JPH06249533A - Failure diagnosis system for absorption type refrigerating machine - Google Patents

Failure diagnosis system for absorption type refrigerating machine

Info

Publication number
JPH06249533A
JPH06249533A JP3516393A JP3516393A JPH06249533A JP H06249533 A JPH06249533 A JP H06249533A JP 3516393 A JP3516393 A JP 3516393A JP 3516393 A JP3516393 A JP 3516393A JP H06249533 A JPH06249533 A JP H06249533A
Authority
JP
Japan
Prior art keywords
cooling water
condenser
heat exchange
temperature difference
processing means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3516393A
Other languages
Japanese (ja)
Other versions
JP3083930B2 (en
Inventor
Ryuichiro Kawakami
隆一郎 川上
Yoshio Ozawa
芳男 小澤
Masahiro Furukawa
雅裕 古川
Kazuhiro Yoshii
一寛 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Osaka Gas Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Sanyo Electric Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP05035163A priority Critical patent/JP3083930B2/en
Publication of JPH06249533A publication Critical patent/JPH06249533A/en
Application granted granted Critical
Publication of JP3083930B2 publication Critical patent/JP3083930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To provide a diagnosis system for accurately detecting a drop in heat exchange rate of a condenser in an absorption type refrigerating machine to allow the diagnosing of the cause of a failure based on the results. CONSTITUTION:A circuit section 71 of an arithmetic processing circuit 7 calculates a logarithmic average temperature difference of a condenser based on an actual measurement data obtained from a group of sensors 6. A circuit section 72 estimates a flow rate of a cooling water from an inlet temperature of a cooling water or the like based on a corresponding relationship between a heat exchange value at an evaporator and a heat exchange value at an absorber and a circuit section 73 calculates a heat exchange value at the condenser based on the flow rate of the cooling water estimated. Moreover, a circuit section 74 calculates a logarithmic average temperature difference in the normal operation based on a table indicating a relationship between the heat exchange value and the logarithmic average temperature difference in the normal operation as prepared previously. Then, a circuit section 75 calculates[j abnormality based on the logarithmic average temperature difference during the diagnosis of a failure and that in the normal operation sends the results to an output device 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は吸収式冷凍機に関し、特
に冷凍サイクルを構成する凝縮器の熱交換率の低下を検
知し、該検知に基づいて冷凍機の故障を診断するシステ
ムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator, and more particularly to a system for detecting a decrease in heat exchange rate of a condenser constituting a refrigeration cycle and diagnosing a failure of the refrigerator based on the detection. is there.

【0002】[0002]

【従来の技術】吸収式冷凍機においては、凝縮器、蒸発
器、吸収器、再生器等を相互に配管接続して1つの冷凍
サイクルが構成される。特に二重効用型の吸収式冷凍機
は冷凍効率が高いため、広く採用されている(例えば特
開昭62-77567号〔F25B15/00〕参照)。
2. Description of the Related Art In an absorption chiller, a condenser, an evaporator, an absorber, a regenerator and the like are connected to each other by piping to form one refrigeration cycle. In particular, double-effect absorption chillers are widely used because of their high refrigeration efficiency (see, for example, JP-A-62-77567 [F25B15 / 00]).

【0003】ところで、吸収式冷凍機においては、屋外
のクーリングタワーとの間で冷却水が循環するため、そ
の過程で冷却水が外気中の塵埃等を吸収する。この様な
冷却水が吸収器や凝縮器等の熱交換ユニットを通過する
と、伝熱面が汚れて熱交換率が低下することになる。
By the way, in the absorption refrigerator, the cooling water circulates between it and the outdoor cooling tower, so that the cooling water absorbs dust and the like in the outside air in the process. When such cooling water passes through a heat exchange unit such as an absorber or a condenser, the heat transfer surface becomes dirty and the heat exchange rate decreases.

【0004】又、例えば真空異常等の故障が発生した場
合、漏れ込んだガスが下胴に集ってくる。下胴のガスを
貯室へ排出する機構によって、大部分のガスは貯室へ排
出されるが、貯室の圧力が高まるにつれて、下胴に残る
ガスも増えてくる。下胴内では、蒸発器の伝熱管から吸
収器の伝熱管へ向けて水蒸気が流れているので、不凝縮
ガスは、吸収器の伝熱管の周囲に集められ、吸収器での
水蒸気の吸収を妨げる。この結果、吸収器の対数平均温
度差が異常に上昇することになる。この様に、ある種の
故障が発生した場合、その故障の原因と関係のある1或
いは複数の熱交換ユニットにおいて、それらの伝熱性能
には異常がないにも拘わらず、対数平均温度差が異常に
上昇する。
Further, when a failure such as a vacuum abnormality occurs, the leaked gas collects on the lower body. Most of the gas is discharged to the storage chamber by the mechanism for discharging the gas from the lower body to the storage chamber, but as the pressure in the storage chamber increases, more gas remains in the lower body. In the lower body, since steam flows from the heat transfer tube of the evaporator to the heat transfer tube of the absorber, the non-condensable gas is collected around the heat transfer tube of the absorber and absorbs the water vapor in the absorber. Hinder. As a result, the logarithmic mean temperature difference of the absorber rises abnormally. In this way, when a certain kind of failure occurs, the logarithmic average temperature difference is reduced in one or a plurality of heat exchange units related to the cause of the failure, even though their heat transfer performance is not abnormal. Rises abnormally.

【0005】そこで、従来は、凝縮器や吸収器等の各ユ
ニットの入出力部に、温度、流量、濃度等を測定する各
種センサーを配備し、センサー出力を監視することによ
って、伝熱面の汚れや真空異常等の故障を検知すること
が行なわれている。
Therefore, conventionally, various sensors for measuring temperature, flow rate, concentration and the like are provided at the input / output portions of each unit such as a condenser and an absorber, and the sensor output is monitored to detect the heat transfer surface. Faults such as dirt and vacuum abnormality are detected.

【0006】一般的な熱交換器においては、熱交換量Q
を熱交換率Kと対数平均温度差ΔTの積で表わし、熱交
換率K、即ち熱交換量Qを対数平均温度差ΔTで除した
値Kを監視することによって、伝熱面の汚れによる性能
低下が検知される。この方法を吸収器、凝縮器等の他の
熱交換ユニットにも適用し、熱交換率が低下している熱
交換ユニットの種別、組合せを知ることによって、真空
異常等の故障の原因を診断することが出来る。
In a general heat exchanger, the heat exchange amount Q
Is represented by the product of the heat exchange rate K and the logarithmic average temperature difference ΔT, and the heat exchange rate K, that is, the value K obtained by dividing the heat exchange amount Q by the logarithmic average temperature difference ΔT, is monitored. A drop is detected. This method is applied to other heat exchange units such as absorbers and condensers, and the cause of failure such as vacuum abnormality is diagnosed by knowing the type and combination of heat exchange units whose heat exchange rate is decreasing. You can

【0007】[0007]

【発明が解決しようとする課題】ところが、吸収式冷凍
機において、例えば凝縮器の熱交換量を算出するために
は、凝縮器を流れる2つの媒体の温度、流量等を測定す
るために複数の計器を設置せねばならず、特に流量計の
設置には、大きなスペースが必要となるばかりでなく、
費用も嵩む問題がある。
However, in the absorption refrigerator, for example, in order to calculate the heat exchange amount of the condenser, a plurality of temperatures are measured in order to measure the temperatures and flow rates of the two media flowing in the condenser. Not only does it require a large space to install a meter, especially for a flow meter,
There is a problem that the cost increases.

【0008】本発明の目的は、凝縮器を流れる冷却水の
流量を直接に測定することなく、吸収器における熱交換
量に基づいて冷却水流量を推定することによって、熱交
換率の低下を正確に検知することが出来る故障診断シス
テムを提供することである。
The object of the present invention is to accurately estimate the decrease in the heat exchange rate by estimating the cooling water flow rate based on the heat exchange amount in the absorber without directly measuring the cooling water flow rate flowing through the condenser. It is to provide a failure diagnosis system capable of detecting the above.

【0009】[0009]

【課題を解決する為の手段】本発明に係る吸収式冷凍機
の故障診断システムは、凝縮器(11)に流入する2つの媒
体の温度差に応じた温度差データを導出する第1データ
処理手段と、吸収式冷凍機の正常時における温度差デー
タと凝縮器(11)における熱交換量との対応関係が格納さ
れている格納手段と、蒸発器(21)に流入する冷水の流量
Vc、冷水入口温度Tc_in、冷水出口温度Tc_o
ut、吸収器(22)から凝縮器(11)へ流出する冷却水の温
度(冷却水中間温度)Tco_mid、及び吸収器(22)へ
流入する冷却水の入口温度Tco_inの測定データに
基づいて、冷却水流量Vcoを推定する第2データ処理
手段と、前記推定された冷却水量Vcoと、凝縮器(11)
から流出する冷却水の出口温度Tco_out及び前記
冷却水中間温度Tco_midの測定データに基づい
て、凝縮器(11)における熱交換量を算出する第3データ
処理手段と、格納手段の対応関係に基づいて、前記算出
された熱交換量に対応する正常時の温度差データを導出
する第4データ処理手段と、前記正常時の温度差データ
と、第1データ処理手段から得られる故障診断時の温度
差データとの比較によって、凝縮器(11)の異常度を判定
する第5データ処理手段と、第5データ処理手段の判定
結果を出力する出力手段とを具えている。
A failure diagnosis system for an absorption refrigerator according to the present invention is a first data processing for deriving temperature difference data according to a temperature difference between two media flowing into a condenser (11). Means, storage means for storing the correspondence between the temperature difference data of the absorption chiller during normal operation and the heat exchange amount in the condenser (11), and the flow rate Vc of cold water flowing into the evaporator (21), Cold water inlet temperature Tc_in, cold water outlet temperature Tc_o
ut, the temperature (cooling water intermediate temperature) Tco_mid of the cooling water flowing from the absorber (22) to the condenser (11), and the inlet temperature Tco_in of the cooling water flowing into the absorber (22), Second data processing means for estimating the cooling water flow rate Vco, the estimated cooling water amount Vco, and a condenser (11)
Based on the correspondence between the storage means and the third data processing means for calculating the heat exchange amount in the condenser (11) based on the measured data of the outlet temperature Tco_out of the cooling water flowing out from the tank and the intermediate temperature Tco_mid of the cooling water. A fourth data processing means for deriving temperature difference data in a normal state corresponding to the calculated heat exchange amount, temperature difference data in the normal state, and a temperature difference in a failure diagnosis obtained from the first data processing means. It is provided with fifth data processing means for judging the degree of abnormality of the condenser (11) by comparison with the data, and output means for outputting the judgment result of the fifth data processing means.

【0010】[0010]

【作用】本発明の故障診断システムの構築に際しては、
予め、吸収式冷凍機が正常な状態で、凝縮器における熱
交換量と温度差データ(対数平均温度差)との対応関係が
テーブル化或いは関数化されて、第1格納手段に格納さ
れる。
When constructing the fault diagnosis system of the present invention,
In advance, in the normal state of the absorption chiller, the correspondence relationship between the heat exchange amount in the condenser and the temperature difference data (logarithmic average temperature difference) is tabulated or made into a function and stored in the first storage means.

【0011】故障診断に際しては、凝縮器(11)の温度差
データ(対数平均温度差ΔT)を測定すると共に、蒸発器
(21)に流入する冷水の流量Vc、冷水入口温度Tc_i
n、冷水出口温度Tc_out、吸収器(22)から凝縮器
(11)へ流出する冷却水の温度(冷却水中間温度)Tco_
mid、及び吸収器(22)へ流入する冷却水の入口温度T
co_inを測定する。
In the failure diagnosis, the temperature difference data (logarithmic mean temperature difference ΔT) of the condenser (11) is measured and the evaporator is also used.
Flow rate Vc of cold water flowing into (21), cold water inlet temperature Tc_i
n, cold water outlet temperature Tc_out, absorber (22) to condenser
Temperature of cooling water flowing to (11) (cooling water intermediate temperature) Tco_
Mid temperature and the inlet temperature T of the cooling water flowing into the absorber (22)
Measure co_in.

【0012】ところで、吸収式冷凍機においては、蒸発
器(21)における熱交換量と吸収器(22)における熱交換量
の間に、例えば一次式で表わされる一定の関係があるこ
とが経験的に知られている。熱交換量は、媒体流量と出
入口温度差の積で表わされるから、冷水流量Vc、冷水
入口温度Tc_in、冷水出口温度Tc_out、冷却
水中間温度Tco_mid、及び冷却水入口温度Tco
_inの測定データが得られば、上記関係を用いること
によって、吸収器(22)従って凝縮器(11)を通過する冷却
水の流量を推定することが出来る。
In an absorption refrigerator, it has been empirically found that there is a certain relation expressed by, for example, a linear expression between the heat exchange amount in the evaporator (21) and the heat exchange amount in the absorber (22). Known to. Since the heat exchange amount is represented by the product of the medium flow rate and the inlet / outlet temperature difference, the cold water flow rate Vc, the cold water inlet temperature Tc_in, the cold water outlet temperature Tc_out, the cooling water intermediate temperature Tco_mid, and the cooling water inlet temperature Tco.
Once the measured data of _in is obtained, the flow rate of the cooling water passing through the absorber (22) and thus the condenser (11) can be estimated by using the above relationship.

【0013】そこで、本発明においては、この推定冷却
水流量を用いて熱交換量を算出するのである。そして、
算出された熱交換量に対応する正常時の温度差データ
を、予め格納されている対応関係から導出する。この正
常時の温度差データと故障診断時の温度差データを比較
すれば、凝縮器(11)における同一熱交換量下での熱交換
率の低下の程度、即ちの異常度を正確に判定出来、これ
によって故障診断が可能となる。
Therefore, in the present invention, the heat exchange amount is calculated using this estimated cooling water flow rate. And
The normal temperature difference data corresponding to the calculated heat exchange amount is derived from the correspondence relationship stored in advance. By comparing the temperature difference data at the time of normal and the temperature difference data at the time of failure diagnosis, it is possible to accurately determine the degree of decrease in the heat exchange rate under the same heat exchange amount in the condenser (11), that is, the degree of abnormality. This enables failure diagnosis.

【0014】この際、冷却水流量Vcoの推定データに
対し、所定時間に亘る移動平均処理を施せば、温度測定
データのバラツキ等に起因する変動(ノイズ)が平滑化さ
れ、これによって更に正確な故障診断が可能となる。
At this time, if the moving average processing for a predetermined time is performed on the estimated data of the cooling water flow rate Vco, the fluctuation (noise) due to the variation of the temperature measurement data is smoothed, and thereby more accurate. Fault diagnosis is possible.

【0015】[0015]

【発明の効果】本発明に係る吸収式冷凍機の故障診断シ
ステムによれば、妥当な方法で推定された冷却水流量に
基づいて、熱交換率の低下を正確に検知することが出来
るから、冷却水流量を直接に測定するための流量計の設
置は不要となる。
According to the failure diagnosis system of the absorption refrigerator according to the present invention, it is possible to accurately detect the decrease in the heat exchange rate based on the cooling water flow rate estimated by a proper method. It is not necessary to install a flow meter to directly measure the cooling water flow rate.

【0016】[0016]

【実施例】以下、本発明を二重効用型の吸収式冷凍機に
実施した一例につき、図面に沿って詳述する。図1に示
す如く吸収式冷凍機は、冷媒として水、吸収液として臭
化リチウム(LiBr)溶液を用いたもので、凝縮器(11)
及び低温再生器(12)からなる上胴(1)、蒸発器(21)及び
吸収器(22)からなる下胴(2)、バーナ(31)を内蔵した高
温再生器(3)、高温熱交換器(4)、低温熱交換器(5)等
を相互に配管接続して構成されている。尚、これら複数
の機器の媒体入出力部には、必要なセンサー(図示省略)
が取り付けられており、後述の各種物理量が測定され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example in which the present invention is applied to a double-effect absorption refrigerator is described below in detail with reference to the drawings. As shown in FIG. 1, the absorption refrigerator uses water as a refrigerant and lithium bromide (LiBr) solution as an absorption liquid, and a condenser (11)
And an upper body (1) including a low temperature regenerator (12), a lower body (2) including an evaporator (21) and an absorber (22), a high temperature regenerator (3) including a burner (31), and high temperature heat The exchanger (4), the low temperature heat exchanger (5) and the like are connected to each other by piping. In addition, necessary sensors (not shown) are installed in the medium input / output unit of these multiple devices.
Is attached, and various physical quantities described later are measured.

【0017】クーリングタワー(図示省略)から供給され
る温度の低い冷却水は、先ず吸収器(22)を通過した後、
凝縮器(11)を通過し、これによって温度が上昇した冷却
水は再びクーリングタワーへ戻される。又、室内ユニッ
ト(図示省略)からの温度の高い冷水は蒸発器(21)を通過
し、これによって冷却された温度の低い冷水が室内ユニ
ットへ供給される。
Cooling water having a low temperature supplied from a cooling tower (not shown) first passes through the absorber (22) and then
The cooling water, which has passed through the condenser (11) and the temperature of which has risen, is returned to the cooling tower again. Further, cold water having a high temperature from the indoor unit (not shown) passes through the evaporator (21), and cold water having a low temperature cooled by this is supplied to the indoor unit.

【0018】図2は、凝縮器(11)に関する故障診断シス
テムの構成を示している。センサー群(6)は、図1に示
す上胴(1)内の圧力、凝縮器(11)の冷媒出口温度、凝縮
器(11)から流出する冷却水の出口温度Tco_out、
吸収器(22)と凝縮器(11)間の冷却水中間温度Tco_m
id、吸収器(22)へ供給される冷却水の入口温度Tco
_in、蒸発器(21)の冷水出口温度Tc_out、冷水
入口温度Tc_in、及び冷水流量Vcを夫々測定する
ための圧力計、温度計、流量計から構成される。
FIG. 2 shows the configuration of a failure diagnosis system for the condenser (11). The sensor group (6) includes a pressure in the upper body (1) shown in FIG. 1, a refrigerant outlet temperature of the condenser (11), an outlet temperature Tco_out of cooling water flowing out from the condenser (11),
Cooling water intermediate temperature Tco_m between the absorber (22) and the condenser (11)
id, inlet temperature Tco of cooling water supplied to the absorber (22)
_In, a chilled water outlet temperature Tc_out of the evaporator (21), a chilled water inlet temperature Tc_in, and a cold water flow rate Vc, respectively.

【0019】図2に示す演算処理回路(7)はマイクロコ
ンピュータから構成され、次の9つの計算部(71)〜(75)
を具えている。凝縮器対数平均温度差計算部(71)は、上
胴圧力、冷媒出口温度、冷却水出口温度及び冷却水中間
温度から凝縮器の対数平均温度差を計算するものであ
る。
The arithmetic processing circuit (7) shown in FIG. 2 is composed of a microcomputer, and has the following nine calculation sections (71) to (75).
It is equipped with The condenser logarithmic average temperature difference calculation unit (71) calculates the logarithmic average temperature difference of the condenser from the upper shell pressure, the refrigerant outlet temperature, the cooling water outlet temperature, and the cooling water intermediate temperature.

【0020】具体的には、凝縮器の対数平均温度差ΔT
(cond)は下記数1によって算出される。
Specifically, the logarithmic average temperature difference ΔT of the condenser
(cond) is calculated by the following equation 1.

【0021】[0021]

【数1】 ΔT(cond) =(Tcond-Tco_out-Tcond+Tco_mid)/ln{(Tcond-Tco_out)/(Tcond-Tco_mid)}[Formula 1] ΔT (cond) = (Tcond-Tco_out-Tcond + Tco_mid) / ln {(Tcond-Tco_out) / (Tcond-Tco_mid)}

【0022】ここで、Tcondは凝縮器内の飽和蒸気
温度であって、上胴(1)内の圧力から求められる。
Here, Tcond is the saturated vapor temperature in the condenser, and is calculated from the pressure in the upper body (1).

【0023】演算処理回路(7)の冷却水量推定部(72)
は、冷却水中間温度Tco_mid、冷却水入口温度T
co_in、冷水出口温度Tc_out、冷水入口温度
Tc_in、及び冷水流量Vcの測定データに基づき、
下記数2によって冷却水流量の推定値Vcoを算出する
ものである。
Cooling water quantity estimating unit (72) of the arithmetic processing circuit (7)
Is the cooling water intermediate temperature Tco_mid, the cooling water inlet temperature T
Based on the measurement data of co_in, cold water outlet temperature Tc_out, cold water inlet temperature Tc_in, and cold water flow rate Vc,
The estimated value Vco of the cooling water flow rate is calculated by the following equation 2.

【0024】[0024]

【数2】 Vco =Kv・Vc・(Tc_in−Tc_out)/(Tco_mid−Tco_in)+Cv## EQU00002 ## Vco = Kv.Vc. (Tc_in-Tc_out) / (Tco_mid-Tco_in) + Cv

【0025】ここで、Kv及びCvは実験的に求められ
る値であって、図1に示す一般的な吸収式冷凍機におい
ては、例えば、Kv=1.277、Cv=−0.183に
設定される。
Here, Kv and Cv are values obtained experimentally, and in the general absorption refrigerator shown in FIG. 1, for example, Kv = 1.277 and Cv = −0.183 are set. To be done.

【0026】図2の凝縮器熱交換量計算部(73)は、冷却
水出口温度Tco_out、冷却水中間温度Tco_m
id、及び前記推定冷却水流量Vcoに基づき、下記数
3によって凝縮器(11)の熱交換量Qを算出するものであ
る。
The condenser heat exchange amount calculation unit (73) in FIG. 2 has a cooling water outlet temperature Tco_out and a cooling water intermediate temperature Tco_m.
Based on id and the estimated cooling water flow rate Vco, the heat exchange amount Q of the condenser (11) is calculated by the following mathematical expression 3.

【0027】[0027]

【数3】 Q=Vco・(Tco_out−Tco_mid)## EQU00003 ## Q = Vco.multidot. (Tco_out-Tco_mid)

【0028】演算処理回路(7)において、凝縮器の正常
時の対数平均温度差計算部(73)には、正常時における対
数平均温度差と熱交換量との対応関係がテーブル化され
ている。
In the arithmetic processing circuit (7), the logarithmic average temperature difference calculating section (73) of the condenser in the normal state has a table of the correspondence relationship between the logarithmic average temperature difference and the heat exchange amount in the normal state. .

【0029】図5は、凝縮器における熱交換量Qと対数
平均温度差ΔTの関係を定性的なグラフで表わしたもの
であって、実線で示す関係は、前記正常時の対数平均温
度差計算部に格納されているテーブルに対応している。
この関係は、正常な運転状態にて、凝縮器の熱交換量と
対数平均温度差を実測することによって、予め作成され
る。
FIG. 5 is a qualitative graph showing the relationship between the heat exchange amount Q and the logarithmic mean temperature difference ΔT in the condenser. The solid line shows the relationship between the logarithmic mean temperature difference calculation in the normal state. Corresponds to the table stored in the department.
This relationship is created in advance by actually measuring the heat exchange amount of the condenser and the logarithmic average temperature difference under normal operating conditions.

【0030】凝縮器の正常時の対数平均温度差計算部(7
4)は、図1の凝縮器熱交換量計算部(73)から得られる熱
交換量に基づいて前記テーブルをサーチし、該熱交換量
に対応する対数平均温度差を導出する。
The logarithmic mean temperature difference calculation unit (7
4) searches the table based on the heat exchange amount obtained from the condenser heat exchange amount calculation unit (73) in FIG. 1 and derives the logarithmic average temperature difference corresponding to the heat exchange amount.

【0031】凝縮器異常度計算部(75)は、故障診断時及
び正常時における対数平均温度差から異常度を計算する
ものである。ここで異常度Aは、図5に示すグラフにお
いて、故障診断時の対数平均温度差ΔT(Q)を正常時の
対数平均温度差ΔTs(Q)によって正規化したものであ
って、下記数4で定義される。
The condenser abnormality degree calculation unit (75) calculates the abnormality degree from the logarithmic average temperature difference at the time of failure diagnosis and at the time of normality. Here, the abnormality degree A is obtained by normalizing the logarithmic mean temperature difference ΔT (Q) at the time of failure diagnosis by the logarithmic mean temperature difference ΔTs (Q) at the time of failure diagnosis in the graph shown in FIG. Is defined by

【0032】[0032]

【数4】A={ΔT(Q)−ΔTs(Q)}/ΔTs(Q)## EQU4 ## A = {ΔT (Q) -ΔTs (Q)} / ΔTs (Q)

【0033】図2の出力装置(8)は、凝縮器異常度計算
部(75)から得られる凝縮器の異常度を数値データとし
て、或いは基準値を越えたときに警報として、運転監視
室等へ出力する。これによって、凝縮器自体の性能低下
や他のユニットにおける故障の発生を知ることが出来
る。
The output device (8) shown in FIG. 2 is used as a numerical data for the degree of abnormality of the condenser obtained from the condenser abnormality degree calculation unit (75) or as an alarm when the reference value is exceeded. Output to. As a result, it is possible to know that the performance of the condenser itself has deteriorated or a failure has occurred in another unit.

【0034】図4のグラフは、冷凍負荷が時間的に変動
する過程で、実際に計測された冷却水流量と前記数2に
よって計算された推定冷却水流量の時間的な変化を比較
したものである。これによれば、推定冷却水流量には多
少のバラツキが見られるが、概ね計測冷却水流量と一致
しており、推定の妥当性が立証されている。従って、推
定冷却水量に基づいて上述の如く計算される異常度は、
充分な精度を有するものであり、この異常度の監視によ
って正確な故障診断が可能である。
The graph of FIG. 4 is a comparison of the changes over time of the actually measured cooling water flow rate and the estimated cooling water flow rate calculated by the above-mentioned equation 2 in the process in which the refrigeration load fluctuates with time. is there. According to this, although there is some variation in the estimated cooling water flow rate, it is almost in agreement with the measured cooling water flow rate, and the validity of the estimation is proved. Therefore, the abnormality degree calculated as described above based on the estimated cooling water amount is
It has sufficient accuracy, and accurate failure diagnosis can be performed by monitoring this degree of abnormality.

【0035】ところで、上記実施例では、冷却水流量の
推定値Vcoの瞬時値を用いて熱交換量を算出している
ため、推定冷却水流量には、図4に示す如く温度測定デ
ータのバラツキ等に起因する時間変動が発生する。従っ
て、凝縮器の異常判定を更に正確に行なうには、一定時
間に亘る異常度の監視が必要となる。
By the way, in the above embodiment, since the heat exchange amount is calculated using the instantaneous value of the estimated value Vco of the cooling water flow rate, the estimated cooling water flow rate varies in the temperature measurement data as shown in FIG. As a result, time fluctuations occur. Therefore, in order to perform the abnormality determination of the condenser more accurately, it is necessary to monitor the abnormality degree for a certain period of time.

【0036】そこで、図3に示す如く、冷却水流量推定
部(72)から得られる推定冷却水量に対して一定時間T
(例えば10分間)に亘る移動平均を施す移動平均処理部
(78)を設けると共に、凝縮器熱交換量計算部(73)の入力
側には、冷却水出口温度Tco_out、冷却水中間温
度Tco_mid及び冷却水入口温度Tco_inに対
して夫々T/2時間(例えば5分間)の遅延処理を施すた
めのFIFO(77)を設ける。そして、移動平均処理部(7
8)及びFIFO(77)から出力されるデータに基づいて、
凝縮器の熱交換量を算出する。一方、対数平均温度差計
算部(71)から得られる凝縮器の対数平均温度差について
も、T/2時間の遅延処理を施すためのFIFO(76)を
設け、該FIFO(76)から出力されるデータを凝縮器異
常度計算部(75)へ供給する。
Therefore, as shown in FIG. 3, a constant time T is applied to the estimated cooling water amount obtained from the cooling water flow rate estimating unit (72).
Moving average processing unit for performing moving average over 10 minutes, for example
(78) is provided, and at the input side of the condenser heat exchange amount calculation unit (73), the cooling water outlet temperature Tco_out, the cooling water intermediate temperature Tco_mid, and the cooling water inlet temperature Tco_in are respectively T / 2 hours (for example, A FIFO (77) for performing a delay process of 5 minutes) is provided. Then, the moving average processing unit (7
8) and based on the data output from the FIFO (77),
Calculate the heat exchange rate of the condenser. On the other hand, the logarithmic average temperature difference of the condenser obtained from the logarithmic average temperature difference calculation unit (71) is also provided with a FIFO (76) for performing a delay process of T / 2 hours, and is output from the FIFO (76). Data to be supplied to the condenser abnormality degree calculation unit (75).

【0037】これによって、凝縮器異常度計算部(75)か
ら得られる異常度は更に正確な値となり、その瞬時値に
よっても異常判定が可能となる。
As a result, the degree of abnormality obtained from the condenser degree-of-abnormality calculation unit (75) becomes a more accurate value, and it becomes possible to determine the abnormality by the instantaneous value thereof.

【0038】上記実施例の説明は、本発明を説明するた
めのものであって、特許請求の範囲に記載の発明を限定
し、或は範囲を減縮する様に解すべきではない。又、本
発明の各部構成は上記実施例に限らず、特許請求の範囲
に記載の技術的範囲内で種々の変形が可能である。
The above description of the embodiments is for explaining the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope. Further, the configuration of each part of the present invention is not limited to the above embodiment, but various modifications can be made within the technical scope described in the claims.

【0039】例えば、異常度としては、前記数4によっ
て定義されたものに限らず、凝縮器の熱交換率の低下を
反映する種々の評価値を採用することが出来るのは勿論
である。
For example, the degree of abnormality is not limited to that defined by the above equation 4, and it goes without saying that various evaluation values that reflect a decrease in the heat exchange rate of the condenser can be adopted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施すべき吸収式冷凍機の構成図であ
る。
FIG. 1 is a configuration diagram of an absorption refrigerator according to the present invention.

【図2】故障診断システムの構成を示すブロック図であ
る。
FIG. 2 is a block diagram showing a configuration of a failure diagnosis system.

【図3】故障診断システムの他の構成例を示すブロック
図である。
FIG. 3 is a block diagram showing another configuration example of the failure diagnosis system.

【図4】冷却水流量の計測値と推定値の比較を示すグラ
フである。
FIG. 4 is a graph showing a comparison between measured and estimated cooling water flow rates.

【図5】熱交換量と対数平均温度差との関係を表わすグ
ラフである。
FIG. 5 is a graph showing a relationship between a heat exchange amount and a logarithmic average temperature difference.

【符号の説明】[Explanation of symbols]

(11) 凝縮器 (12) 低温再生器 (21) 蒸発器 (22) 吸収器 (3) 高温再生器 (4) 高温熱交換器 (5) 低温熱交換器 (6) センサー群 (7) 演算処理回路 (8) 出力装置 (11) Condenser (12) Low temperature regenerator (21) Evaporator (22) Absorber (3) High temperature regenerator (4) High temperature heat exchanger (5) Low temperature heat exchanger (6) Sensor group (7) Calculation Processing circuit (8) Output device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古川 雅裕 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 吉井 一寛 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Masahiro Furukawa 2-18 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Kazuhiro Yoshii 2-chome Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 凝縮器(11)、蒸発器(21)、吸収器(22)等
を相互に配管接続して1つの冷凍サイクルを構成した吸
収式冷凍機において、凝縮器(11)の熱交換率の低下に基
づいて、冷凍機の異常を診断するシステムであって、 凝縮器(11)に流入する2つの媒体の温度差に応じた温度
差データを導出する第1データ処理手段と、 吸収式冷凍機の正常時における温度差データと凝縮器(1
1)における熱交換量との対応関係が格納されている格納
手段と、 蒸発器(21)に流入する冷水の流量Vc、冷水入口温度T
c_in、冷水出口温度Tc_out、吸収器(22)から
凝縮器(11)へ流出する冷却水の温度(冷却水中間温度)T
co_mid、及び吸収器(22)へ流入する冷却水の入口
温度Tco_inの測定データに基づいて、冷却水流量
Vcoを推定する第2データ処理手段と、 前記推定された冷却水量Vcoと、凝縮器(11)から流出
する冷却水の出口温度Tco_out及び前記冷却水中
間温度Tco_midの測定データに基づいて、凝縮器
(11)における熱交換量を算出する第3データ処理手段
と、 格納手段の対応関係に基づいて、前記算出された熱交換
量に対応する正常時の温度差データを導出する第4デー
タ処理手段と、 前記正常時の温度差データと、第1データ処理手段から
得られる故障診断時の温度差データとの比較によって、
凝縮器(11)の異常度を判定する第5データ処理手段と、 第5データ処理手段の判定結果を出力する出力手段とを
具えたことを特徴とする吸収式冷凍機の故障診断システ
ム。
1. An absorption chiller in which a condenser (11), an evaporator (21), an absorber (22) and the like are connected to each other by piping to form one refrigeration cycle, and the heat of the condenser (11) is A system for diagnosing an abnormality of a refrigerator based on a decrease in exchange rate, the first data processing means deriving temperature difference data according to a temperature difference between two media flowing into a condenser (11), Temperature difference data and condenser (1
Storage means storing the correspondence with the heat exchange amount in 1), flow rate Vc of cold water flowing into the evaporator (21), and cold water inlet temperature T
c_in, cold water outlet temperature Tc_out, temperature of cooling water flowing from the absorber (22) to the condenser (11) (cooling water intermediate temperature) T
co_mid and second data processing means for estimating the cooling water flow rate Vco based on the measured data of the inlet temperature Tco_in of the cooling water flowing into the absorber (22), the estimated cooling water amount Vco, and the condenser ( 11) based on the measured data of the outlet temperature Tco_out of the cooling water flowing out from 11) and the cooling water intermediate temperature Tco_mid
Fourth data processing means for deriving normal temperature difference data corresponding to the calculated heat exchange amount based on the correspondence between the third data processing means for calculating the heat exchange amount in (11) and the storing means. And comparing the temperature difference data in the normal state with the temperature difference data in the failure diagnosis obtained from the first data processing means,
A failure diagnosis system for an absorption chiller, comprising: fifth data processing means for determining the degree of abnormality of the condenser (11); and output means for outputting the determination result of the fifth data processing means.
【請求項2】 第2データ処理手段から得られる冷却水
流量Vcoの推定データに対し、所定時間に亘る移動平
均処理を施して、その結果を推定冷却水量Vcoとして
第3データ処理手段へ送出する第6データ処理手段を具
えている請求項1に記載の故障診断システム。
2. The estimated data of the cooling water flow rate Vco obtained from the second data processing means is subjected to moving average processing over a predetermined time, and the result is sent to the third data processing means as the estimated cooling water quantity Vco. The fault diagnosis system according to claim 1, comprising a sixth data processing means.
JP05035163A 1993-02-24 1993-02-24 Failure diagnosis system for absorption refrigerator Expired - Fee Related JP3083930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05035163A JP3083930B2 (en) 1993-02-24 1993-02-24 Failure diagnosis system for absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05035163A JP3083930B2 (en) 1993-02-24 1993-02-24 Failure diagnosis system for absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH06249533A true JPH06249533A (en) 1994-09-06
JP3083930B2 JP3083930B2 (en) 2000-09-04

Family

ID=12434206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05035163A Expired - Fee Related JP3083930B2 (en) 1993-02-24 1993-02-24 Failure diagnosis system for absorption refrigerator

Country Status (1)

Country Link
JP (1) JP3083930B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004286437A (en) * 2003-03-19 2004-10-14 Valeo Climatisation Air conditioner for automobile using supercritical refrigerant
CN115544736A (en) * 2022-09-15 2022-12-30 宏明科技集团有限公司 Cooling tower control system and method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5058324B2 (en) 2010-10-14 2012-10-24 三菱電機株式会社 Refrigeration cycle equipment
CN107532835B (en) * 2015-04-23 2020-03-24 三菱电机株式会社 Refrigeration cycle device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004286437A (en) * 2003-03-19 2004-10-14 Valeo Climatisation Air conditioner for automobile using supercritical refrigerant
CN115544736A (en) * 2022-09-15 2022-12-30 宏明科技集团有限公司 Cooling tower control system and method
CN115544736B (en) * 2022-09-15 2023-08-15 宏明科技集团有限公司 Cooling tower control system and method

Also Published As

Publication number Publication date
JP3083930B2 (en) 2000-09-04

Similar Documents

Publication Publication Date Title
US5623426A (en) Failure diagnosing system for absorption chillers
JP6750091B2 (en) Air conditioner performance diagnostic device and performance diagnostic method
JP4301085B2 (en) Deterioration diagnosis system for heat source equipment
JP3083930B2 (en) Failure diagnosis system for absorption refrigerator
JP6660275B2 (en) Capacity diagnosis system and capacity diagnosis method for absorption refrigerator
JP4049610B2 (en) Abnormality detection device for heat pump heat exchanger
JP6940983B2 (en) Performance diagnosis device and performance diagnosis method for absorption chillers
JP4231024B2 (en) Absorption diagnosis method and apparatus for absorption refrigerator
JP3083929B2 (en) Failure diagnosis system for absorption refrigerator
JP3054553B2 (en) Absorption chiller / heater failure diagnosis device
JP3083931B2 (en) Failure diagnosis system for absorption refrigerator
JPH0791764A (en) Cooling water flow rate estimating system for absorption type chilled and warm water machine
JPH0493567A (en) Device for diagnosing performance of freezer
JP6900303B2 (en) Refrigerator performance diagnostic system
JP2909368B2 (en) Cooling water dirt diagnosis system for absorption chiller / heater
JP2002257667A (en) Method and device for abnormality diagnosis of heat transfer member, thermal power plant, and absorption type refrigerator
JPH07234048A (en) Trouble diagnostic system for absorption type water cooling and heating machine
JP6948756B1 (en) Performance diagnosis method for absorption chiller-heater
JP3054554B2 (en) Abnormality detector for absorption type water heater
JPH0791783A (en) Trouble diagnosing system for absorption chilled and warm water machine
JP3253211B2 (en) Absorption chiller / heater fault diagnosis system
JP3054552B2 (en) Absorption chiller / heater failure diagnosis device
JPH07324850A (en) Malfunction deciding device for absorption type hot and chilled water generator
JP3579248B2 (en) Diagnosis method of cooling water dirt
KR100317155B1 (en) Fault diagnosis system of absorption chiller

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000613

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080630

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees