JPH07324850A - Malfunction deciding device for absorption type hot and chilled water generator - Google Patents

Malfunction deciding device for absorption type hot and chilled water generator

Info

Publication number
JPH07324850A
JPH07324850A JP6140855A JP14085594A JPH07324850A JP H07324850 A JPH07324850 A JP H07324850A JP 6140855 A JP6140855 A JP 6140855A JP 14085594 A JP14085594 A JP 14085594A JP H07324850 A JPH07324850 A JP H07324850A
Authority
JP
Japan
Prior art keywords
temperature
concentration
concentrated liquid
cooling water
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6140855A
Other languages
Japanese (ja)
Other versions
JP2902946B2 (en
Inventor
Yasuharu Kuroki
靖治 黒木
Yoshio Ozawa
芳男 小澤
Masahiro Furukawa
雅裕 古川
Masashi Yasuda
昌司 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6140855A priority Critical patent/JP2902946B2/en
Priority to US08/392,332 priority patent/US5623426A/en
Priority to CNB951006517A priority patent/CN1154824C/en
Priority to KR1019950008214A priority patent/KR100317155B1/en
Publication of JPH07324850A publication Critical patent/JPH07324850A/en
Application granted granted Critical
Publication of JP2902946B2 publication Critical patent/JP2902946B2/en
Priority to CNB01117613XA priority patent/CN1153035C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To accurately decide the abnormal concentration of absorbing solution based on the measurement of a thermometer without using a pressure sensor in an absorption type hot and chilled water generator. CONSTITUTION:An absorbing solution temperature, a refrigerant condensing temperature and a cooling water temperature are measured by a sensor group 7. The refrigerant condensing temperature correcting unit 81 of an arithmetic processor 8 calculates temperature correction data based on the measured cooling water temperature, and corrects the refrigerant condensing temperature according to the temperature correction data. The unit 81 estimates the concentrated solution concentration based on the corrected refrigerant condensing temperature and the absorbing solution temperature. A concentrated solution concentration abnormality detector 83 decides the occurrence of the abnormality based on the estimated value of the concentrated solution concentration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は吸収式冷温水機に関し、
特に吸収液の濃度異常を判定する装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption chiller / heater,
In particular, the present invention relates to a device for determining an abnormal concentration of absorbing liquid.

【0002】[0002]

【従来の技術】吸収式冷温水機は、図8に示す如く、凝
縮器(11)及び低温再生器(12)からなる上胴(1)、蒸発器
(21)及び吸収器(22)からなる下胴(2)、バーナ(31)を内
蔵した高温再生器(3)、高温熱交換器(4)、低温熱交換
器(5)等を相互に配管接続し、吸収液ポンプ(6)によっ
て、吸収液を高温再生器(3)、低温再生器(12)及び吸収
器(22)の間で循環させ、冷凍サイクルを実現するもので
ある。吸収式冷温水機においては、蒸発器(21)から供給
される冷水の温度を目標値に保つべく、ガス弁(32)の開
度を制御して、バーナ(31)への燃料ガスの供給量が調整
される。
2. Description of the Related Art As shown in FIG. 8, an absorption chiller-heater has an upper body (1) including a condenser (11) and a low temperature regenerator (12), and an evaporator.
Lower body (2) consisting of (21) and absorber (22), high temperature regenerator (3) with built-in burner (31), high temperature heat exchanger (4), low temperature heat exchanger (5), etc. The refrigeration cycle is realized by connecting piping and circulating the absorbing liquid between the high temperature regenerator (3), the low temperature regenerator (12) and the absorber (22) by the absorbing liquid pump (6). In the absorption chiller-heater, the opening of the gas valve (32) is controlled to supply the fuel gas to the burner (31) in order to keep the temperature of the chilled water supplied from the evaporator (21) at the target value. The amount is adjusted.

【0003】ところで、吸収機冷温水機においては、低
温再生器(12)から低温熱交換器(5)を経て吸収器(22)へ
供給される吸収液(臭化リチウム溶液)の濃度(濃液濃度)
が一定値を越えると、吸収液が結晶化し、運転に支障が
生じることとなる。そこで、従来は、吸収液の濃度を常
時監視すると共に、濃液濃度が一定値を越えると冷温水
機の運転を停止させる安全装置が装備されている。
By the way, in the cooler / heater for the absorber, the concentration (concentration of the lithium bromide solution) of the absorbing liquid (lithium bromide solution) supplied from the low temperature regenerator (12) through the low temperature heat exchanger (5) to the absorber (22) is increased. (Liquid concentration)
If the value exceeds a certain value, the absorption liquid will crystallize and the operation will be hindered. Therefore, conventionally, there is provided a safety device that constantly monitors the concentration of the absorbing liquid and stops the operation of the chiller-heater when the concentration of the concentrated liquid exceeds a certain value.

【0004】濃液濃度を実測するには、高価な濃度計が
必要となるため、従来は、図2に示すデューリング線図
を利用して、凝縮器(11)における飽和蒸気温度Tcon
dと、低温再生器(12)出口における吸収液温度Ts_h
iの実測値に基づいて、濃液濃度が推定される。即ち、
デューリング線図上にて、飽和蒸気温度Tcondに対
応する水の飽和圧力Psと吸収液温度Ts_hiとの交
点を求め、該交点における濃度Dsを読み取って、濃液
濃度を得るのである。
Since an expensive densitometer is required to measure the concentration of the concentrated liquid, conventionally, the saturated vapor temperature Tcon in the condenser (11) has been utilized by utilizing the Duhring diagram shown in FIG.
d and the absorption liquid temperature Ts_h at the low temperature regenerator (12) outlet
The concentration of the concentrated liquid is estimated based on the measured value of i. That is,
On the Duhring diagram, the intersection of the saturation pressure Ps of water corresponding to the saturation vapor temperature Tcond and the absorption liquid temperature Ts_hi is obtained, and the concentration Ds at the intersection is read to obtain the concentration of the concentrated liquid.

【0005】ここで、飽和蒸気温度Tcondは、上胴
(1)内を流れている蒸気の温度を直接に測定する方法で
は、正確な測定結果を得ることが出来ないので、上胴
(1)内の圧力を測定し、図2のデューリング線図上の水
の曲線を表わす下記数1によって、飽和蒸気温度Tco
ndを算出する。
Here, the saturated vapor temperature Tcond is the upper body
(1) With the method of directly measuring the temperature of the steam flowing inside, it is not possible to obtain accurate measurement results.
The pressure in (1) is measured, and the saturated vapor temperature Tco is calculated by the following equation 1 which represents the water curve on the Duhring diagram of FIG.
Calculate nd.

【数1】Tcond=[-b+{b2-4・c・(a-log Pup)}0.5]/{2・
(a-log Pup)}-273.0
[Equation 1] Tcond = [-b + {b 2 -4 ・ c ・ (a-log Pup)} 0.5 ] / {2 ・
(a-log Pup)}-273.0

【0006】又、濃液濃度Dsは、下記数2の実験式に
よって算出することが可能である。
Further, the concentrated liquid concentration Ds can be calculated by the empirical formula of the following equation 2.

【数2】 Ds=(Ts_hi+280.0)×139.0/(Tcond+273.0)−102.4 これによって得られた濃液濃度Dsを基準値と比較する
ことによって、濃度異常を判定することが出来る。
## EQU2 ## Ds = (Ts_hi + 280.0) × 139.0 / (Tcond + 273.0) -102.4 By comparing the concentrated liquid concentration Ds thus obtained with the reference value, the concentration abnormality can be determined.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上胴
(1)内の圧力Pupから飽和蒸気温度Tcondを算出
する方法においても、圧力センサーが温度計に比べて高
価であり、然もメンテナンスが困難である問題があっ
た。一方、各部の温度測定値に基づいて、理論サイクル
における濃液濃度を算出する運転監視装置が提案されて
いるが(特開昭63-297970〔F25B15/00〕)、該装置は理論
サイクルを前提としているため、実機における濃液濃度
との差が大きく、正確な濃度異常の判定が困難である問
題がある。本発明の目的は、圧力センサーを用いること
なく、温度計を用いた測定に基づいて、吸収液の濃度異
常を正確に判定することである。
However, the upper body
Also in the method of calculating the saturated vapor temperature Tcond from the pressure Pup in (1), the pressure sensor is more expensive than the thermometer and there is a problem that maintenance is difficult. On the other hand, an operation monitoring device has been proposed that calculates the concentration of the concentrated liquid in the theoretical cycle based on the temperature measurement value of each part (JP-A-63-297970 [F25B15 / 00]), but the device is based on the theoretical cycle. Therefore, there is a problem that there is a large difference from the concentration of the concentrated liquid in the actual machine, and it is difficult to accurately determine the concentration abnormality. An object of the present invention is to accurately determine an abnormal concentration of the absorbing liquid based on the measurement using a thermometer without using a pressure sensor.

【0008】[0008]

【課題を解決する為の手段】本発明に係る吸収式冷温水
機の第1の異常判定装置は、(a) 吸収器(22)へ向けて
流れる吸収液の温度と、凝縮器(11)での冷媒の凝縮温度
と、吸収器(22)及び凝縮器(11)を流れる冷却水の温度と
を検出するセンサー手段と、(b) 冷却水温度を変数と
して、凝縮器(11)の飽和蒸気温度と冷媒凝縮温度の差に
応じた温度補正データが、予め格納されている格納手段
と、(c) センサー手段から得られる冷却水温度に基づ
いて、前記格納手段から温度補正データを導出し、該温
度補正データによって、センサー手段から得られる冷媒
凝縮温度を補正する温度補正手段と、(d) 温度補正手
段によって補正された冷媒凝縮温度と、センサー手段か
ら得られる吸収液温度とに基づいて、吸収液の濃度(濃
液濃度)を推定する濃度推定手段と、(e) 濃度推定手
段から得られる濃液濃度の推定値に基づいて、異常の発
生を判定する異常判定手段とを具えている。
A first abnormality determination device for an absorption chiller-heater according to the present invention is (a) the temperature of an absorbing liquid flowing toward an absorber (22) and a condenser (11). Sensor means for detecting the condensing temperature of the refrigerant in the refrigerant and the temperature of the cooling water flowing through the absorber (22) and the condenser (11), and (b) saturation of the condenser (11) with the cooling water temperature as a variable. Temperature correction data corresponding to the difference between the vapor temperature and the refrigerant condensing temperature is derived from the storage means that is stored in advance and (c) the cooling water temperature obtained from the sensor means to derive the temperature correction data from the storage means. , Based on the temperature correction means for correcting the refrigerant condensation temperature obtained from the sensor means by the temperature correction data, (d) the refrigerant condensation temperature corrected by the temperature correction means, and the absorbing liquid temperature obtained from the sensor means , Concentration estimating means for estimating the concentration of the absorbing liquid (concentration of concentrated liquid), (e) An abnormality determining means for determining the occurrence of abnormality based on the estimated value of the concentrated liquid concentration obtained from the concentration estimating means.

【0009】具体的構成において、異常判定手段は、冷
凍負荷と冷却水温度に基づいて、濃液濃度の正常値を導
出する演算手段を具え、濃度推定手段から得られる濃液
濃度の推定値と前記濃液濃度の正常値との差の大きさに
応じて、異常の程度を表わす診断データを作成して出力
する。
In a concrete configuration, the abnormality determining means includes a calculating means for deriving a normal value of the concentrated liquid concentration based on the refrigerating load and the cooling water temperature, and an estimated value of the concentrated liquid concentration obtained from the concentration estimating means. Diagnostic data representing the degree of abnormality is created and output according to the magnitude of the difference between the concentrated concentration and the normal value.

【0010】本発明に係る第2の異常判定装置は、(a)
冷凍負荷と、吸収器(22)及び凝縮器(11)を流れる冷却
水の温度とを検出するセンサー手段と、(b) 吸収器(2
2)へ向けて流れる吸収液の濃度(濃液濃度)を実測又は推
定を含む測定によって検知する濃度検知手段と、(c)
冷凍負荷と冷却水温度を変数として、正常運転時の濃液
濃度の変化を表わす濃液濃度特性が、予め格納されてい
る格納手段と、(d) センサー手段から得られる冷凍負
荷及び冷却水温度に基づいて、前記格納手段の濃液濃度
特性から濃液濃度の正常値を導出する演算手段と、(e)
前記濃度検知手段によって検知された濃液濃度と、演
算手段によって導出された濃液濃度の正常値とを比較
し、該比較結果に基づいて異常の発生を判定する異常判
定手段とを具えている。
A second abnormality determining apparatus according to the present invention is (a)
Sensor means for detecting the refrigeration load and the temperature of the cooling water flowing through the absorber (22) and the condenser (11); and (b) the absorber (2
Concentration detecting means for detecting the concentration of the absorbing liquid flowing toward 2) (concentration of concentrated liquid) by measurement including actual measurement or estimation, and (c)
The freezing load and the cooling water temperature obtained from the storing means (d) the sensor means in which the concentrated liquid concentration characteristic representing the change in the concentrated liquid concentration during the normal operation is stored in advance using the freezing load and the cooling water temperature as variables. Calculating means for deriving a normal value of the concentrated liquid concentration from the concentrated liquid concentration characteristic of the storing means,
An abnormality determination means is provided for comparing the concentration of the concentrated liquid detected by the concentration detection means with a normal value of the concentration of the concentrated liquid derived by the calculation means, and determining the occurrence of an abnormality based on the comparison result. .

【0011】具体的構成において、センサー手段は更
に、凝縮器(11)での冷媒の凝縮温度を検出すると共に、
濃度検知手段は、(f) 冷却水温度を変数として、凝縮
器(11)の飽和蒸気温度と冷媒凝縮温度の差に応じた温度
補正データが、予め格納されている格納手段と、(g)
センサー手段から得られる冷却水温度に基づいて、前記
格納手段から温度補正データを導出し、該温度補正デー
タによって冷媒凝縮温度を補正する温度補正手段と、
(h) 温度補正手段によって補正された冷媒凝縮温度
と、センサー手段によって検出された吸収液温度とに基
づいて、濃液濃度を推定する濃度推定手段とを具えてい
る。
In a concrete configuration, the sensor means further detects the condensation temperature of the refrigerant in the condenser (11), and
The concentration detecting means (f) is a storage means in which temperature correction data corresponding to the difference between the saturated vapor temperature of the condenser (11) and the refrigerant condensing temperature is stored in advance using (f) the cooling water temperature as a variable, and (g)
Temperature correction means for deriving temperature correction data from the storage means based on the cooling water temperature obtained from the sensor means, and correcting the refrigerant condensing temperature by the temperature correction data;
(h) Concentration estimating means for estimating the concentration of the concentrated liquid based on the refrigerant condensing temperature corrected by the temperature correcting means and the absorbing liquid temperature detected by the sensor means.

【0012】[0012]

【作用】上記第1の異常判定装置においては、凝縮器(1
1)での飽和蒸気温度を検出するべく、2つの測定原理を
採用する。第1の測定原理は、飽和蒸気温度が冷媒凝縮
温度と略同一であること、第2の測定原理は、飽和蒸気
温度と冷媒凝縮温度の差が冷却水温度に応じて変化する
ことである。即ち、飽和蒸気温度は冷媒凝縮温度と略等
しいが、高温再生器(3)で発生した蒸気が凝縮して凝縮
器(11)へ流入する等の原因によって、飽和蒸気温度と冷
媒凝縮温度の間には差が生じる。ところで、吸収式冷温
水機においては、冷却水温度の変化に伴って運転状態が
大きく変化し、この際の各部の温度変化や圧力変化は、
冷却水温度を変数とする関数で近似出来ると考えられ
る。そこで、飽和蒸気温度と冷媒凝縮温度の差も同様に
冷却水温度の関数として予め規定し、冷却水温度の実測
値から飽和蒸気温度と冷媒凝縮温度の差を導出し、該温
度差によって冷媒凝縮温度を補正するのである。
In the first abnormality determination device, the condenser (1
In order to detect the saturated steam temperature in 1), two measurement principles are adopted. The first measurement principle is that the saturated vapor temperature is substantially the same as the refrigerant condensation temperature, and the second measurement principle is that the difference between the saturated vapor temperature and the refrigerant condensation temperature changes according to the cooling water temperature. That is, although the saturated vapor temperature is almost equal to the refrigerant condensing temperature, the vapor generated in the high temperature regenerator (3) is condensed and flows into the condenser (11). There is a difference in. By the way, in the absorption chiller-heater, the operating state changes greatly with the change of the cooling water temperature, and the temperature change and pressure change of each part at this time are
It is considered that it can be approximated by a function with the cooling water temperature as a variable. Therefore, similarly, the difference between the saturated steam temperature and the refrigerant condensation temperature is also specified in advance as a function of the cooling water temperature, and the difference between the saturated steam temperature and the refrigerant condensation temperature is derived from the measured value of the cooling water temperature. It corrects the temperature.

【0013】第1の異常判定装置においては、予め正常
な運転状態にて、吸収器(22)へ流入する冷却水の温度
(冷却水入口温度)、或いは吸収器(22)から凝縮器(11)へ
流入する冷却水の温度(冷却水中間温度)、又は凝縮器(1
1)から流出する冷却水の温度(冷却水出口温度)を変化さ
せつつ、凝縮器(11)の飽和蒸気温度と冷媒凝縮温度の差
が実測され、その結果が温度補正データとして格納手段
に格納される。異常判定時には、センサー手段から得ら
れる冷却水温度に基づいて、前記格納手段から温度補正
データが導出され、センサー手段から得られる冷媒凝縮
温度に温度補正データを加算することによって、冷媒凝
縮温度が補正される。この結果、正確な飽和蒸気温度が
得られることになる。
In the first abnormality determining device, the temperature of the cooling water flowing into the absorber (22) is previously in a normal operating state.
(Cooling water inlet temperature), or the temperature of cooling water flowing from the absorber (22) to the condenser (11) (cooling water intermediate temperature), or the condenser (1
While changing the temperature of the cooling water flowing out from 1) (cooling water outlet temperature), the difference between the saturated vapor temperature of the condenser (11) and the refrigerant condensation temperature is measured, and the result is stored in the storage means as temperature correction data. To be done. At the time of abnormality determination, the temperature correction data is derived from the storage means based on the cooling water temperature obtained from the sensor means, and the temperature correction data is added to the refrigerant condensation temperature obtained from the sensor means to correct the refrigerant condensation temperature. To be done. As a result, an accurate saturated steam temperature can be obtained.

【0014】この様にして補正された冷媒凝縮温度、即
ち正確な飽和蒸気温度と、吸収液温度の実測値を用いる
ことによって、例えばデューリング線図から濃液濃度を
正確に推定することが可能である。そして、該濃液濃度
の推定値を閾値と大小比較することによって、異常発生
の有無や、異常の程度が判定される。
By using the refrigerant condensing temperature corrected in this way, that is, the accurate saturated vapor temperature and the actual measured value of the absorbing liquid temperature, it is possible to accurately estimate the concentrated liquid concentration from, for example, a Duhring diagram. Is. Then, by comparing the estimated value of the concentrated concentration with the threshold value, the presence or absence of an abnormality and the degree of the abnormality are determined.

【0015】ここで、濃液濃度の正常値は、冷凍負荷と
冷却水温度に応じて変化するから、予め冷凍負荷と冷却
水温度を変数として濃液濃度の正常値を関数化しておけ
ば、冷凍負荷と冷却水温度の実測値に基づいて、濃液濃
度の正常値を算出することが可能である。そこで、上記
具体的構成においては、濃液濃度の推定値と前記濃液濃
度の正常値との差の大きさに応じて、異常の程度を表わ
す診断データを作成する。これによって、より適確な異
常判定が可能となる。
Here, since the normal value of the concentrated liquid concentration changes depending on the refrigerating load and the cooling water temperature, if the normal value of the concentrated liquid concentration is made into a function with the refrigerating load and the cooling water temperature as variables in advance, It is possible to calculate the normal value of the concentrated liquid concentration based on the actual measurement values of the refrigeration load and the cooling water temperature. Therefore, in the above specific configuration, diagnostic data indicating the degree of abnormality is created according to the magnitude of the difference between the estimated value of the concentrated liquid concentration and the normal value of the concentrated liquid concentration. This enables more accurate abnormality determination.

【0016】上記第2の異常判定装置においては、吸収
式液の濃度は実測し、或いは上記第1の異常判定装置と
同様の推定によって測定する。一方、濃液濃度の正常値
は、上記第1の異常判定装置の具体的構成と同様に、冷
凍負荷及び冷却水温度を変数とする濃液濃度特性から導
出する。
In the second abnormality judging device, the concentration of the absorption type liquid is measured or measured by the same estimation as in the first abnormality judging device. On the other hand, the normal value of the concentration of the concentrated liquid is derived from the concentration characteristic of the concentrated liquid having the variables of the refrigeration load and the cooling water temperature, as in the specific configuration of the first abnormality determination device.

【0017】ここで濃液濃度を推定する場合、第1の異
常判定装置と同様の2つの測定原理を採用することが出
来る。即ち、異常判定時には、冷却水温度の実測値に基
づいて温度補正データが導出され、冷媒凝縮温度に温度
補正データを加算することによって、冷媒凝縮温度が補
正され、正確な飽和蒸気温度が算出される。この正確な
飽和蒸気温度と吸収液温度の実測値に基づいて、濃液濃
度が正確に推定される。
Here, when estimating the concentration of the concentrated liquid, the same two measuring principles as those of the first abnormality determining device can be adopted. That is, at the time of abnormality determination, the temperature correction data is derived based on the measured value of the cooling water temperature, and by adding the temperature correction data to the refrigerant condensation temperature, the refrigerant condensation temperature is corrected and the accurate saturated vapor temperature is calculated. It The concentrated liquid concentration is accurately estimated based on the measured values of the accurate saturated vapor temperature and the absorbed liquid temperature.

【0018】[0018]

【発明の効果】本発明に係る吸収式冷温水機の異常判定
装置においては、実機における運転データを関数化し
て、温度測定データから濃液濃度を算出する方式を採用
したため、正確な濃液濃度が得られるばかりでなく、圧
力測定は不要となり、簡易な構成によって、信頼性の高
い正確な濃度異常の判定を行なうことが出来る。
EFFECT OF THE INVENTION In the abnormality determining apparatus for the absorption chiller-heater according to the present invention, since the operation data of the actual machine is made into a function and the concentration of the concentrated liquid is calculated from the temperature measurement data, the accurate concentration of the concentrated liquid can be obtained. In addition, the pressure measurement is not required, and the simple configuration enables highly reliable and accurate determination of the concentration abnormality.

【0019】[0019]

【実施例】以下、本発明を図8の吸収式冷温水機に実施
した例につき、図面に沿って詳述する。第1実施例 図1に示す如く、冷温水機本体に配備されたセンサー群
(7)によって、吸収液の低温再生器(12)出口における温
度Ts_hiと、冷却水の凝縮器(11)出口における温度
Tco_outと、凝縮器(11)での冷媒凝縮温度Tv_
condが測定され、これらの測定データがマイクロコ
ンピュータからなる演算処理回路(8)へ供給される。
EXAMPLE An example in which the present invention is applied to the absorption chiller-heater of FIG. 8 will be described in detail below with reference to the drawings. First Embodiment As shown in FIG. 1, a group of sensors arranged in the main body of the water cooler / heater.
By (7), the temperature Ts_hi at the outlet of the low temperature regenerator (12) of the absorbing liquid, the temperature Tco_out at the outlet of the condenser (11) of the cooling water, and the refrigerant condensing temperature Tv_ at the condenser (11).
The cond is measured, and these measurement data are supplied to the arithmetic processing circuit (8) including a microcomputer.

【0020】演算処理回路(8)には、冷却水出口温度T
co_outの測定値に基づいて、冷媒凝縮温度Tv_
condの測定値に補正を施す冷媒凝縮温度補正部(81)
が設けられている。冷媒凝縮温度補正部(81)には、下記
数3に示す如く、冷媒凝縮温度Tv_condに対し、
冷却水出口温度Tco_outを変数とする冷媒凝縮温
度の補正量g(Tco_out)を加算して、冷媒凝縮温
度の補正値mTv_condを導出する手続きが登録さ
れている。
In the arithmetic processing circuit (8), the cooling water outlet temperature T
Based on the measured value of co_out, the refrigerant condensing temperature Tv_
Refrigerant condensing temperature correction unit (81) for correcting the measured value of cond
Is provided. In the refrigerant condensing temperature correction unit (81), the refrigerant condensing temperature Tv_cond
A procedure for adding the correction amount g (Tco_out) of the refrigerant condensing temperature with the cooling water outlet temperature Tco_out as a variable to derive the refrigerant condensing temperature correction value mTv_cond is registered.

【数3】mTv_cond=Tv_cond+g(Tco_out)[Equation 3] mTv_cond = Tv_cond + g (Tco_out)

【0021】冷媒凝縮温度の補正量g(Tco_out)
は、予め実験的に求められる。即ち、吸収式冷温水機の
正常な運転状態において、図5に示す様に冷却水出口温
度を変化させつつ、上胴飽和蒸気温度と冷媒凝縮温度の
差を測定する。そして、これらの測定結果に回帰分析を
施し、冷却水出口温度を変数として、上胴飽和蒸気温度
と冷媒凝縮温度の差を関数化する。例えば図5からは下
記数4が得られる。
Refrigerant condensing temperature correction amount g (Tco_out)
Is experimentally obtained in advance. That is, in a normal operating state of the absorption chiller-heater, the difference between the upper body saturated vapor temperature and the refrigerant condensation temperature is measured while changing the cooling water outlet temperature as shown in FIG. Then, regression analysis is performed on these measurement results, and the difference between the upper body saturated vapor temperature and the refrigerant condensation temperature is made into a function with the cooling water outlet temperature as a variable. For example, the following Expression 4 is obtained from FIG.

【数4】g(Tco_out)=−2.98+0.154・Tco_out−2.12×1
0-3・Tco_out2
[Equation 4] g (Tco_out) = − 2.98 + 0.154 ・ Tco_out−2.12 × 1
0 -3・ Tco_out 2

【0022】尚、冷媒凝縮温度の補正量は、冷却水入口
温度の関数g(Tco_in)、或いは冷却水中間温度の
関数g(Tco_mid)として規定することも可能であ
る。この場合、冷媒凝縮温度補正部(81)には、下記数5
或いは数6に示す補正式が登録される。
The refrigerant condensation temperature correction amount can be defined as a function g (Tco_in) of the cooling water inlet temperature or a function g (Tco_mid) of the cooling water intermediate temperature. In this case, the refrigerant condensation temperature correction unit (81) has the following formula 5
Alternatively, the correction formula shown in Formula 6 is registered.

【0023】[0023]

【数5】mTv_cond=Tv_cond+g(Tco_in)[Equation 5] mTv_cond = Tv_cond + g (Tco_in)

【数6】mTv_cond=Tv_cond+g(Tco_mid)[Equation 6] mTv_cond = Tv_cond + g (Tco_mid)

【0024】冷媒凝縮温度の補正量g(Tco_in)、
g(Tco_mid)は、予め実験的に求められる。即
ち、吸収式冷温水機の正常な運転状態において、図3に
示す様に冷却水入口温度を変化させつつ、或いは図4に
示す様に冷却水中間温度を変化させつつ、上胴飽和蒸気
温度と冷媒凝縮温度の差を測定する。そして、これらの
測定結果に回帰分析を施し、上胴飽和蒸気温度と冷媒凝
縮温度の差を関数化する。例えば図3からは下記数7が
得られる。
Correction amount g (Tco_in) of the refrigerant condensing temperature,
g (Tco_mid) is experimentally obtained in advance. That is, in a normal operating state of the absorption chiller-heater, while changing the cooling water inlet temperature as shown in FIG. 3 or changing the cooling water intermediate temperature as shown in FIG. And measure the difference in refrigerant condensation temperature. Then, a regression analysis is performed on these measurement results, and the difference between the upper body saturated vapor temperature and the refrigerant condensation temperature is made into a function. For example, the following Expression 7 is obtained from FIG.

【数7】g(Tco_in)=−0.752+1.35×10-2・Tco_in+1.7
7×10-4・Tco_in2
[Equation 7] g (Tco_in) = -0.752 + 1.35 x 10 -2 · Tco_in + 1.7
7 x 10 -4 / Tco_in 2

【0025】又、図4からは下記数8が得られる。The following equation 8 is obtained from FIG.

【数8】g(Tco_mid)=−3.16+0.173・Tco_mid−2.52×1
0-3・Tco_mid2
[Equation 8] g (Tco_mid) = − 3.16 + 0.173 ・ Tco_mid−2.52 × 1
0 -3・ Tco_mid 2

【0026】図1の冷媒凝縮温度補正部(81)にて補正さ
れた冷媒凝縮温度mTv_condは、濃液濃度推定部
(82)へ供給される。濃液濃度推定部(82)では、冷媒凝縮
温度mTv_condと、センサー群(7)から得られる
吸収液の低温再生器出口温度Ts_hiに基づいて、下
記数9から濃液濃度Dsを算出する。
The refrigerant condensing temperature mTv_cond corrected by the refrigerant condensing temperature correcting section (81) in FIG.
Supplied to (82). The concentrated liquid concentration estimating unit (82) calculates the concentrated liquid concentration Ds from the following equation 9 based on the refrigerant condensing temperature mTv_cond and the low temperature regenerator outlet temperature Ts_hi of the absorbing liquid obtained from the sensor group (7).

【0027】[0027]

【数9】Ds=(Ts_hi+280.0)×139.0/(mTv_cond+273.
0)−102.4尚、上記数9は、従来より知られている前記
数2の実験式において、上胴の飽和蒸気温度Tcond
として、補正された冷媒凝縮温度mTv_condを代
入したものである。
[Equation 9] Ds = (Ts_hi + 280.0) × 139.0 / (mTv_cond + 273.
0) −102.4 In addition, the above equation 9 is the saturated vapor temperature Tcond of the upper body in the conventionally known empirical equation of the above equation 2.
Is the corrected refrigerant condensation temperature mTv_cond.

【0028】濃液濃度推定部(82)にて算出された濃液濃
度Dsは濃液濃度異常検出部(83)へ送られ、例えば下記
数10に基づいて異常の程度を表わす診断データが作成
される。更に該診断データは、ディスプレイ、警報器等
の報知装置(9)へ出力される。ここで、診断データが異
常の場合は、安全装置が動作して吸収式冷温水機の運転
が停止される。
The concentrated liquid concentration Ds calculated by the concentrated liquid concentration estimating unit (82) is sent to the concentrated liquid concentration abnormality detecting unit (83), and diagnostic data representing the degree of abnormality is prepared based on the following equation 10, for example. To be done. Further, the diagnostic data is output to a notification device (9) such as a display and an alarm device. Here, if the diagnostic data is abnormal, the safety device operates and the operation of the absorption chiller-heater is stopped.

【0029】[0029]

【数10】if Ds>65% then 診断データ=異常 if 64.5%<Ds<65% then 診断データ=注意 if Ds<64.5% then 診断データ=正常[Formula 10] if Ds> 65% then diagnostic data = abnormal if 64.5% <Ds <65% then diagnostic data = caution if Ds <64.5% then diagnostic data = normal

【0030】上記異常判定装置によれば、温度計のみを
用いた測定に基づいて濃液濃度を正確に推定出来、この
結果、適確な異常判定を行なうことが出来る。
According to the above-mentioned abnormality judging device, the concentration of the concentrated liquid can be accurately estimated based on the measurement using only the thermometer, and as a result, the accurate abnormality judgment can be carried out.

【0031】第2実施例 上記第1実施例では、濃液濃度の推定値を一定の基準値
と比較して、異常判定を行なっているが、本実施例は、
濃液濃度の正常値を基準として、より正確な異常判定を
実現せんとするものである。
Second Embodiment In the first embodiment described above, the estimated value of the concentration of the concentrated liquid is compared with a fixed reference value to determine the abnormality.
It aims to realize more accurate abnormality determination based on the normal value of the concentration of the concentrated liquid.

【0032】ところで、吸収式冷温水機においては、冷
却水温度によって各部の運転状態が変化し、温度や圧力
等の多くの状態量が冷却水温度の関数として近似出来
る。そこで、図7に示す如く、冷却水入口温度を一定に
保った状態で、冷凍負荷を変化させつつ、濃液濃度を測
定すると、図中に実線で示す様に2次曲線に沿う一定の
関係が得られる。又、冷却水入口温度の低下に伴って、
冷凍負荷と濃液濃度の2次曲線の関係は低濃度側へ変化
する。従って、予め正常な運転状態にて、冷却水入口温
度をパラメータとして、冷凍負荷と濃液濃度の関係を関
数化しておけば、冷却水入口温度と冷凍負荷の実測値に
基づいて、濃液濃度の正常値を算出することが出来る。
By the way, in the absorption chiller-heater, the operating state of each part changes depending on the cooling water temperature, and many state quantities such as temperature and pressure can be approximated as a function of the cooling water temperature. Therefore, as shown in FIG. 7, when the concentration of the concentrated liquid is measured while the cooling water inlet temperature is kept constant and the refrigeration load is changed, a constant relationship along a quadratic curve is shown as shown by the solid line in the figure. Is obtained. Also, as the cooling water inlet temperature decreases,
The relationship between the freezing load and the quadratic curve of the concentrated liquid concentration changes to the low concentration side. Therefore, if the relationship between the refrigerating load and the concentrated liquid concentration is made into a function in advance under normal operating conditions using the cooling water inlet temperature as a parameter, the concentrated liquid concentration can be calculated based on the measured values of the cooling water inlet temperature and the refrigerating load. The normal value of can be calculated.

【0033】本実施例では、図6に示す如く、冷温水機
本体に配備されたセンサー群(7)によって、吸収液の低
温再生器(12)出口における温度Ts_hiと、凝縮器(1
1)での冷媒凝縮温度Tv_condと、冷水流量Vc
と、冷水出口温度Tc_outと、冷水入口温度Tc_
inと、冷却水入口温度Tco_inとが測定され、こ
れらの測定データがマイクロコンピュータからなる演算
処理回路(8)へ供給される。
In the present embodiment, as shown in FIG. 6, the temperature sensor Ts_hi at the outlet of the low temperature regenerator (12) for the absorbing liquid and the condenser (1
Refrigerant condensing temperature Tv_cond in 1) and cold water flow rate Vc
, Cold water outlet temperature Tc_out, and cold water inlet temperature Tc_
in and the cooling water inlet temperature Tco_in are measured, and these measured data are supplied to the arithmetic processing circuit (8) including a microcomputer.

【0034】演算処理回路(8)には、冷水流量Vc、冷
水出口温度Tc_out及び冷水入口温度Tc_inか
ら、下記数11によって冷凍負荷Lcを計算する冷凍負
荷計算部(84)が設けられている。
The arithmetic processing circuit (8) is provided with a refrigerating load calculating section (84) for calculating the refrigerating load Lc by the following equation 11 from the cold water flow rate Vc, the cold water outlet temperature Tc_out and the cold water inlet temperature Tc_in.

【数11】Lc=Vc×(Tc_in−Tc_out)[Equation 11] Lc = Vc × (Tc_in−Tc_out)

【0035】又、演算処理回路(8)には、吸収液低温再
生器出口温度Ts_hi及び冷媒凝縮温度Tv_con
dから、下記数12によって濃液濃度Dsを計算する濃
液濃度推定部(85)が設けられている。
Further, the arithmetic processing circuit (8) is provided with an absorption liquid low temperature regenerator outlet temperature Ts_hi and a refrigerant condensing temperature Tv_con.
From d, a concentrated liquid concentration estimating unit (85) for calculating the concentrated liquid concentration Ds by the following equation 12 is provided.

【数12】Ds=(Ts_hi+280.0)×139.0/(Tv_cond+27
3.0)−102.4
[Equation 12] Ds = (Ts_hi + 280.0) × 139.0 / (Tv_cond + 27
3.0) -102.4

【0036】尚、上記数12は、従来より知られている
前記数2の実験式において、上胴の飽和蒸気温度Tco
ndとして、冷媒凝縮温度Tv_condを代入したも
のであるが、第1実施例と同様に、補正された冷媒凝縮
温度mTv_condを算出して、代入することも可能
である。
The above equation 12 is the saturated vapor temperature Tco of the upper shell in the conventionally known empirical equation of the equation 2.
Although the refrigerant condensing temperature Tv_cond is substituted as nd, the corrected refrigerant condensing temperature mTv_cond can be calculated and substituted as in the first embodiment.

【0037】冷凍負荷計算部(84)から得られる冷凍負荷
Lcとセンサー群(7)から得られる冷却水入口温度Tc
o_inは、濃液濃度正常値計算部(86)へ供給されて、
濃液濃度の正常値Ds_nが計算される。濃液濃度正常
値計算部(86)には、図7中の実線の如く、冷凍負荷を変
数として濃液濃度の正常値の変化を表わす濃液濃度曲線
が、複数の異なる冷却水入口温度をパラメータとして関
数化され、格納されている。下記数13は、特定の冷却
水入口温度における濃液濃度曲線を2次式で近似したも
のである。
Refrigeration load Lc obtained from the refrigeration load calculation unit (84) and cooling water inlet temperature Tc obtained from the sensor group (7)
o_in is supplied to the concentrated concentration normal value calculation unit (86),
The normal concentration Ds_n of the concentrated liquid is calculated. As shown by the solid line in FIG. 7, the normal concentration of concentrated liquid value calculation unit (86) has a plurality of different cooling water inlet temperatures, each of which has a different concentration curve representing the change in the normal concentration value with the refrigeration load as a variable. It is functionalized and stored as a parameter. The following Expression 13 is a quadratic approximation of the concentrated liquid concentration curve at a specific cooling water inlet temperature.

【0038】[0038]

【数13】Ds_n=a×Lc2+b×Lc+c ここで、定数a、b及びcは、図7のグラフに示す実測
値に最小二乗法を適用することによって決定される。
[Equation 13] Ds_n = a × Lc 2 + b × Lc + c Here, the constants a, b and c are determined by applying the least squares method to the actual measurement values shown in the graph of FIG. 7.

【0039】濃液濃度正常値計算部(86)には更に、パラ
メータにない任意の冷却水入口温度Tco_inについ
て補間処理を実行する手続きが格納されており、これに
よって冷凍負荷及び冷却水入口温度の実測値に対応する
濃液濃度の正常値が精度良く算出される。
The normal concentration of concentrated liquid value calculating section (86) further stores a procedure for executing an interpolation process for an arbitrary cooling water inlet temperature Tco_in which is not included in the parameters. The normal value of the concentration of the concentrated liquid corresponding to the measured value is calculated with high accuracy.

【0040】図6の如く、濃液濃度推定部(85)によって
計算された濃液濃度の評価値Ds_mと、濃液濃度正常
値計算部(86)によって計算された濃液濃度の正常値Ds
_nは、濃液濃度偏差計算部(87)へ供給されて、下記数
14から両者の濃度差dDsを算出する。
As shown in FIG. 6, an evaluation value Ds_m of the concentrated liquid concentration calculated by the concentrated liquid concentration estimating unit (85) and a normal value Ds of the concentrated liquid concentration calculated by the normal concentration liquid concentration calculating unit (86).
_N is supplied to the concentrated concentration deviation calculation unit (87), and the concentration difference dDs between the two is calculated from the following equation (14).

【数14】dDs=Ds_m−Ds_nDDs = Ds_m-Ds_n

【0041】算出された濃度差dDsは報知装置(9)へ
送られて、濃度差dDsの大小に応じた下記の診断デー
タが作成され、運転監視員に報知される。 dDs<t1:正常 dDs>t1:結晶化注意 ここで、t1は予め設定された定数である。
The calculated density difference dDs is sent to the notification device (9), the following diagnostic data is created according to the magnitude of the density difference dDs, and is notified to the operation supervisor. dDs <t1: normal dDs> t1: attention to crystallization where t1 is a preset constant.

【0042】上記実施例によれば、冷凍負荷や冷却水温
度に拘わりなく、吸収式冷温水機の濃液濃度の異常を適
確に検知することが出来る。特に、低負荷時或いは冷却
水温度の低い状態においても、吸収液の結晶化に対する
注意が促されるので、夏場等の高負荷時に備えて、適切
な時期に予備検査を行なって異常の原因を取り除くこと
が可能である。
According to the above-described embodiment, it is possible to accurately detect an abnormality in the concentrated liquid concentration of the absorption chiller-heater regardless of the refrigerating load and the temperature of the cooling water. In particular, attention is paid to the crystallization of the absorbing liquid even when the load is low or the cooling water temperature is low, so in preparation for high load such as in summer, a preliminary inspection should be performed at an appropriate time to eliminate the cause of the abnormality. It is possible.

【0043】上記実施例の説明は、本発明を説明するた
めのものであって、特許請求の範囲に記載の発明を限定
し、或は範囲を減縮する様に解すべきではない。又、本
発明の各部構成は上記実施例に限らず、特許請求の範囲
に記載の技術的範囲内で種々の変形が可能であることは
勿論である。例えば、図3乃至図5や図7に示すデータ
の関数化に際しては、2次曲線のみならず、任意の回帰
曲線を採用することが出来る。
The above description of the embodiments is for explaining the present invention, and should not be construed as limiting the invention described in the claims or limiting the scope. The configuration of each part of the present invention is not limited to the above-mentioned embodiment, and it goes without saying that various modifications can be made within the technical scope described in the claims. For example, when the data shown in FIGS. 3 to 5 and FIG. 7 is made into a function, not only a quadratic curve but an arbitrary regression curve can be adopted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る吸収式冷温水機の異常判定装置の
構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an abnormality determination device for an absorption chiller-heater according to the present invention.

【図2】デューリング線図の一部を抜粋して示すグラフ
である。
FIG. 2 is a graph showing an excerpt of a part of a Duhring diagram.

【図3】冷却水入口温度を変数として、飽和蒸気温度と
冷却凝縮温度の差の変化を表わすグラフである。
FIG. 3 is a graph showing changes in the difference between the saturated steam temperature and the cooling condensing temperature with the cooling water inlet temperature as a variable.

【図4】冷却水中間温度を変数とする同上のグラフであ
る。
FIG. 4 is a graph of the same as above, where the intermediate temperature of cooling water is used as a variable.

【図5】冷却水出口温度を変数とする同上のグラフであ
る。
FIG. 5 is a graph of the same as above, where the cooling water outlet temperature is a variable.

【図6】異常判定装置の第2の構成例を示すブロック図
である。
FIG. 6 is a block diagram showing a second configuration example of the abnormality determination device.

【図7】冷却水入口温度をパラメータとして、冷凍負荷
と濃液濃度の関係を表わすグラフである。
FIG. 7 is a graph showing the relationship between the refrigerating load and the concentration of concentrated liquid with the cooling water inlet temperature as a parameter.

【図8】吸収式冷温水機の構成を示す図である。FIG. 8 is a diagram showing a configuration of an absorption chiller-heater.

【符号の説明】[Explanation of symbols]

(1) 上胴 (11) 凝縮器 (12) 低温再生器 (2) 下胴 (21) 蒸発器 (22) 吸収器 (7) センサー群 (8) 演算処理回路 (1) Upper body (11) Condenser (12) Low temperature regenerator (2) Lower body (21) Evaporator (22) Absorber (7) Sensor group (8) Arithmetic processing circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安田 昌司 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shoji Yasuda 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 吸収器(22)へ向けて流れる吸収液の温度
と、凝縮器(11)での冷媒の凝縮温度と、吸収器(22)及び
凝縮器(11)を流れる冷却水の温度とを検出するセンサー
手段と、 冷却水温度を変数として、凝縮器(11)の飽和蒸気温度と
冷媒凝縮温度の差に応じた温度補正データが、予め格納
されている格納手段と、 センサー手段から得られる冷却水温度に基づいて、前記
格納手段から温度補正データを導出し、該温度補正デー
タによって、センサー手段から得られる冷媒凝縮温度を
補正する温度補正手段と、 温度補正手段によって補正された冷媒凝縮温度と、セン
サー手段から得られる吸収液温度とに基づいて、吸収液
の濃度(濃液濃度)を推定する濃度推定手段と、 濃度推定手段から得られる濃液濃度の推定値に基づい
て、異常の発生を判定する異常判定手段とを具えた吸収
式冷温水機の異常判定装置。
1. The temperature of the absorbing liquid flowing toward the absorber (22), the condensation temperature of the refrigerant in the condenser (11), and the temperature of the cooling water flowing in the absorber (22) and the condenser (11). The sensor means for detecting and the temperature correction data with the cooling water temperature as a variable, the temperature correction data corresponding to the difference between the saturated vapor temperature of the condenser (11) and the refrigerant condensing temperature are stored in advance in the storage means and the sensor means. Based on the obtained cooling water temperature, temperature correction data is derived from the storage means, and the temperature correction data corrects the refrigerant condensation temperature obtained from the sensor means, and the refrigerant corrected by the temperature correction means. Based on the condensing temperature and the absorption liquid temperature obtained from the sensor means, based on the concentration estimating means for estimating the concentration of the absorbing liquid (concentration of concentrated liquid) and the estimated value of the concentration of concentrated liquid obtained from the concentration estimating means, Abnormality to determine the occurrence of abnormality Abnormality determination device of an absorption chiller-heater equipped with a constant section.
【請求項2】 異常判定手段は、冷凍負荷と冷却水温度
に基づいて、濃液濃度の正常値を導出する演算手段を具
え、濃度推定手段から得られる濃液濃度の推定値と前記
濃液濃度の正常値との差の大きさに応じて、異常の程度
を表わす診断データを作成して出力する請求項1に記載
の異常判定装置。
2. The abnormality determining means comprises a calculating means for deriving a normal value of the concentrated liquid concentration based on the refrigeration load and the cooling water temperature, and the estimated value of the concentrated liquid concentration obtained from the concentration estimating means and the concentrated liquid. The abnormality determination device according to claim 1, wherein diagnostic data representing the degree of abnormality is created and output according to the magnitude of the difference from the normal value of the concentration.
【請求項3】 冷凍負荷と、吸収器(22)及び凝縮器(11)
を流れる冷却水の温度とを検出するセンサー手段と、 吸収器(22)へ向けて流れる吸収液の濃度(濃液濃度)を実
測又は推定を含む測定によって検知する濃度検知手段
と、 冷凍負荷と冷却水温度を変数として、正常運転時の濃液
濃度の変化を表わす濃液濃度特性が、予め格納されてい
る格納手段と、 センサー手段から得られる冷凍負荷及び冷却水温度に基
づいて、前記格納手段の濃液濃度特性から濃液濃度の正
常値を導出する演算手段と、 前記濃度検知手段によって検知された濃液濃度と、演算
手段によって導出された濃液濃度の正常値とを比較し、
該比較結果に基づいて異常の発生を判定する異常判定手
段とを具えた吸収式冷温水機の異常判定装置。
3. Refrigeration load, absorber (22) and condenser (11)
A sensor means for detecting the temperature of the cooling water flowing through, a concentration detecting means for detecting the concentration (concentrated liquid concentration) of the absorbing liquid flowing toward the absorber (22) by measurement including actual measurement or estimation, and a refrigeration load and Based on the refrigeration load and the cooling water temperature obtained from the storing means and the storing means, the concentrated liquid concentration characteristic representing the change in the concentrated liquid concentration during normal operation is set based on the cooling water temperature as a variable. Computation means for deriving a normal value of the concentration of concentrated liquid from the concentration characteristic of concentrated liquid, means for comparing the concentration of concentrated liquid detected by the concentration detection means, and the normal value of concentration of concentrated liquid derived by the calculation means,
An abnormality determination device for an absorption chiller-heater, comprising: abnormality determination means for determining the occurrence of abnormality based on the comparison result.
【請求項4】 センサー手段は更に凝縮器(11)での冷媒
の凝縮温度を検出すると共に、濃度検知手段は、 冷却水温度を変数として、凝縮器(11)の飽和蒸気温度と
冷媒凝縮温度の差に応じた温度補正データが、予め格納
されている格納手段と、 センサー手段から得られる冷却水温度に基づいて、前記
格納手段から温度補正データを導出し、該温度補正デー
タによって冷媒凝縮温度を補正する温度補正手段と、 温度補正手段によって補正された冷媒凝縮温度と、セン
サー手段によって検出された吸収液温度とに基づいて、
濃液濃度を推定する濃度推定手段とを具えている請求項
3に記載の異常判定装置。
4. The sensor means further detects the condensing temperature of the refrigerant in the condenser (11), and the concentration detecting means uses the cooling water temperature as a variable, and the saturated vapor temperature and the refrigerant condensing temperature of the condenser (11). The temperature correction data corresponding to the difference between the storage means and the storage means pre-stored, the temperature correction data is derived from the storage means based on the cooling water temperature obtained from the sensor means, and the refrigerant condensation temperature is derived from the temperature correction data. Based on the temperature correction means for correcting, the refrigerant condensation temperature corrected by the temperature correction means, and the absorption liquid temperature detected by the sensor means,
The abnormality determination device according to claim 3, further comprising concentration estimating means for estimating the concentration of the concentrated liquid.
JP6140855A 1994-02-23 1994-05-30 Abnormality determination device for absorption type water heater Expired - Lifetime JP2902946B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6140855A JP2902946B2 (en) 1994-05-30 1994-05-30 Abnormality determination device for absorption type water heater
US08/392,332 US5623426A (en) 1994-02-23 1995-02-22 Failure diagnosing system for absorption chillers
CNB951006517A CN1154824C (en) 1994-02-23 1995-02-23 Failure diagnosing system for absorption chillers
KR1019950008214A KR100317155B1 (en) 1994-05-19 1995-04-08 Fault diagnosis system of absorption chiller
CNB01117613XA CN1153035C (en) 1994-02-23 2001-05-05 Absorption refrigerating machine fault diagnosis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6140855A JP2902946B2 (en) 1994-05-30 1994-05-30 Abnormality determination device for absorption type water heater

Publications (2)

Publication Number Publication Date
JPH07324850A true JPH07324850A (en) 1995-12-12
JP2902946B2 JP2902946B2 (en) 1999-06-07

Family

ID=15278313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6140855A Expired - Lifetime JP2902946B2 (en) 1994-02-23 1994-05-30 Abnormality determination device for absorption type water heater

Country Status (1)

Country Link
JP (1) JP2902946B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012140748A1 (en) 2011-04-13 2012-10-18 トヨタ自動車株式会社 Vehicle diagnostic device and vehicle diagnostic method
CN104075513A (en) * 2014-06-24 2014-10-01 大连三洋制冷有限公司 Dilute solution circulation volume accurate control system applied by lithium bromide absorption type unit
JP2019215099A (en) * 2018-06-11 2019-12-19 株式会社日立ビルシステム Performance diagnostic system for absorption refrigeration machine
CN113175772A (en) * 2020-01-24 2021-07-27 矢崎能源系统公司 Absorption refrigerator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012140748A1 (en) 2011-04-13 2012-10-18 トヨタ自動車株式会社 Vehicle diagnostic device and vehicle diagnostic method
US8855851B2 (en) 2011-04-13 2014-10-07 Toyota Jidosha Kabushiki Kaisha Diagnosing device for vehicle and method for diagnosing vehicle
CN104075513A (en) * 2014-06-24 2014-10-01 大连三洋制冷有限公司 Dilute solution circulation volume accurate control system applied by lithium bromide absorption type unit
JP2019215099A (en) * 2018-06-11 2019-12-19 株式会社日立ビルシステム Performance diagnostic system for absorption refrigeration machine
CN113175772A (en) * 2020-01-24 2021-07-27 矢崎能源系统公司 Absorption refrigerator
CN113175772B (en) * 2020-01-24 2022-07-05 矢崎能源系统公司 Absorption refrigerator
US11879670B2 (en) 2020-01-24 2024-01-23 Yazaki Energy System Corporation Absorption refrigerator

Also Published As

Publication number Publication date
JP2902946B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
JP2902946B2 (en) Abnormality determination device for absorption type water heater
KR100251333B1 (en) Absorption over-concentration control
JP4049610B2 (en) Abnormality detection device for heat pump heat exchanger
JPH0829027A (en) Troubled state diagnosing device for absorptive cold and hot water apparatus
US4328679A (en) Capability control apparatus for cooling system having direct expansion type evaporator
JP2005233609A (en) Anomaly diagnosing method and its device for absorption refrigerator
JP4922872B2 (en) Absorption type water heater
JP3253211B2 (en) Absorption chiller / heater fault diagnosis system
KR100317155B1 (en) Fault diagnosis system of absorption chiller
JPH06249533A (en) Failure diagnosis system for absorption type refrigerating machine
JPH07324851A (en) Malfunction detecting method for heat exchanger and absorption type hot and chilled water generator
JPH0791783A (en) Trouble diagnosing system for absorption chilled and warm water machine
JP3579248B2 (en) Diagnosis method of cooling water dirt
JPH05157416A (en) Detecting device for abnormality of absorption refrigerating machine
JPH07234048A (en) Trouble diagnostic system for absorption type water cooling and heating machine
JPH05157415A (en) Detecting device for abnormality of absorption refrigerating machine
JPH06159852A (en) Absorption type freezer
JP2810430B2 (en) Absorption refrigerator protection device
JPH0697126B2 (en) Absorption chiller / heater diagnostic device
JPH06159853A (en) Absorption type freezer
JPH0625640B2 (en) Absorption chiller / heater diagnostic method
JP3253189B2 (en) Diagnosis system for damper opening of absorption chiller / heater
JP3054552B2 (en) Absorption chiller / heater failure diagnosis device
JPH0829028A (en) Abnormal state sensing device of absorptive cold and hot water machine
JP3058677B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 15

EXPY Cancellation because of completion of term