入口温度Tco_inを
パラメータとする熱交換係数Kの変化が、下記数3の関
数式として格納されている。
As shown in FIG. 3, the heat exchange coefficient calculation unit (72) stores the change in the heat exchange coefficient K with the refrigerating load Lc as a variable and the cooling water inlet temperature Tco_in as a parameter, as a functional expression of the following mathematical expression 3. Has been done.

【0024】[0024]

【数3】K=aLc2+bLc+C 但し、 C=mTco_in+n ここで、a、b、m及びnは予め実験的に決定される定
数である。
## EQU3 ## K = aLc 2 + bLc + C where C = mTco_in + n where a, b, m and n are constants experimentally determined in advance.

【0025】そして、熱交換係数計算部(72)は、センサ
ー群(6)から送られてくる冷却水入口温度Tco_in
と、冷凍負荷計算部(71)から送られてくる冷凍負荷Lc
に基づいて、前記数3から熱交換係数Kを算出する。
Then, the heat exchange coefficient calculation section (72) uses the cooling water inlet temperature Tco_in sent from the sensor group (6).
And the refrigeration load Lc sent from the refrigeration load calculation unit (71)
Based on the above, the heat exchange coefficient K is calculated from the above equation 3.

【0026】冷却水流量計算部(73)は、センサー群(6)
から送られてくる冷却水中間温度Tco_mid、冷却
水入口温度Tco_in、蒸発器(21)の冷水出口温度T
c_out、冷水入口温度Tc_in、及び冷水流量V
cと、熱交換係数計算部(72)によって算出された熱交換
係数Kを、下記数4に代入して、冷水流量Vcoを算出
するものである。
The cooling water flow rate calculation unit (73) includes a sensor group (6).
Cooling water intermediate temperature Tco_mid sent from the cooling water inlet temperature Tco_in, cooling water outlet temperature T of the evaporator (21)
c_out, cold water inlet temperature Tc_in, and cold water flow rate V
The chilled water flow rate Vco is calculated by substituting c and the heat exchange coefficient K calculated by the heat exchange coefficient calculation unit (72) into the following equation 4.

【0027】[0027]

【数4】 Vco=K×(Tc_in−Tc_out)/(Tco_mid−Tco_in)## EQU00004 ## Vco = K.times. (Tc_in-Tc_out) / (Tco_mid-Tco_in)

【0028】これによって算出された冷水流量Vcoは
出力装置(8)へ送出されて表示され、或いはプリントア
ウトされる。又、必要に応じて、吸収式冷凍機の故障診
断システムへ出力される。
The chilled water flow rate Vco thus calculated is sent to the output device (8) for display or printout. Further, if necessary, it is output to the failure diagnosis system of the absorption refrigerator.

【0029】第2実施例 図4は、上述の第1次推定に加えて第2次推定を行なう
冷却水流量推定方式の構成を示している。センサー群
(6)は、下胴(2)内の吸収液溜り温度Ts_lo、吸収
液散布温度Tw_lo、冷却水中間温度Tco_mi
d、冷却水入口温度Tco_in、冷水出口温度Tc_
out、冷水入口温度Tc_in、及び冷水流量Vcを
夫々測定するための温度計、流量計を具えている。
Second Embodiment FIG. 4 shows the configuration of a cooling water flow rate estimating system for performing a second estimation in addition to the above-mentioned first estimation. Sensor group
(6) is the absorption liquid pool temperature Ts_lo, the absorption liquid spray temperature Tw_lo, the cooling water intermediate temperature Tco_mi in the lower body (2)
d, cooling water inlet temperature Tco_in, cold water outlet temperature Tc_
out, the cold water inlet temperature Tc_in, and the cold water flow rate Vc are respectively provided with a thermometer and a flow meter.

【0030】演算処理回路(7)はマイクロコンピュータ
によって構成され、前述の冷凍負荷計算部(71)の他、正
常時を想定した冷却水流量推定部(74)等の複数の演算処
理部を具えている。正常時を想定した冷却水流量推定部
(74)は、図2に示す熱交換係数計算部(72)と冷却水流量
計算部(73)の機能を兼ね具えており、吸収器の熱交換に
異常がないものとの前提で、上記数4によって、冷却水
流量Vcoの第1次推定値sVcoを算出する。
The arithmetic processing circuit (7) is composed of a microcomputer, and includes a plurality of arithmetic processing units such as the cooling load calculating unit (71) described above and a cooling water flow rate estimating unit (74) assuming normal conditions. I am. Cooling water flow rate estimation part assuming normal time
(74) has the functions of the heat exchange coefficient calculation unit (72) and the cooling water flow rate calculation unit (73) shown in FIG. 2, and it is assumed that there is no abnormality in the heat exchange of the absorber. The first estimated value sVco of the cooling water flow rate Vco is calculated by the equation 4.

【0031】吸収器対数平均温度差計算部(75)は、吸収
液溜り温度Ts_lo、吸収液散布温度Tw_lo、冷
却水中間温度Tco_mid、及び冷却水入口温度Tc
o_inに基づいて、下記数5から吸収器の対数平均温
度差dTabsoを算出するものである。
The absorber logarithmic average temperature difference calculation unit (75) has an absorbing liquid pool temperature Ts_lo, an absorbing liquid spraying temperature Tw_lo, a cooling water intermediate temperature Tco_mid, and a cooling water inlet temperature Tc.
Based on o_in, the logarithmic average temperature difference dTabso of the absorber is calculated from the following Equation 5.

【0032】[0032]

【数5】 dTabso={(Tw_lo−Tco_in)−(Ts_lo−Tco_mid)/ ln{(Tw_lo−Tco_in)−(Ts_lo−Tco_mid)}## EQU00005 ## dTabso = {(Tw_lo-Tco_in)-(Ts_lo-Tco_mid) / ln {(Tw_lo-Tco_in)-(Ts_lo-Tco_mid)}

【0033】吸収器対数平均温度差偏差計算部(76)は、
吸収器の対数平均温度差の異常時の値と正常時を想定し
た値の偏差を計算するものである。吸収器の対数平均温
度差は、正常時には冷凍負荷Lcの1次式となることが
知られており、この正常時の対数対数平均温度差をdT
a_nで表わして、異常時の対数平均温度差との偏差を
とる。但し、冷凍負荷Lcの1次式で算出される正常時
の対数対数平均温度差dTa_nは、冷却水流量が定格
値のときの値であるため、上記数5で算出された異常時
の対数平均温度差dTabsoを、定格冷却水流量Vc
o_maxでの値に正規化する必要がある。この正規化
には、公知の下記数6が用いられる。
The absorber logarithmic mean temperature difference deviation calculation unit (76)
The deviation between the abnormal value of the logarithmic mean temperature difference of the absorber and the value assuming the normal state is calculated. It is known that the logarithmic average temperature difference of the absorber is a linear expression of the refrigeration load Lc under normal conditions.
Expressed as a_n, the deviation from the logarithmic mean temperature difference at the time of abnormality is taken. However, since the logarithmic average temperature difference dTa_n in the normal state calculated by the linear expression of the refrigeration load Lc is the value when the cooling water flow rate is the rated value, the logarithmic average in the abnormal state calculated in the above Equation 5 is obtained. The temperature difference dTabso is the rated cooling water flow rate Vc
It needs to be normalized to the value at o_max. For this normalization, the following known equation 6 is used.

【0034】[0034]

【数6】dTmabso=dTabso・(Vco/Vco_max)r ここで、rは熱交換ユニットの型式によって決まる定数
であって、吸収器の場合、略0.26である。
## EQU6 ## dTmabso = dTabso (Vco / Vco_max) r where r is a constant determined by the model of the heat exchange unit, which is about 0.26 in the case of the absorber.

【0035】ここで冷却水流量Vcoの真値は不明であ
るから、上記数4によって算出される第1次推定値sV
coで代用する。このとき、対数平均温度差dTabs
oは下記数7で表わされる。
Since the true value of the cooling water flow rate Vco is unknown, the first-order estimated value sV calculated by the above equation 4
Substitute with co. At this time, the logarithmic average temperature difference dTabs
o is expressed by the following equation 7.

【数7】dTmabso=dTabso・(sVco/Vco_max)r [Formula 7] dTmabso = dTabso · (sVco / Vco_max) r

【0036】従って、吸収器対数平均温度差の異常時の
値と、正常時を想定した値の偏差ddTmabsoは下記数
8によって算出される。
Therefore, the deviation ddTmabso between the abnormal value of the logarithmic mean temperature difference of the absorber and the value assuming the normal time is calculated by the following equation 8.

【数8】ddTmabso=dTmabso−dTa_n## EQU00008 ## ddTmabso = dTmabso-dTa_n

【0037】又このとき、冷却水流量Vcoの真値と上
記数4による第1次推定値sVcoの偏差sdVco
は、下記数9によって表わされる。
At this time, the deviation sdVco between the true value of the cooling water flow rate Vco and the first-order estimated value sVco according to the above equation (4).
Is represented by the following equation 9.

【数9】sdVco=sVco−VcoSdVco = sVco-Vco

【0038】ここで、数8によって算出される吸収器対
数平均温度差偏差ddTmabsoと、数9によって算出さ
れる冷却水流量偏差sdVcoの関係を、予め実験によ
って図5の如くプロットしたところ、両者の間には相関
が求められた。そこで、両者の関係を下記数10の1次
式により近似的に表わすこととする。
Here, the relationship between the absorber logarithm average temperature difference deviation ddTmabso calculated by the equation 8 and the cooling water flow rate deviation sdVco calculated by the equation 9 is plotted in advance by an experiment as shown in FIG. Correlation was required between them. Therefore, the relationship between the two will be approximately expressed by the following linear expression of Eq.

【0039】[0039]

【数10】sdVco=A・ddTmabso+B 但し、A及びBは実験的に決定される定数である。SdVco = AddTmabso + B where A and B are constants determined experimentally.

【0040】冷却水流量偏差sdVcoは、上記数4に
対する冷却水流量の補正量にほかならないから、異常発
生時の冷却水流量xVcoは下記数11によって算出す
ることが出来る。
Since the cooling water flow rate deviation sdVco is nothing but the correction amount of the cooling water flow rate with respect to the above equation 4, the cooling water flow rate xVco when an abnormality occurs can be calculated by the following equation 11.

【数11】xVco=sVco+A・ddTmabso+B[Formula 11] xVco = sVco + A · ddTmabso + B

【0041】図4の吸収器対数平均温度差偏差計算部(7
6)は、吸収器対数平均温度差計算部(75)から送られてく
る対数平均温度差dTabsoと、冷凍負荷計算部(71)
から送られてくる冷凍負荷Lcに基づいて、対数平均温
度差偏差sdVcoを算出する。
Absorber logarithmic mean temperature difference deviation calculation unit (7
6) is a logarithmic average temperature difference dTabso sent from the absorber logarithmic average temperature difference calculating unit (75) and the refrigeration load calculating unit (71).
The logarithmic average temperature difference deviation sdVco is calculated based on the refrigeration load Lc sent from

【0042】吸収器異常度計算部(77)は、吸収器対数平
均温度差偏差計算部(76)によって算出された対数平均温
度差偏差sdVcoに基づいて、下記数12で表わされ
る異常度Amabsoを算出する。
The absorber abnormality degree calculating unit (77) calculates the abnormality degree Amabso expressed by the following equation 12 based on the logarithmic average temperature difference deviation sdVco calculated by the absorber logarithmic average temperature difference deviation calculating unit (76). calculate.

【数12】Amabso=ddTmabso/dTa_n[Equation 12] Amabso = ddTmabso / dTa_n

【0043】更に冷却水流量補正量計算部(78)は、対数
平均温度差偏差sdVcoと異常度Amabsoに基づ
いて、下記数13の処理を行なって、冷却水流量補正量
sdVcoを算出する。
Further, the cooling water flow rate correction amount calculation unit (78) calculates the cooling water flow rate correction amount sdVco by performing the processing of the following equation 13 on the basis of the logarithmic average temperature difference deviation sdVco and the abnormality degree Amabso.

【0044】[0044]

【数13】 Amabso≦Cのとき sdVco=0 Amabso>Cのとき sdVco=A・ddTmabso+B 但し、Cは異常判定の閾値として予め設定される定数で
ある。
## EQU00008 ## When Ambso.ltoreq.C sdVco = 0 When Ambso> C sdVco = A.ddTmabso + B where C is a constant preset as a threshold value for abnormality determination.

【0045】異常度が小さいときに上記数11によって
冷却水流量を補正した場合、測定誤差等に因って却って
推定誤差が大きくなる虞れがあるため、これを上記数1
3の処理によって防止するのである。
When the cooling water flow rate is corrected by the above equation 11 when the abnormality degree is small, the estimation error may be rather large due to the measurement error or the like.
It is prevented by the processing of 3.

【0046】冷却水流量補正量加算部(79)は、正常時を
想定した冷却水流量推定部(74)から送られてくる冷却水
流量の第1次推定値sVcoに対して、前記補正量補正
量sdVcoを加算して、第2次推定値xVcoを算出
し、出力装置(8)へ送出する。出力装置(8)では、冷却
水流量の第2次推定値xVcoを表示し、プリントアウ
トし、或いは故障診断システムへ供給する。
The cooling water flow rate correction amount adding unit (79) is provided with the correction amount for the first estimated value sVco of the cooling water flow rate sent from the cooling water flow rate estimating unit (74) assuming a normal time. The correction amount sdVco is added to calculate the secondary estimated value xVco, which is sent to the output device (8). The output device (8) displays the secondary estimated value xVco of the cooling water flow rate, prints it out, or supplies it to the failure diagnosis system.

【0047】図6は、実際に吸収式冷凍機を用いて外気
漏れ込み実験を行なった際の冷却水流量の測定値(真値)
Vco、第1次推定値sVco、及び第2次推定値xV
coの変化を表わしている。図示の如く、第1次推定値
sVcoによってもある程度の近似度が得られている
が、第2次推定値xVcoによれば、更に高い精度が達
成されている。従って、本発明による第1次推定値sV
co、望ましくは第2次推定値xVcoを用いれば、信
頼性の高い故障診断が可能となる。
FIG. 6 shows a measured value (true value) of the flow rate of cooling water when an outside air leak experiment was actually performed using an absorption refrigerator.
Vco, first estimated value sVco, and second estimated value xV
It represents the change in co. As shown in the figure, the first-order estimated value sVco provides a degree of approximation, but the second-order estimated value xVco achieves higher accuracy. Therefore, the first estimated value sV according to the present invention
Using co, preferably the second-order estimated value xVco, enables highly reliable fault diagnosis.

【0048】上記実施例の説明は、本発明を説明するた
めのものであって、特許請求の範囲に記載の発明を限定
し、或は範囲を減縮する様に解すべきではない。又、本
発明の各部構成は上記実施例に限らず、特許請求の範囲
に記載の技術的範囲内で種々の変形が可能であることは
勿論である。
The above description of the embodiments is for explaining the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope. The configuration of each part of the present invention is not limited to the above-mentioned embodiment, and it goes without saying that various modifications can be made within the technical scope described in the claims.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施すべき吸収式冷凍機の構成図であ
る。
FIG. 1 is a configuration diagram of an absorption refrigerator according to the present invention.

【図2】第1実施例における冷却水流量推定方式を示す
ブロック図である。
FIG. 2 is a block diagram showing a cooling water flow rate estimation method in the first embodiment.

【図3】冷凍負荷及び冷却水温度と熱交換係数の関係を
示すグラフである。
FIG. 3 is a graph showing a relationship between a refrigeration load and a cooling water temperature and a heat exchange coefficient.

【図4】第2実施例における冷却水流量推定方式を示す
ブロック図である。
FIG. 4 is a block diagram showing a cooling water flow rate estimation method in a second embodiment.

【図5】吸収器対数平均温度差偏差と冷却水流量偏差の
関係を示すグラフである。
FIG. 5 is a graph showing a relationship between a logarithmic average temperature difference deviation of an absorber and a cooling water flow rate deviation.

【図6】冷却水流量の測定値に対する第1次及び第2次
推定値の近似度を実証するグラフである。
FIG. 6 is a graph demonstrating the degree of approximation of the first and second estimated values to the measured cooling water flow rate.

【符号の説明】[Explanation of symbols]

(1) 上胴 (11) 凝縮器 (12) 低温再生器 (2) 下胴 (21) 蒸発器 (22) 吸収器 (3) 高温再生器 (6) センサー群 (7) 演算処理回路 (8) 出力装置 (1) Upper body (11) Condenser (12) Low temperature regenerator (2) Lower body (21) Evaporator (22) Absorber (3) High temperature regenerator (6) Sensor group (7) Arithmetic processing circuit (8) ) Output device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小澤 芳男 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 古川 雅裕 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 澤倉 一哉 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Ozawa 2-18 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Masahiro Furukawa 2-chome Keihan Hondori, Moriguchi-shi, Osaka Sanyo Denki Co., Ltd. (72) Inventor Kazuya Sawakura 2-18, Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 吸収式冷温水機の吸収器にて散布される
吸収液を冷却するための冷却水の流量を推定する方式で
あって、 蒸発器を流れる冷水の流量、冷水の入口温度、出口温
度、及び前記冷却水の温度を検出する検出手段と、 冷水流量、冷水の入口温度及び出口温度から冷凍負荷の
現在値を算出する第1演算手段と、 冷却水温度及び冷凍負荷を入力変数として、冷水から受
け取る熱量Qaと冷却水へ放出される熱量Qeの比(熱
交換係数K)が関数化されて格納されている格納手段
と、 冷却水温度及び冷凍負荷の現在値に基づいて、前記格納
手段から対応する熱交換係数Kを導出する第2演算手段
と、 導出された熱交換係数Kに基づいて、冷却水流量の現在
値を算出する第3演算手段とを具えたことを特徴とする
吸収式冷温水機の冷却水流量推定方式。
1. A method of estimating the flow rate of cooling water for cooling the absorbing liquid sprayed in the absorber of an absorption chiller-heater, comprising the flow rate of cold water flowing through an evaporator, the inlet temperature of cold water, Detection means for detecting the outlet temperature and the temperature of the cooling water, first calculating means for calculating the present value of the refrigeration load from the cold water flow rate, the inlet temperature and the outlet temperature of the cold water, and the cooling water temperature and the refrigeration load as input variables As a storage means for storing a ratio (heat exchange coefficient K) of the heat quantity Qa received from the cold water and the heat quantity Qe released to the cooling water as a function, and based on the current values of the cooling water temperature and the refrigerating load, It has a second calculation means for deriving the corresponding heat exchange coefficient K from the storage means, and a third calculation means for calculating the current value of the cooling water flow rate based on the derived heat exchange coefficient K. Flow rate of cooling water of absorption chiller-heater Constant method.
【請求項2】 吸収式冷温水機の吸収器にて散布される
吸収液を冷却するための冷却水の流量を推定する方式で
あって、 吸収器における熱交換が正常に行なわれるものとの前提
で、冷却水温度及び冷凍負荷の現在値から、冷却水流量
の現在値を算出する第1次推定手段と、 吸収器の対数平均温度差の現在値と正常値の偏差を変数
として、冷却水流量の推定値に対する補正量が予め関数
化されて格納されている格納手段と、 吸収器の対数平均温度差の現在値に基づいて、前記格納
手段から対応する補正量を導出し、前記第1次推定手段
による冷却水流量の推定値に前記補正量を加算して出力
する第2次推定手段とを具えたことを特徴とする吸収式
冷温水機の冷却水流量推定方式。
2. A method of estimating the flow rate of cooling water for cooling the absorbing liquid sprayed in the absorber of an absorption chiller-heater, wherein heat exchange in the absorber is normally performed. Based on the premise, the primary estimation means for calculating the current value of the cooling water flow rate from the cooling water temperature and the current value of the refrigeration load, and the difference between the current value and the normal value of the logarithmic mean temperature difference of the absorber are used as variables. Based on the storage means in which the correction amount for the estimated value of the water flow rate is stored in advance as a function and the present value of the logarithmic mean temperature difference of the absorber, a corresponding correction amount is derived from the storage means, A cooling water flow rate estimation method for an absorption chiller-heater, comprising: a secondary estimation means for adding the correction amount to an estimated value of the cooling water flow rate by the primary estimation means and outputting the added value.
【請求項3】 第1次推定手段は、 蒸発器を流れる冷水の流量、冷水の入口温度、出口温
度、及び前記冷却水の温度を検出する検出手段と、 冷水流量、冷水の入口温度及び出口温度から冷凍負荷の
現在値を算出する第1演算手段と、 冷却水温度及び冷凍負荷を入力変数として、冷水から受
け取る熱量Qaと冷却水へ放出される熱量Qeの比(熱
交換係数K)が関数化されて格納されている第2格納手
段と、 冷却水温度及び冷凍負荷の現在値に基づいて、前記格納
手段から対応する熱交換係数Kを導出する第2演算手段
と、 導出された熱交換係数に基づいて、冷却水流量の現在値
を算出する第3演算手段とを具えている請求項2に記載
の冷却水流量推定方式。
3. The primary estimating means is a detecting means for detecting the flow rate of cold water flowing through the evaporator, the inlet temperature of the cold water, the outlet temperature, and the temperature of the cooling water, and the cold water flow rate, the inlet temperature and outlet of the cold water. The first calculation means for calculating the current value of the refrigerating load from the temperature, and the ratio (heat exchange coefficient K) of the heat quantity Qa received from the cold water and the heat quantity Qe released to the cooling water with the cooling water temperature and the refrigerating load as input variables. Second storage means that is functionalized and stored, second calculation means that derives a corresponding heat exchange coefficient K from the storage means based on the cooling water temperature and the current value of the refrigeration load, and the derived heat The cooling water flow rate estimation method according to claim 2, further comprising a third calculation means for calculating a current value of the cooling water flow rate based on the exchange coefficient.
JP23932993A 1993-09-27 1993-09-27 Cooling water flow rate estimation method for absorption chiller / heater Expired - Fee Related JP3253190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23932993A JP3253190B2 (en) 1993-09-27 1993-09-27 Cooling water flow rate estimation method for absorption chiller / heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23932993A JP3253190B2 (en) 1993-09-27 1993-09-27 Cooling water flow rate estimation method for absorption chiller / heater

Publications (2)

Publication Number Publication Date
JPH0791764A true JPH0791764A (en) 1995-04-04
JP3253190B2 JP3253190B2 (en) 2002-02-04

Family

ID=17043110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23932993A Expired - Fee Related JP3253190B2 (en) 1993-09-27 1993-09-27 Cooling water flow rate estimation method for absorption chiller / heater

Country Status (1)

Country Link
JP (1) JP3253190B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132605A1 (en) 2011-03-31 2012-10-04 三菱重工業株式会社 Device for estimating flowrate of heating medium, heat source device, and method for estimating flowrate of heating medium
CN102878719A (en) * 2012-10-12 2013-01-16 天津商业大学 Lithium bromide absorbing refrigerating equipment with function of mechanical vibration to assist heat and mass transfer
CN103090584A (en) * 2011-10-31 2013-05-08 赵秀卿 Cooling system of split type semiconductor freezer
US9541318B2 (en) 2011-03-31 2017-01-10 Mitsubishi Heavy Industries, Ltd. Estimation apparatus of heat transfer medium flow rate, heat source machine, and estimation method of heat transfer medium flow rate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5058324B2 (en) 2010-10-14 2012-10-24 三菱電機株式会社 Refrigeration cycle equipment
JP2012247122A (en) * 2011-05-27 2012-12-13 Mitsubishi Electric Corp Refrigerating cycle device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132605A1 (en) 2011-03-31 2012-10-04 三菱重工業株式会社 Device for estimating flowrate of heating medium, heat source device, and method for estimating flowrate of heating medium
US9541318B2 (en) 2011-03-31 2017-01-10 Mitsubishi Heavy Industries, Ltd. Estimation apparatus of heat transfer medium flow rate, heat source machine, and estimation method of heat transfer medium flow rate
US9689730B2 (en) 2011-03-31 2017-06-27 Mitsubishi Heavy Industries, Ltd. Estimation apparatus of heat transfer medium flow rate, heat source machine, and estimation method of heat transfer medium flow rate
CN103090584A (en) * 2011-10-31 2013-05-08 赵秀卿 Cooling system of split type semiconductor freezer
CN103090584B (en) * 2011-10-31 2016-05-18 赵秀卿 Discrete type semiconductor cooler refrigeration system
CN102878719A (en) * 2012-10-12 2013-01-16 天津商业大学 Lithium bromide absorbing refrigerating equipment with function of mechanical vibration to assist heat and mass transfer
CN102878719B (en) * 2012-10-12 2014-08-06 天津商业大学 Lithium bromide absorbing refrigerating equipment with function of mechanical vibration to assist heat and mass transfer

Also Published As

Publication number Publication date
JP3253190B2 (en) 2002-02-04

Similar Documents

Publication Publication Date Title
JP2007278540A (en) Absorption cold/hot water combined supplying device
JPH0791764A (en) Cooling water flow rate estimating system for absorption type chilled and warm water machine
JP4049610B2 (en) Abnormality detection device for heat pump heat exchanger
JP3083930B2 (en) Failure diagnosis system for absorption refrigerator
JP3054553B2 (en) Absorption chiller / heater failure diagnosis device
JP2909368B2 (en) Cooling water dirt diagnosis system for absorption chiller / heater
JP2002257667A (en) Method and device for abnormality diagnosis of heat transfer member, thermal power plant, and absorption type refrigerator
JP2005233609A (en) Anomaly diagnosing method and its device for absorption refrigerator
JP2902946B2 (en) Abnormality determination device for absorption type water heater
JP3054554B2 (en) Abnormality detector for absorption type water heater
JPH06249532A (en) Diagnosis system of absorption type refrigerating machine
JP3253211B2 (en) Absorption chiller / heater fault diagnosis system
JP3340814B2 (en) Absorption chiller / heater fault diagnosis system
JP3083931B2 (en) Failure diagnosis system for absorption refrigerator
JPS6210349B2 (en)
JP3253189B2 (en) Diagnosis system for damper opening of absorption chiller / heater
JP3172315B2 (en) Number of operation units for absorption chillers
JP3195087B2 (en) Absorption refrigerator
JPH07234048A (en) Trouble diagnostic system for absorption type water cooling and heating machine
JP3054552B2 (en) Absorption chiller / heater failure diagnosis device
JP3195085B2 (en) Absorption refrigerator
JP3579248B2 (en) Diagnosis method of cooling water dirt
JP3208165B2 (en) Abnormality detector for absorption refrigerator
JP3258687B2 (en) Abnormality detector for absorption refrigerator
JPS6131864A (en) Controller for absorption refrigerator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011023

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees