JPS6316245A - Measuring instrument for uncondensable gas pressure - Google Patents

Measuring instrument for uncondensable gas pressure

Info

Publication number
JPS6316245A
JPS6316245A JP16125086A JP16125086A JPS6316245A JP S6316245 A JPS6316245 A JP S6316245A JP 16125086 A JP16125086 A JP 16125086A JP 16125086 A JP16125086 A JP 16125086A JP S6316245 A JPS6316245 A JP S6316245A
Authority
JP
Japan
Prior art keywords
pressure
temperature
equipment
vapor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16125086A
Other languages
Japanese (ja)
Inventor
Takeo Ishikawa
石河 豪夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP16125086A priority Critical patent/JPS6316245A/en
Publication of JPS6316245A publication Critical patent/JPS6316245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To measure the nearly accurate amount of uncondensable gas in equipment which is affected a little by noises except the uncondensable gas by measuring the difference between the actual pressure in the equipment and the saturated vapor pressure of liquid varying in phase. CONSTITUTION:The pressure and temperature of the vapor phase part of a high temperature generator 1, a generating condenser 2, and a vapor absorbing device 5 are held almost at the saturated vapor pressure of a refrigerant and a solution in an absorbing and a freezing cycle and the saturation temperature of the refrigerant. The saturated temperature values of the refrigerant of the equipments are detected by a temperature sensor STH, etc. The uncondensable gas produced by the reaction between equipment materials and vapor-phase parts during the operation of the absorbing and freezing equipment, on the other hand, are pooled at the vapor-phase parts of the generator 1, condenser 2, and absorbing device 5. Consequently, the actual pressure in the equipment is held a little bit higher than the element CP1. Further, the actual pressure values of the equipments are detected by a pressure sensor SPG, etc. Then the difference between the actual pressure and saturated vapor pressure is measured to measure the accurate amounts of uncondensable gas in the equipments.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は吸収冷凍機やボイラーなどの機器内の気相部に
存する不凝縮ガスの圧力を測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a device for measuring the pressure of non-condensable gas existing in the gas phase within equipment such as absorption refrigerators and boilers.

(口〉従来の技術 不凝縮ガス圧力測定装置の従来の技術として、例えば特
開昭54−54355号公報にみられるように、吸収冷
凍機の蒸発器の冷水出入口温度を入力信号にして実冷凍
能力を算出する熱量計算器と、吸収器の冷却水入口温度
および蒸発器の冷水出口温度を入力信号にして予想冷凍
能力を指示する性能指示器と、実冷凍能力と予想冷凍能
力を比較判別する性能判別器とにより、吸収冷凍機内の
不凝縮ガス量を計測するものが提案されている。
(Example) Conventional technology As a conventional technology of a non-condensable gas pressure measuring device, for example, as seen in Japanese Patent Application Laid-open No. 54-54355, the temperature of the cold water inlet and outlet of the evaporator of an absorption refrigerator is used as an input signal to perform actual refrigeration. A calorie calculator that calculates the capacity, a performance indicator that uses the absorber cooling water inlet temperature and evaporator cold water outlet temperature as input signals to indicate the expected refrigerating capacity, and compares and determines the actual refrigerating capacity and the expected refrigerating capacity. A system has been proposed that measures the amount of non-condensable gas in an absorption refrigerator using a performance discriminator.

(ハ)発明が解決しようとする問題点 上記した従来の装置においては、不凝縮ガス量以外の要
因例えば蒸発器の冷水流通用伝熱管や吸収器の冷却水流
通用伝熱管へのスケールの伸管の度合などにより、実冷
凍能力の算出値や予想冷凍能力の指示値が変わるため、
吸収冷凍機内の不凝縮ガス量の計測に正確さを欠くとい
う問題点があった。
(c) Problems to be Solved by the Invention In the conventional apparatus described above, factors other than the amount of non-condensable gas, such as scale elongation in the heat exchanger tubes for circulating cold water in the evaporator or in the heat exchanger tubes for circulating cooling water in the absorber. The calculated value of the actual refrigerating capacity and the indicated value of the expected refrigerating capacity will change depending on the degree of
There was a problem in that the measurement of the amount of non-condensable gas inside the absorption refrigerator lacked accuracy.

本発明は、この問題点に鑑み、機内の不凝縮ガス量を従
来の装置よりも正確に計測することの可能な測定装置の
提供を目的としたものである。
In view of this problem, the present invention aims to provide a measuring device that can measure the amount of non-condensable gas inside an aircraft more accurately than conventional devices.

幹)問題点を解決するための手段 本発明は、上記の問題点を解決する手段として、機器内
の相変化する流体の温度センサーと、このセンサーの検
知温度に相当する流体の飽和蒸気圧を算出する圧力演算
器と、不凝縮ガスの存在する機器内の実際の圧力を検知
する圧力センサーと、このセンサーの検知圧力から圧力
演算器の算出飽和蒸気圧を差引く圧力減算器とにより、
不凝縮ガス圧力測定装置を構成したものである。
Main) Means for Solving the Problems The present invention, as a means for solving the above problems, includes a temperature sensor for a phase-changing fluid in a device, and a saturated vapor pressure of the fluid corresponding to the detected temperature of this sensor. A pressure calculator that calculates the pressure, a pressure sensor that detects the actual pressure inside the equipment where non-condensable gas exists, and a pressure subtractor that subtracts the saturated vapor pressure calculated by the pressure calculator from the pressure detected by this sensor.
This is a non-condensable gas pressure measuring device.

(ホ)作用 本発明の装置においては、温度センサーと圧力演算器と
が相変化する流体の機器内での分圧を計る働き〔作用〕
をし、かつ、この働きと圧力センサーおよび圧力減算器
の働きにより機器内の不凝縮ガスの分圧を計る機能を発
揮するので、不凝縮ガス量以外の要因すなわちノイズの
影響を受けやすい従来の装置にくらべ、機器内の不凝縮
ガス量をより一層正確に測定することができる。
(E) Function In the device of the present invention, the temperature sensor and the pressure calculator function to measure the partial pressure of the phase-changing fluid within the device.
Moreover, this function and the function of the pressure sensor and pressure subtractor provide the function of measuring the partial pressure of non-condensable gas inside the device, which eliminates the need for conventional methods that are susceptible to factors other than the amount of non-condensable gas, that is, noise. It is possible to measure the amount of non-condensable gas inside the device more accurately than with other devices.

(へ)実施例 第1図は本発明による装置の一実施例を示した概略構成
説明図で、この図の例はこれを吸収冷凍機[または吸収
ヒートポンプ〕に適用したものである。
(F) Embodiment FIG. 1 is a schematic structural explanatory diagram showing one embodiment of the apparatus according to the present invention, and the example shown in this figure is an example in which this is applied to an absorption refrigerator [or an absorption heat pump].

第1図において、(1)は高温発生器、(2)は低温発
生器(3)および凝縮器(4)より成る発生凝縮器、(
5)は蒸発器(6)および吸収器(7)より成る蒸発吸
収器、(8)、(9)はそれぞれ低温、高温溶液熱交換
器、(p*)は冷媒液用ポンプ、(FA)は溶液用ポン
プであり、これら機器は冷媒用管路(10)、(11)
、冷媒液流下用管路(12)、冷媒液還流用管路(13
)、(14)、稀溶液用管路〈15)、(16)、中間
濃度の溶液用管路(17)、(18)、濃溶液用管路(
19)、(20)で接続されて冷媒〔水〕と溶液〔臭化
リチウム水溶液〕の循環路が形成されている。
In FIG. 1, (1) is a high temperature generator, (2) is a generation condenser consisting of a low temperature generator (3) and a condenser (4), (
5) is an evaporator-absorber consisting of an evaporator (6) and an absorber (7), (8) and (9) are low-temperature and high-temperature solution heat exchangers, respectively, (p*) is a pump for refrigerant liquid, (FA) is a solution pump, and these devices are refrigerant pipes (10) and (11).
, refrigerant liquid flow pipe (12), refrigerant liquid return pipe (13)
), (14), Pipes for dilute solutions (15), (16), Pipes for intermediate concentration solutions (17), (18), Pipes for concentrated solutions (
19) and (20) are connected to form a circulation path for refrigerant [water] and solution [lithium bromide aqueous solution].

(21)は高温発生器(1)の給熱器、(22)は低温
発生器(3)の加熱器、(24)は凝縮器(4)の冷却
器、(25)は蒸発器(6)の熱交換器、(26)は吸
収器(7)の冷却器であり、(27)、(28)は給熱
器(21)と接続した熱源流体供給用管路、(29)、
(30)は熱交換器(25)と接続した冷水流通用管路
、(31)、(32)、(33)は冷却器(26)、(
24)を直列に接続した冷却水流通用管路である。なお
、吸収冷凍機をヒートポンプとして使用する場合には、
冷水が蒸発器(6)の熱源として活用され、冷却水が温
水として取り出される。また、(34)は凝縮器(4)
の冷媒液溜であり、(35)は蒸発器(6)の冷媒液溜
である。
(21) is the heat supply for the high temperature generator (1), (22) is the heater for the low temperature generator (3), (24) is the cooler for the condenser (4), and (25) is the evaporator (6). ), (26) is a cooler for the absorber (7), (27) and (28) are heat source fluid supply pipes connected to the heat supply device (21), (29),
(30) is a cold water distribution pipe connected to the heat exchanger (25), (31), (32), and (33) are the coolers (26), (
24) are connected in series for cooling water distribution. In addition, when using an absorption refrigerator as a heat pump,
The cold water is utilized as a heat source for the evaporator (6), and the cooling water is extracted as hot water. Also, (34) is the condenser (4)
(35) is the refrigerant reservoir of the evaporator (6).

(s、ra)は加熱器(22)に備えた温度センサー、
(s?C)は凝縮器(4)の冷媒液溜(34)に備えた
温度センサー、(So)は蒸発器(6)の冷媒液溜(3
5)に備えた温度センサーであり、(SP。)は高温発
生器(1)の気相部に備えた圧力センサー、(SPc)
は凝縮器(4)の気相部に備えた圧力センサー、(S□
)は蒸発器(6)の気相部に備えた圧力センサーである
(s, ra) is a temperature sensor provided in the heater (22);
(s?C) is a temperature sensor provided in the refrigerant reservoir (34) of the condenser (4), and (So) is the temperature sensor provided in the refrigerant reservoir (34) of the evaporator (6).
5) is a temperature sensor provided in the high temperature generator (1), (SPc) is a pressure sensor provided in the gas phase part of the high temperature generator (1).
is a pressure sensor installed in the gas phase of the condenser (4), (S□
) is a pressure sensor provided in the gas phase of the evaporator (6).

(CP、)は、温度センサー<5tst)、(STC’
)、(So)からの信号を受け、これらセンサーのそれ
ぞれの検知温度に相当する冷媒〔水〕の飽和蒸気圧、す
なわち、高温発生器〈1)、凝縮器(4)、蒸発器(6
)内のそれぞれの飽和水蒸気圧を算出する圧力演算器で
ある。また、(CPりは、圧力演算器(CP + )か
らの信号と圧力センサー(SPG)、(SPC)、(s
pりからの信号を受け、これらセンサーのそれぞれの検
知圧力と圧力演算器(CP+)のそれぞれの算出水蒸気
圧との差、すなわち、高温発生器(1)内の圧力と飽和
水蒸気圧との差および凝縮器(4)内の圧力と飽和水蒸
気圧との差ならびに蒸発器(6)内の圧力と飽和水蒸気
圧との差を計算する圧力減算器である。
(CP, ) is temperature sensor <5tst), (STC'
), (So), the saturated vapor pressure of the refrigerant [water] corresponding to the detected temperature of each of these sensors, that is, the high temperature generator <1), the condenser (4), and the evaporator (6
) is a pressure calculator that calculates each saturated water vapor pressure. In addition, (CP) is the signal from the pressure calculator (CP + ) and the pressure sensor (SPG), (SPC), (s
The difference between the detected pressure of each of these sensors and the calculated water vapor pressure of each pressure calculator (CP+), that is, the difference between the pressure in the high temperature generator (1) and the saturated water vapor pressure. and a pressure subtractor that calculates the difference between the pressure in the condenser (4) and the saturated steam pressure, and the difference between the pressure in the evaporator (6) and the saturated steam pressure.

なお、(D)は圧力減算器(CPりの計算値言い代えれ
ば高温発生器(1)、凝縮器(4)、蒸発器(6)内の
実際の圧力と飽和水蒸気圧との差すなわちこれら機器内
におけるそれぞれの不凝縮ガスの分圧をディスプレイす
る表示器である。
In addition, (D) is the calculated value of the pressure subtractor (CP value). This is an indicator that displays the partial pressure of each non-condensable gas within the device.

次に、上記の温度センサー(stn)、(S?(:)、
(So)、圧力センサー(SPG)、(SPC)、(S
、)、圧力演算器(G’I)、圧力減ユ器(CP、)お
よび表示器(D)とで構成きれている本発明の不凝縮ガ
ス圧力測定装置(以下、本装置という)の作用について
、第2図を参照しつつ説明する。なお、第2図は本装置
を適用した吸収冷?J機[または吸収ヒートポンプ〕の
運転時におけるデユーりング線図の一例を示したもので
、横軸に温度を表わす一方縦軸に圧力を表わした図面で
ある。
Next, the above temperature sensor (stn), (S?(:),
(So), pressure sensor (SPG), (SPC), (S
, ), a pressure calculator (G'I), a pressure reducing device (CP, ), and a display device (D). will be explained with reference to FIG. In addition, Figure 2 shows absorption cooling using this device. This drawing shows an example of a Dueling diagram during operation of Machine J [or absorption heat pump], in which the horizontal axis represents temperature and the vertical axis represents pressure.

第1図に示す吸収冷凍機の定常運転時、第2図のa→b
→cod→e→f→aで示す溶液サイクルと冷媒サイク
ルとによる吸収冷凍サイクルが構成きれ、高温発生器(
1)、発生凝縮器(2〉、蒸発吸収器(5)の気相部の
圧力、温度は吸収冷凍サイクルにおけるそれぞれの冷媒
〔水〕および溶液〔臭化リチウム水溶液〕の飽和蒸気圧
、冷媒の飽和温度に近い値に保たれる。そして、これら
機器における冷媒のそれぞれの飽和温度は温度センサー
(STM)、(sTc)、(Sit)によって検知され
る。すなわち、第2図に表示したT。が高温発生器(1
)の気相部における飽和温度であり、Tcが発生凝縮器
(2)の気相部における飽和温度であり、また、TMが
蒸発吸収器(5)の気相部における飽和温度である。次
いで、圧力演算器(CP、)が、温度センサー(STH
)、<St。)、(sit)からの信号を受け、高温発
生器(1)の飽和蒸気圧Pac、発生凝縮器(2)の飽
和蒸気圧FCC%蒸発吸収器(5)の飽和蒸気圧P8c
を算出し〔第2図参照〕、出力信号を圧力減算器(a)
、)へ送る。
During steady operation of the absorption refrigerator shown in Fig. 1, a → b in Fig. 2
→cod→e→f→a The absorption refrigeration cycle consisting of the solution cycle and the refrigerant cycle is completed, and the high temperature generator (
1) The pressure and temperature of the gas phase of the generation condenser (2) and evaporator-absorber (5) are based on the saturated vapor pressure of the refrigerant [water] and solution [lithium bromide aqueous solution] in the absorption refrigeration cycle, and the saturated vapor pressure of the refrigerant. The respective saturation temperatures of the refrigerants in these devices are then detected by temperature sensors (STM), (sTc), (Sit), i.e. T as shown in FIG. is a high temperature generator (1
), Tc is the saturation temperature in the gas phase of the generation condenser (2), and TM is the saturation temperature in the gas phase of the evaporator-absorber (5). Next, the pressure calculator (CP) is connected to the temperature sensor (STH).
), <St. ), (sit), the saturated vapor pressure Pac of the high temperature generator (1), the saturated vapor pressure FCC% of the generation condenser (2), the saturated vapor pressure P8c of the evaporator absorber (5)
[See Figure 2], and output the output signal to the pressure subtractor (a).
, ).

一方、吸収冷凍機の運転中、その機材(主として鋼材)
と溶液〔臭化リチウム水溶液〕との反応によって少しず
つ発生する水素ガスや溶液中に溶存していた空気などの
不凝縮ガスが高温発生器(1)、発生凝縮器(2)およ
び蒸発吸収器(5)の気相部に溜るため、これら機器内
の実際の圧力は圧力演算器(cps)によって算出され
た飽和蒸気圧よりもや〜高い値になる。そして、これら
機器におけるそれぞれの実際の圧力は圧力センサー<5
pa)、(Sバ)、(SPI+)によって検知きれる。
On the other hand, while the absorption chiller is in operation, its equipment (mainly steel)
The hydrogen gas generated little by little by the reaction between the liquid and the solution [lithium bromide aqueous solution] and the non-condensable gases such as air dissolved in the solution are transferred to the high temperature generator (1), generation condenser (2) and evaporative absorber. (5) Because the vapor accumulates in the gas phase, the actual pressure inside these devices becomes a value that is slightly higher than the saturated vapor pressure calculated by the pressure calculator (CPS). And the actual pressure of each of these devices is pressure sensor < 5
It can be detected by pa), (Sba), and (SPI+).

すなわち、第2図に表示したP。が高温発生器(1)内
の実際の圧力であり、P、が発生凝縮器(2)内の実際
の圧力であり、また、P、が蒸発吸収器(5)内の実際
の圧力である。次いで、圧力減算器(CP、)が、圧力
センサー<5PG)、(SPC)、(S、)および圧力
演算器(CP、)からの信号を受け、高温発生器(1)
内の実際の圧力と飽和蒸気圧との差(Pa  Pcc)
、発生凝縮器(2)内の実際の圧力と飽和蒸気圧との差
(Po−Pcc)、蒸発吸収器り5)内の実際の圧力と
飽和蒸気圧との差(Pg  PGa)を算出し、出力信
号を表示器(D)へ送る。そして、表示器(D)にディ
スプレイされたこれら圧力差が不凝縮ガスの分圧を表わ
す。また、吸収冷凍機における冷媒液の汚れはわずかで
あると共に冷媒液のわずかな汚れによる飽和蒸気圧の変
化は冷却器(24)、(26)や熱交換器(25)の汚
れによる冷凍能力の変化にくらべ軽微であるので、本装
置は従来の装置よりも正確に不凝縮ガスの分圧言い代え
れば不凝縮ガス量を測定できる。なお、冷媒温度の代り
に溶液の温度および濃度をセンサーで検知して飽和蒸気
圧を計ることも可能である。また、表示器(D)にディ
スプレイする数値は圧力の単位〔例えばIIinlg:
]嗜不凝縮ガスの分圧の割合〔例えば%〕などで示きれ
る。割合で示す場合には圧力減算器(CPりに除箕機能
を具備させれば良い。
That is, P shown in FIG. is the actual pressure in the high temperature generator (1), P, is the actual pressure in the generator condenser (2), and P, is the actual pressure in the evaporator-absorber (5). . Then, the pressure subtractor (CP,) receives signals from the pressure sensors <5PG), (SPC), (S,) and the pressure calculator (CP,), and the high temperature generator (1)
The difference between the actual pressure within and the saturated vapor pressure (Pa Pcc)
, the difference between the actual pressure in the generation condenser (2) and the saturated vapor pressure (Po-Pcc), and the difference between the actual pressure in the evaporator and absorber 5) and the saturated vapor pressure (Pg PGa) are calculated. , sends the output signal to the display (D). These pressure differences displayed on the display (D) represent the partial pressure of the non-condensable gas. In addition, contamination of the refrigerant liquid in an absorption refrigerator is slight, and changes in saturated vapor pressure due to slight contamination of the refrigerant liquid will reduce the refrigerating capacity due to contamination of the coolers (24), (26) and heat exchanger (25). Since the change is small compared to the change, this device can measure the partial pressure of non-condensable gas, or in other words, the amount of non-condensable gas, more accurately than conventional devices. Note that it is also possible to measure the saturated vapor pressure by detecting the temperature and concentration of the solution with a sensor instead of the refrigerant temperature. In addition, the numerical value displayed on the display (D) is the unit of pressure [for example, IIinlg:
] It can be expressed as a percentage of the partial pressure of the condensed gas (for example, %). When expressed as a percentage, a pressure subtractor (CP) may be provided with a subtraction function.

なおまた、本装置を吸収冷凍機以外の冷凍機や減圧加熱
式のボイラー〔缶内の水を大気圧よりも低圧下で沸騰キ
せるボイラー〕などの機器に備えることにより、これら
機器内の不凝縮ガス圧力言い代えれば不凝縮ガス量を測
定し得ることは勿論である。
Furthermore, by installing this device in equipment such as refrigerators other than absorption refrigerators and vacuum heating boilers (boilers that boil water in cans at a pressure lower than atmospheric pressure), it is possible to eliminate defects in these equipment. Of course, in other words, the amount of non-condensable gas can be measured by the condensed gas pressure.

(ト)発明の効果 以上のとおり、本発明は、不凝縮ガス以外のノイズの影
響の軽微な機器内の実際の圧力と相変化する流体の飽和
蒸気圧との差を計るものであるから、機器内のほぼ正確
な不凝縮ガス量を測定できる効果を装置にもたらし、機
器の良好な運転管理を行う上で実用的価値の高いもので
ある。
(G) Effects of the Invention As described above, the present invention measures the difference between the actual pressure in a device that is minimally affected by noise other than non-condensable gases and the saturated vapor pressure of a fluid undergoing a phase change. It provides the device with the effect of being able to almost accurately measure the amount of noncondensable gas within the device, and is of high practical value for good operational management of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による不凝縮ガス圧力測定装置の一実施
例を示した概略構成説明図、第2図は本発明による装置
を備えた吸収冷凍機のデユーリング線図である。 (1)・・・高温発生器、 (2)・・・発生凝縮器、
 (4)・・・凝縮器、 (5)・・・蒸発吸収器、 
(6)・・・蒸発器、(22)・・・加熱器、 (34
)、(35)・・・冷媒液溜、 (CP、)・・・圧力
演算器、 (CP2)・・・圧力減算器、 (D)・・
・表示器、 (stM)、(STo)、(So)・・・
温度センサー、(SPG)、(Spc)、(sp*>・
・・圧力センサー。
FIG. 1 is a schematic structural explanatory diagram showing one embodiment of a non-condensable gas pressure measuring device according to the present invention, and FIG. 2 is a Duering diagram of an absorption refrigerator equipped with the device according to the present invention. (1)...High temperature generator, (2)...Generation condenser,
(4)... Condenser, (5)... Evaporative absorber,
(6)... Evaporator, (22)... Heater, (34
), (35)...Refrigerant reservoir, (CP,)...Pressure calculator, (CP2)...Pressure subtractor, (D)...
・Display device, (stM), (STo), (So)...
Temperature sensor, (SPG), (Spc), (sp*>・
··pressure sensor.

Claims (1)

【特許請求の範囲】[Claims] (1)不凝縮ガスの存在する機器内で相変化する流体の
温度を検知する温度センサーと、この温度センサーの検
知温度に相当する前記流体の飽和蒸気圧を算出する圧力
演算器と、不凝縮ガスの存在する機器内の圧力を検知す
る圧力センサーと、この圧力センサーの検知圧力から圧
力演算器の算出飽和蒸気圧を差引く圧力減算器とにより
、構成されていることを特徴とした不凝縮ガス圧力測定
装置。
(1) A temperature sensor that detects the temperature of a fluid that undergoes a phase change in a device where non-condensable gas exists, a pressure calculator that calculates the saturated vapor pressure of the fluid corresponding to the temperature detected by this temperature sensor, and a non-condensable gas. A non-condensing device characterized by being composed of a pressure sensor that detects the pressure inside the equipment where gas is present, and a pressure subtractor that subtracts the saturated vapor pressure calculated by the pressure calculator from the pressure detected by the pressure sensor. Gas pressure measuring device.
JP16125086A 1986-07-09 1986-07-09 Measuring instrument for uncondensable gas pressure Pending JPS6316245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16125086A JPS6316245A (en) 1986-07-09 1986-07-09 Measuring instrument for uncondensable gas pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16125086A JPS6316245A (en) 1986-07-09 1986-07-09 Measuring instrument for uncondensable gas pressure

Publications (1)

Publication Number Publication Date
JPS6316245A true JPS6316245A (en) 1988-01-23

Family

ID=15731511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16125086A Pending JPS6316245A (en) 1986-07-09 1986-07-09 Measuring instrument for uncondensable gas pressure

Country Status (1)

Country Link
JP (1) JPS6316245A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2338236A1 (en) 1972-07-27 1974-02-14 Mitsui Toatsu Chemicals METHOD FOR MANUFACTURING POLYPROPYLENE HOLLOW BODIES
JPH02275263A (en) * 1989-04-14 1990-11-09 Sanyo Electric Co Ltd Absorptive type freezer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2338236A1 (en) 1972-07-27 1974-02-14 Mitsui Toatsu Chemicals METHOD FOR MANUFACTURING POLYPROPYLENE HOLLOW BODIES
JPH02275263A (en) * 1989-04-14 1990-11-09 Sanyo Electric Co Ltd Absorptive type freezer

Similar Documents

Publication Publication Date Title
JPS6316245A (en) Measuring instrument for uncondensable gas pressure
CN106894853B (en) Condensing turbine cold end diagnosis of energy saving method
JP3054553B2 (en) Absorption chiller / heater failure diagnosis device
CN209415823U (en) A kind of on-line checking density flue gas type suction-type lithium bromide low-temperature cold water unit
CN209415822U (en) A kind of on-line checking density steam double-effect type suction-type lithium bromide low-temperature cold water unit
JP3253190B2 (en) Cooling water flow rate estimation method for absorption chiller / heater
JP3054554B2 (en) Abnormality detector for absorption type water heater
JP3253211B2 (en) Absorption chiller / heater fault diagnosis system
JP3083929B2 (en) Failure diagnosis system for absorption refrigerator
JPS6321459A (en) Automatic discharger for noncondensable gas
JPS6210349B2 (en)
CN109458752B (en) Double-effect lithium bromide absorption type low-temperature water chilling unit for online detection of density steam
JP2664436B2 (en) Control method of absorption refrigerator
CN109458755B (en) On-line detection density direct-fired lithium bromide absorption type low-temperature water chilling unit
CN109458753B (en) Online detection density flue gas type lithium bromide absorption type low-temperature water chilling unit
JP2876154B2 (en) Dirty detection method for cooling water heat transfer tubes of refrigerators and chillers
JP3258692B2 (en) Abnormality detector for absorption refrigerator
JPH0625640B2 (en) Absorption chiller / heater diagnostic method
JPH06249533A (en) Failure diagnosis system for absorption type refrigerating machine
JP7022658B2 (en) Performance diagnosis system for absorption chillers
JPS6231825Y2 (en)
JPH09303907A (en) Absorption freezer
JP3258687B2 (en) Abnormality detector for absorption refrigerator
JPH0697126B2 (en) Absorption chiller / heater diagnostic device
JPS613961A (en) Absorption refrigerator