JPH0829028A - Abnormal state sensing device of absorptive cold and hot water machine - Google Patents
Abnormal state sensing device of absorptive cold and hot water machineInfo
- Publication number
- JPH0829028A JPH0829028A JP18775794A JP18775794A JPH0829028A JP H0829028 A JPH0829028 A JP H0829028A JP 18775794 A JP18775794 A JP 18775794A JP 18775794 A JP18775794 A JP 18775794A JP H0829028 A JPH0829028 A JP H0829028A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchange
- exchange amount
- temperature difference
- absorber
- abnormality
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は吸収式冷温水機に関し、
特に吸収器の異常を検出する異常検出装置に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption chiller / heater,
In particular, the present invention relates to an abnormality detection device that detects an abnormality of the absorber.
【0002】[0002]
【従来の技術】吸収式冷温水機は、図4に示す如く、上
胴(1)に配置された凝縮器(11)及び低温再生器(12)、下
胴(2)に配置された蒸発器(21)及び吸収器(22)、バーナ
(31)を内蔵した高温再生器(3)、高温熱交換器(4)、低
温熱交換器(5)等を相互に配管接続し、吸収液ポンプ
(6)によって、吸収液を高温再生器(3)、低温再生器(1
2)及び吸収器(22)の間で循環させ、冷凍サイクル或いは
放熱サイクルを実現するものである。蒸発器(21)及び凝
縮器(11)を貫通する冷却水配管には、クーリングタワー
(図示省略)からの冷却水が流れる。2. Description of the Related Art An absorption chiller-heater, as shown in FIG. 4, has a condenser (11) and a low temperature regenerator (12) arranged on an upper body (1), and an evaporator arranged on a lower body (2). Vessel (21) and absorber (22), burner
High temperature regenerator (3) with built-in (31), high temperature heat exchanger (4), low temperature heat exchanger (5) etc.
By (6), the absorption liquid is absorbed by the high temperature regenerator (3) and the low temperature regenerator (1).
It is circulated between 2) and the absorber (22) to realize a refrigeration cycle or a heat radiation cycle. The cooling water pipe that passes through the evaporator (21) and the condenser (11) has a cooling tower.
Cooling water from (not shown) flows.
【0003】ところで、吸収式冷温水機においては、冷
却水の汚れ、吸収液循環量の異常、真空度の異常、冷媒
への吸収液の混入(冷媒混入)等、各種の異常が発生する
虞れがある。冷却水汚れが進行すると、冷却水配管の内
面にごみ等の異物が付着して熱伝達率が低下し、凝縮器
(11)や吸収器(22)における冷却効果が不十分となるの
で、冷凍能力が低下する。冷媒に吸収液が混入すると、
冷媒の沸点が上がり、この結果、下胴(2)内の温度が上
昇して、蒸発器(21)及び吸収器(22)の能力低下を招来す
る。又、下胴(2)の真空度が低下した場合も蒸発器(21)
及び吸収器(22)の能力が低下することになる。By the way, in the absorption chiller-heater, various abnormalities such as contamination of cooling water, abnormal amount of absorbed liquid circulation, abnormal vacuum degree, mixing of absorbing liquid with refrigerant (mixing of refrigerant), etc. may occur. There is When the cooling water becomes dirty, foreign matter such as dust adheres to the inner surface of the cooling water pipe, reducing the heat transfer coefficient, and
Since the cooling effect in (11) and the absorber (22) becomes insufficient, the refrigerating capacity decreases. If the absorbing liquid mixes with the refrigerant,
The boiling point of the refrigerant rises, and as a result, the temperature inside the lower body (2) rises, resulting in deterioration of the capabilities of the evaporator (21) and the absorber (22). Also, when the vacuum level of the lower body (2) drops, the evaporator (21)
And the capacity of the absorber (22) will be reduced.
【0004】そこで、冷温水機内部の各種異常を診断す
るべく、蒸発器(21)、吸収器(22)、凝縮器(11)等の各種
熱交換器について、対数平均温度差の変化を監視するこ
とが行なわれる(1994年3月11日 日本機械学会 RC123 第
77〜82頁参照)。尚、各熱交換器の出入口の流体温度を
測定するために、熱電対やサーミスタ等の温度センサー
が各熱交換器の出入口に取り付けられる。Therefore, in order to diagnose various abnormalities inside the chiller / heater, various changes in the logarithmic mean temperature difference of various heat exchangers such as the evaporator (21), the absorber (22), and the condenser (11) are monitored. (March 11, 1994, The Japan Society of Mechanical Engineers RC123
See pages 77-82). A temperature sensor such as a thermocouple or thermistor is attached to the inlet / outlet of each heat exchanger in order to measure the fluid temperature at the inlet / outlet of each heat exchanger.
【0005】又、出願人は、冷温水機各部の異常の度合
いを示す指標として、下記数2で表わされる異常度Aを
定義して、該異常度に基づいて各種故障を診断する方式
を提案している。Further, the applicant has proposed a method of diagnosing various failures based on the abnormality degree defined by the following degree 2 as an index showing the degree of abnormality of each part of the chiller heater. are doing.
【0006】[0006]
【数2】A=(ΔT−ΔTn)/ΔTn ここで、ΔTは測定に基づく実際の対数平均温度差(測
定値)、ΔTnは理想的な対数平均温度差(正常値)であ
る。## EQU00002 ## A = (. DELTA.T-.DELTA.Tn) /. DELTA.Tn Here, .DELTA.T is an actual logarithmic average temperature difference (measured value) based on measurement, and .DELTA.Tn is an ideal logarithmic average temperature difference (normal value).
【0007】[0007]
【発明が解決しようとする課題】しかしながら、対数平
均温度差及び異常度の算出には、1つの熱交換器につい
て3乃至4個の温度センサーが必要であって、特に吸収
式冷温水機においては、全ての熱交換器に必要な温度セ
ンサーを取り付けると、全体として相当数の温度センサ
ーを装備せねばならない。然も、対数平均温度差の算出
に際しては、対数計算のための特別なプログラムやメモ
リが必要となって、回路規模が大きくなる問題があっ
た。本発明の目的は、簡易な構成で吸収器の異常を検出
出来る吸収式冷温水機の異常検出装置を提供することで
ある。However, in order to calculate the logarithmic mean temperature difference and the degree of abnormality, 3 to 4 temperature sensors are required for one heat exchanger, and particularly in the absorption type chiller-heater. , If all the heat exchangers are equipped with the necessary temperature sensors, then a total number of temperature sensors must be equipped. However, in calculating the logarithmic average temperature difference, a special program or memory for logarithmic calculation is required, which causes a problem that the circuit scale becomes large. An object of the present invention is to provide an abnormality detection device for an absorption chiller-heater which can detect an abnormality in the absorber with a simple structure.
【0008】[0008]
【課題を解決する為の手段】本発明に係る吸収式冷温水
機の異常検出装置は、吸収器での熱交換に関与する冷却
水及び吸収液について、夫々の1或いは複数位置での代
表温度を測定する温度測定手段と、前記代表温度の四則
演算によって定義される温度差データの計算式が格納さ
れ、該計算式を用いて、前記温度測定手段による測定デ
ータから実際の温度差データを算出する温度差データ計
算手段と、吸収器での熱交換量或いは該熱交換量に応じ
て変化する他の熱交換量を、測定及び演算によって導出
する熱交換量導出手段と、正常運転時における理想の温
度差データが、熱交換量との関係で格納されている理想
温度差データ格納手段と、前記熱交換量導出手段から得
られる熱交換量に基づき、温度差データ計算手段から得
られる実際の温度差データを同一熱交換量での理想温度
差データと対比して、吸収器の異常を表わす異常データ
を作成する異常判定手段とを具えている。An abnormality detecting device for an absorption chiller-heater according to the present invention has a representative temperature at one or a plurality of positions for cooling water and absorbing liquid involved in heat exchange in the absorber. And a calculation formula of temperature difference data defined by the four arithmetic operations of the representative temperature are stored, and the actual temperature difference data is calculated from the measurement data by the temperature measurement device using the calculation formula. Temperature difference data calculation means, heat exchange amount in the absorber, or heat exchange amount deriving means for deriving the other heat exchange amount that changes according to the heat exchange amount by measurement and calculation, and ideal in normal operation Based on the heat exchange amount obtained from the ideal temperature difference data storage means in which the temperature difference data of is stored in relation to the heat exchange amount and the heat exchange amount deriving means, the actual difference obtained from the temperature difference data calculation means temperature The data was compared with the ideal temperature difference data in the same heat exchange amount, which comprises an abnormality determination means for creating abnormal data representing the abnormality of the absorber.
【0009】具体的構成において、熱交換量導出手段
は、吸収器の入口及び出口での冷却水の温度を測定する
温度センサー(71)(72)と、該冷却水の流量を測定する流
量センサー(75)と、これらのセンサーの測定データに基
づいて吸収器の熱交換量を算出する演算手段とを具えて
いる。In a specific configuration, the heat exchange amount derivation means is composed of temperature sensors (71) and (72) for measuring the temperature of cooling water at the inlet and outlet of the absorber, and a flow rate sensor for measuring the flow rate of the cooling water. (75), and arithmetic means for calculating the heat exchange amount of the absorber based on the measurement data of these sensors.
【0010】他の具体的構成において、熱交換量導出手
段は、蒸発器の入口及び出口での冷水の温度を測定する
温度センサー(76)(77)と、該冷水の流量を測定する流量
センサー(78)と、これらのセンサーの測定データに基づ
いて蒸発器の熱交換量を算出する演算手段とを具えてい
る。In another specific configuration, the heat exchange amount derivation means includes temperature sensors (76) (77) for measuring the temperature of cold water at the inlet and outlet of the evaporator, and a flow rate sensor for measuring the flow rate of the cold water. (78) and arithmetic means for calculating the heat exchange amount of the evaporator based on the measurement data of these sensors.
【0011】更に、具体的構成において、異常判定手段
は、実際の温度差データΔTと理想温度差データΔTn
を変数として上記数2で定義される異常度Aを算出し、
これを異常データとして出力するものである。Further, in the concrete configuration, the abnormality determining means is configured such that the actual temperature difference data ΔT and the ideal temperature difference data ΔTn.
Is used as a variable to calculate the degree of abnormality A defined by the above equation 2,
This is output as abnormal data.
【0012】[0012]
【作用】上記異常検出装置においては、吸収器の異常を
評価するための指標として、従来の対数平均温度差に替
えて、簡易な四則演算式によって定義される温度差デー
タが採用される。温度差データとしては、例えば吸収器
内に散布される吸収液(濃液)の入口温度Ta_inと吸
収器から流出する冷却水の出口温度Tco_outの差
(Ta_in−Tco_out)を定義することが出来
る。In the above-described abnormality detecting device, temperature difference data defined by simple four arithmetic expressions are used as an index for evaluating abnormality of the absorber, instead of the conventional logarithmic average temperature difference. The temperature difference data may be, for example, the difference between the inlet temperature Ta_in of the absorbing liquid (concentrated liquid) dispersed in the absorber and the outlet temperature Tco_out of the cooling water flowing out from the absorber.
(Ta_in-Tco_out) can be defined.
【0013】ところで、熱交換器の熱交換性能を絶対的
に評価する際には、対数平均温度差が適当な評価指標で
あるが、吸収式冷温水機の故障診断が目的の場合には、
各熱交換器の対数平均温度差を正常運転時の値と比較し
て、相対的な評価を行なうことが妥当である。この場
合、対数平均温度差の絶対値としての意義は低い。By the way, when the heat exchange performance of the heat exchanger is absolutely evaluated, the logarithmic mean temperature difference is a suitable evaluation index.
It is appropriate to perform a relative evaluation by comparing the logarithmic mean temperature difference of each heat exchanger with the value during normal operation. In this case, the significance of the absolute value of the logarithmic average temperature difference is low.
【0014】一方、上述の温度差データの如く、吸収器
における冷却水及び吸収液の代表温度の四則演算によっ
て定義される温度差データは、絶対値としての意義は必
ずしも高いとは言えないが、吸収式冷温水機の故障診断
を目的とする相対的な評価を行なう場合には、適切な指
標となり得るのである。On the other hand, like the above-mentioned temperature difference data, the temperature difference data defined by the four arithmetic operations of the representative temperatures of the cooling water and the absorbing liquid in the absorber are not necessarily highly significant as absolute values. It can be an appropriate index when performing relative evaluation for the purpose of failure diagnosis of the absorption chiller-heater.
【0015】そこで、本発明ではこの点に着目し、吸収
器における冷却水及び吸収液の代表温度を測定し、該測
定データに基づいて温度差データを計算する。そして、
該温度差データを同一熱交換量での理想温度差データと
対比して、異常データを算出する。該異常データは、正
常運転時を基準とする相対的な異常の度合いを表わすも
のとなる。Therefore, in the present invention, paying attention to this point, the representative temperatures of the cooling water and the absorbing liquid in the absorber are measured, and the temperature difference data is calculated based on the measured data. And
The temperature difference data is compared with the ideal temperature difference data at the same heat exchange amount to calculate the abnormal data. The abnormality data represents the degree of abnormality relative to normal operation.
【0016】ここで、実際の温度差データと理想温度デ
ータは同一の熱交換量で比較する必要があり、本発明の
具体的構成においては、吸収器における冷却水の出入口
温度差に冷却水流量を乗算して、吸収器における熱交換
量が算出される。Here, it is necessary to compare the actual temperature difference data and the ideal temperature data with the same heat exchange amount. In the specific configuration of the present invention, the inlet / outlet temperature difference of the cooling water in the absorber and the cooling water flow rate are compared. The heat exchange amount in the absorber is calculated by multiplying by.
【0017】又、他の具体的構成においては、蒸発器に
おける冷水の出入口温度差に冷水流量を乗算して、蒸発
器の熱交換量、即ち冷凍負荷が算出される。吸収器にお
ける熱交換量と蒸発器における熱交換量とは、相互の間
に比例関係が認められるため、異常データを算出する際
に何れの熱交換量を基準とすることも可能である。In another specific configuration, the heat exchange amount of the evaporator, that is, the refrigerating load is calculated by multiplying the cold water inlet / outlet temperature difference in the evaporator by the cold water flow rate. Since the heat exchange amount in the absorber and the heat exchange amount in the evaporator are in proportion to each other, it is possible to use any heat exchange amount as a reference when calculating the abnormal data.
【0018】異常データとしては、出願人の提案に係る
上述の異常度Aを採用することが出来る。この場合、低
負荷時においても、負荷に応じて異常度が算出され、該
異常度に基づいて異常の判定を行なうことが出来る。従
って、例えば夏期等の高負荷時に備えて、早期に冷温水
機の保守点検を実施し、高負荷時の運転休止を回避する
ことが出来る。As the abnormality data, the above-mentioned abnormality degree A proposed by the applicant can be adopted. In this case, the abnormality degree is calculated according to the load even when the load is low, and the abnormality can be determined based on the abnormality degree. Therefore, for example, in preparation for a heavy load such as summer, maintenance and inspection of the chiller-heater can be performed early to avoid operation stoppage at a high load.
【0019】[0019]
【発明の効果】本発明に係る吸収式冷温水機の異常検出
装置によれば、従来の対数平均温度差に替えて、簡易な
四則演算による温度差データを定義したので、該温度差
データ算出の基礎となる代表温度の測定は2点乃至3点
で行なえば可く、これによって温度センサーの数が従来
よりも減少する。然も、温度差データの算出は四則演算
のみで行なうことが出来、従来の対数計算は不要となる
ので、回路規模が小さくなり、全体の構成が簡易とな
る。According to the abnormality detecting apparatus for the absorption chiller-heater according to the present invention, the temperature difference data is defined by a simple arithmetic operation instead of the conventional logarithmic mean temperature difference. The measurement of the representative temperature, which is the basis of the above, can be performed at two or three points, which reduces the number of temperature sensors as compared with the conventional case. Of course, the temperature difference data can be calculated only by the four arithmetic operations, and the conventional logarithmic calculation is not required. Therefore, the circuit scale is reduced and the overall configuration is simplified.
【0020】[0020]
【実施例】以下、本発明を図4に示す2重効用型の吸収
式冷温水機に実施した一例につき、図面に沿って詳述す
る。該吸収式冷温水機は冷媒として水、吸収液として臭
化リチウムを用いており、冷水供給時には、高温再生器
(3)にて蒸発した冷媒が低温再生器(12)を経て凝縮器(1
1)へ流れ、凝縮器(11)内を流れる冷却水と熱交換して凝
縮液化した後、蒸発器(21)へ向けて流れる。そして、液
化した冷媒は蒸発器(21)内を流れる冷水と熱交換して蒸
発し、その際の気化熱によって蒸発器(21)内を流れる冷
水が冷却される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example in which the present invention is applied to a double-effect absorption-type chiller-heater shown in FIG. 4 will be described in detail below with reference to the drawings. The absorption chiller-heater uses water as a refrigerant and lithium bromide as an absorbing liquid, and when supplying chilled water, a high temperature regenerator is used.
The refrigerant evaporated in (3) passes through the low temperature regenerator (12) and then the condenser (1
It flows to 1), exchanges heat with the cooling water flowing in the condenser 11 to condense and liquefy, and then flows to the evaporator 21. The liquefied refrigerant exchanges heat with the cold water flowing in the evaporator (21) to evaporate, and the heat of vaporization at that time cools the cold water flowing in the evaporator (21).
【0021】蒸発器(21)にて蒸発した冷媒は吸収器(22)
にて吸収液に吸収される。冷媒を吸収して濃度が薄くな
った吸収液は、吸収液ポンプ(6)によって低温熱交換器
(5)及び高温熱交換器(4)を経て高温再生器(3)へ送ら
れる。高温再生器(3)へ送られた吸収液は、バーナ(31)
によって加熱されて冷媒が蒸発し、中濃度の吸収液が高
温熱交換器(4)を経て低温再生器(12)へ流れる。低温再
生器(12)にて、吸収液は高温再生器(3)からの冷媒蒸気
によって加熱され、更に冷媒蒸気が分離されて濃度が高
くなる。高濃度になった吸収液は、低温熱交換器(5)を
経て吸収器(22)へ送られ、散布される。The refrigerant evaporated in the evaporator (21) absorbs the refrigerant (22)
Is absorbed by the absorbent. The absorption liquid, which has become thinner due to absorption of the refrigerant, is cooled by the absorption liquid pump (6).
It is sent to the high temperature regenerator (3) via (5) and the high temperature heat exchanger (4). The absorption liquid sent to the high temperature regenerator (3) is burner (31).
The refrigerant is heated by the evaporation of the refrigerant, and the medium-concentration absorption liquid flows through the high temperature heat exchanger (4) to the low temperature regenerator (12). In the low temperature regenerator (12), the absorbing liquid is heated by the refrigerant vapor from the high temperature regenerator (3), and the refrigerant vapor is further separated to increase the concentration. The absorbing solution having a high concentration is sent to the absorber (22) through the low temperature heat exchanger (5) and is scattered.
【0022】吸収器(22)、蒸発器(21)、凝縮器(11)等の
熱交換器に接続された配管には、夫々の熱交換に関与す
る流体の温度や流量を測定するべく、冷却水入口温度セ
ンサー(71)、冷却水中間温度センサー(72)、吸収液入口
温度センサー(73)、吸収液出口温度センサー(74)、冷水
入口温度センサー(76)、冷水出口温度センサー(77)、凝
縮冷媒温度センサー(79)、冷却水出口温度センサー(70)
等からなるセンサー群が配備されている。The pipes connected to the heat exchangers such as the absorber (22), the evaporator (21), the condenser (11), and the like, in order to measure the temperature and flow rate of fluids involved in heat exchange, Cooling water inlet temperature sensor (71), cooling water intermediate temperature sensor (72), absorbing liquid inlet temperature sensor (73), absorbing liquid outlet temperature sensor (74), cold water inlet temperature sensor (76), cold water outlet temperature sensor (77 ), Condensed refrigerant temperature sensor (79), cooling water outlet temperature sensor (70)
A sensor group consisting of etc. is provided.
【0023】図1は本発明の異常検出装置の構成を示し
ており、上述のセンサー群(7)から得られる各種測定デ
ータは、マイクロコンピュータからなる演算装置(8)へ
供給されて、後述の如く故障判定が行なわれる。該判定
結果は、ディスプレイ、プリンター、警告ランプ等の表
示装置(9)へ出力される。FIG. 1 shows the configuration of the abnormality detecting device of the present invention. Various measurement data obtained from the above-mentioned sensor group (7) is supplied to an arithmetic unit (8) composed of a microcomputer to be described later. The failure determination is performed as described above. The determination result is output to a display device (9) such as a display, a printer, and a warning lamp.
【0024】演算装置(8)は、夫々コンピュータプログ
ラムから構成される後述の計算回路(81)(82)(83)(84)と
故障判定回路(85)とを具えている。吸収器平均温度差計
算回路(81)は、冷却水入口温度センサー(71)から得られ
る冷却水入口温度Tco_inと、冷却水中間温度セン
サー(72)から得られる冷却水中間温度Tco_mid
と、吸収液入口温度センサー(73)から得られる吸収液
(濃液)入口温度Ta_inと、吸収液出口温度センサー
(74)から得られる吸収液(稀液)出口温度Ta_outか
ら、下記数3によって吸収器(22)の平均温度差Tmを算
出するものである。The arithmetic unit (8) comprises calculation circuits (81), (82), (83) and (84) and a failure judgment circuit (85), which will be described later, each of which is composed of a computer program. The absorber average temperature difference calculation circuit (81) includes a cooling water inlet temperature Tco_in obtained from the cooling water inlet temperature sensor (71) and a cooling water intermediate temperature Tco_mid obtained from the cooling water intermediate temperature sensor (72).
And the absorption liquid obtained from the absorption liquid inlet temperature sensor (73)
(Concentrated liquid) inlet temperature Ta_in and absorption liquid outlet temperature sensor
From the absorption liquid (rare liquid) outlet temperature Ta_out obtained from (74), the average temperature difference Tm of the absorber (22) is calculated by the following mathematical expression 3.
【0025】[0025]
【数3】 Tm={(Ta_in+Ta_out)−(Tco_in+Tco_mid)}/2 上記数3によって算出される平均温度差Tmは、吸収器
(22)内を流れる吸収液の平均温度と冷却水の平均温度と
の差を表わしており、吸収器(22)の対数平均温度差とは
近似した値となる。## EQU00003 ## Tm = {(Ta_in + Ta_out)-(Tco_in + Tco_mid)} / 2 The average temperature difference Tm calculated by the above Equation 3 is the absorber.
It represents the difference between the average temperature of the absorbing liquid flowing in (22) and the average temperature of the cooling water, and the logarithmic average temperature difference of the absorber (22) is an approximate value.
【0026】ここで吸収器(22)の平均温度差Tmとして
は、数3で定義される計算式に限らず、下記数4に示す
各種計算式で定義される各種の値を採用することも可能
である。Here, the average temperature difference Tm of the absorber (22) is not limited to the formula defined by the formula 3, but various values defined by the formulas shown in the following formula 4 may be adopted. It is possible.
【0027】[0027]
【数4】 Tm=Ta_in−(Tco_in+Tco_mid)/2 Tm=Ta_out−(Tco_in+Tco_mid)/2 Tm=(Ta_in+Ta_out)/2−Tco_in Tm=(Ta_in+Ta_out)/2−Tco_mid Tm=Ta_out−Tco_in Tm=Ta_in−Tco_in Tm=Ta_out−Tco_mid Tm=Ta_in−Tco_mid## EQU00004 ## Tm = Ta_in- (Tco_in + Tco_mid) / 2 Tm = Ta_out- (Tco_in + Tco_mid) / 2 Tm = (Ta_in + Ta_out) / 2-Tco_in Tm = (Ta_in + Ta_out) / 2-Tco_ain_out-Tm = Tm. Tm = Ta_out-Tco_mid Tm = Ta_in-Tco_mid
【0028】吸収器熱交換量計算回路(82)は、冷却水入
口温度センサー(71)から得られる冷却水入口温度Tco
_inと、冷却水中間温度センサー(72)から得られる冷
却水中間温度Tco_midと、冷却水流量センサー(7
5)から得られる冷却水流量Vcoから、下記数5によっ
て吸収器(22)の熱交換量Qabsを算出するものであ
る。The absorber heat exchange amount calculation circuit (82) has a cooling water inlet temperature Tco obtained from the cooling water inlet temperature sensor (71).
_In, the cooling water intermediate temperature Tco_mid obtained from the cooling water intermediate temperature sensor (72), and the cooling water flow rate sensor (7
From the cooling water flow rate Vco obtained from 5), the heat exchange amount Qabs of the absorber (22) is calculated by the following equation 5.
【0029】[0029]
【数5】 Qabs=Vco×(Tco_mid−Tco_in)## EQU00005 ## Qabs = Vco.times. (Tco_mid-Tco_in)
【0030】冷凍負荷計算回路(83)は、冷水入口温度セ
ンサー(76)から得られる冷水入口温度Tc_inと、冷
水出口温度センサー(77)から得られる冷水出口温度Tc
_outと、冷水流量センサー(78)から得られる冷水流
量Vcから、下記数6によって蒸発器(21)の熱交換量、
即ち冷凍負荷Lcを算出するものである。The refrigeration load calculation circuit (83) includes a cold water inlet temperature Tc_in obtained from the cold water inlet temperature sensor (76) and a cold water outlet temperature Tc obtained from the cold water outlet temperature sensor (77).
From _out and the cold water flow rate Vc obtained from the cold water flow rate sensor (78), the heat exchange amount of the evaporator (21) is calculated by the following equation 6.
That is, the refrigeration load Lc is calculated.
【0031】[0031]
【数6】Lc=Vc×(Tc_in−Tc_out)[Equation 6] Lc = Vc × (Tc_in−Tc_out)
【0032】又、吸収器異常度計算回路(84)は、吸収器
平均温度差計算回路(81)から得られる吸収器平均温度差
Tmと、吸収器熱交換量計算回路(82)から得られる吸収
器熱交換量Qabsに基づいて、下記数7によって吸収
器(22)の異常度Aabsを算出するものである。The absorber abnormality degree calculating circuit (84) is obtained from the absorber average temperature difference Tm obtained from the absorber average temperature difference calculating circuit (81) and the absorber heat exchange amount calculating circuit (82). The abnormality degree Aabs of the absorber (22) is calculated by the following equation 7 based on the absorber heat exchange amount Qabs.
【0033】[0033]
【数7】Aabs=(Tm−Tmn)/Tmn## EQU00007 ## Aabs = (Tm-Tmn) / Tmn
【0034】ここで、Tmnは正常運転時における理想
的な平均温度差であって、予め吸収器熱交換量Qabs
との関係でグラフ化され、或いはテーブル化されて、メ
モリに記憶されているものである。Here, Tmn is an ideal average temperature difference at the time of normal operation, and the absorber heat exchange amount Qabs is previously set.
Is stored in the memory in the form of a graph or a table.
【0035】図2は、横軸に吸収器熱交換量、縦軸に平
均温度差をとって、上記理想的な平均温度差Tmnの変
化aと、実際の測定に基づいて得られる平均温度差Tm
の変化bとを表わしたグラフである。上記数7で定義さ
れる異常度Aabsは、図2に示す任意の熱交換量にお
ける実際の平均温度差Tmと理想平均温度差Tmnの差
を理想平均温度差Tmnで正規化した値であって、熱交
換量の大小に拘わらず吸収器の異常の度合いを表わす普
遍的な指標となる。In FIG. 2, the abscissa indicates the heat exchange amount of the absorber, and the ordinate indicates the average temperature difference. The change a of the ideal average temperature difference Tmn and the average temperature difference obtained based on the actual measurement are shown. Tm
3 is a graph showing the change b of The abnormality degree Aabs defined by the above equation 7 is a value obtained by normalizing the difference between the actual average temperature difference Tm and the ideal average temperature difference Tmn in the arbitrary heat exchange amount shown in FIG. 2 by the ideal average temperature difference Tmn. , It is a universal index that indicates the degree of abnormality of the absorber regardless of the amount of heat exchange.
【0036】尚、吸収器(22)の異常度を算出する際に基
準とすべき熱交換量としては、吸収器(22)の熱交換量の
みならず、これと比例的な関係にある蒸発器(21)の熱交
換量、即ち冷凍負荷を採用することも可能である。この
場合、図1に示す冷凍負荷計算回路(83)から得られる冷
凍負荷Lcが吸収器異常度計算回路(84)へ供給されて、
異常度の算出に用いられる。The amount of heat exchange to be used as a reference when calculating the degree of abnormality of the absorber (22) is not limited to the amount of heat exchange of the absorber (22), but is also proportional to this. It is also possible to adopt the heat exchange amount of the vessel (21), that is, the refrigeration load. In this case, the refrigeration load Lc obtained from the refrigeration load calculation circuit (83) shown in FIG. 1 is supplied to the absorber abnormality degree calculation circuit (84),
It is used to calculate the degree of abnormality.
【0037】故障判定回路(85)は、吸収器異常度計算回
路(84)から得られる吸収器異常度を所定の評価基準と大
小比較して、故障の程度を判定し、その結果を表示装置
(9)へ出力するものである。The failure determination circuit (85) compares the absorber abnormality degree obtained from the absorber abnormality degree calculation circuit (84) with a predetermined evaluation standard to determine the degree of failure and displays the result.
It is output to (9).
【0038】上記異常検出装置において、上記数3の平
均温度差を採用した場合には、対数計算の不要な簡易な
演算によって、従来の対数平均温度差による異常検出と
同程度の信頼性を維持したまま、吸収器の異常を検出
し、故障判定を行なうことが出来る。ここで、本発明の
単純な計算式による平均温度差に基づく故障判定と、従
来の対数平均温度差に基づく故障判定とを比較した場
合、いずれの故障判定も温度差の絶対値で判定を行なう
のではなく、正常時の温度差を基準とする相対的な比率
(異常度)で判定を行なうのであるから、対数計算を行な
うことに意義は殆ど無く、両判定に優劣はないと言え
る。When the average temperature difference of the above equation 3 is adopted in the above abnormality detecting device, the same level of reliability as that of the conventional abnormality detection due to the logarithmic average temperature difference is maintained by a simple calculation that does not require logarithmic calculation. As it is, the abnormality of the absorber can be detected and the failure can be determined. Here, when comparing the failure determination based on the average temperature difference according to the simple calculation formula of the present invention and the conventional failure determination based on the logarithmic average temperature difference, any failure determination is determined by the absolute value of the temperature difference. Relative ratio based on normal temperature difference
Since the judgment is made based on the (abnormality), it is meaningless to perform logarithmic calculation, and it can be said that both judgments have no superiority or inferiority.
【0039】この様に本発明においては対数計算の不要
な単純な計算式を採用しているから、従来に比べて回路
規模が小さくなり、冷温水機の制御盤に回路基板を実装
する際に有利である。As described above, in the present invention, since a simple calculation formula that does not require logarithmic calculation is adopted, the circuit scale becomes smaller than the conventional one, and when mounting the circuit board on the control panel of the water chiller / heater. It is advantageous.
【0040】又、上記数4の平均温度差を採用した場合
には、必要な温度測定が従来の4ポイントから3ポイン
ト或いは2ポイントに減少するから、吸収式冷温水機に
配備すべき温度センサーの数が減少し、構成が簡易とな
る。Further, when the average temperature difference of the above equation 4 is adopted, the required temperature measurement is reduced from the conventional 4 points to 3 points or 2 points. Therefore, the temperature sensor to be installed in the absorption chiller / heater. The number is reduced and the configuration becomes simple.
【0041】上記異常検出装置は吸収器(22)を対象とす
るものであるが、凝縮器(11)についても同様の方式で異
常検出を行なうことが出来る。図3は、凝縮器(11)につ
いての異常検出装置の構成を表わしており、上記同様に
センサー群(7)からの測定データが演算装置(80)へ供給
されて、凝縮器(11)の異常検出に基づく故障判定が行な
われ、その結果が表示装置(9)に表示される。Although the above-mentioned abnormality detecting device is intended for the absorber (22), the abnormality can be detected for the condenser (11) in the same manner. FIG. 3 shows the configuration of the abnormality detecting device for the condenser (11), and similarly to the above, the measurement data from the sensor group (7) is supplied to the arithmetic device (80), and the condenser (11) Failure determination is performed based on the abnormality detection, and the result is displayed on the display device (9).
【0042】演算装置(80)は、凝縮器の平均温度差を計
算する回路(86)と、凝縮器の熱交換量を計算する回路(8
7)と、凝縮器の異常度を計算する回路(88)と、故障判定
回路(89)とを具えている。凝縮器平均温度差計算回路(8
6)では、冷却水中間温度センサー(72)から得られる冷却
水中間温度Tco_midと、冷却水出口温度センサー
(70)から得られる冷却水出口温度Tco_outと、凝
縮冷媒温度センサー(79)から得られる凝縮冷媒温度Tv
_condから、下記数8に示す計算式によって凝縮器
の平均温度差Tm′が算出される。The arithmetic unit (80) includes a circuit (86) for calculating the average temperature difference of the condenser and a circuit (8) for calculating the heat exchange amount of the condenser.
7), a circuit (88) for calculating the degree of abnormality of the condenser, and a failure determination circuit (89). Condenser average temperature difference calculation circuit (8
In 6), the cooling water intermediate temperature Tco_mid obtained from the cooling water intermediate temperature sensor (72) and the cooling water outlet temperature sensor
Cooling water outlet temperature Tco_out obtained from (70) and condensed refrigerant temperature Tv obtained from condensed refrigerant temperature sensor (79)
From _cond, the average temperature difference Tm ′ of the condenser is calculated by the calculation formula shown in Expression 8 below.
【0043】[0043]
【数8】 Tm′={(Tv_cond−Tco_mid)+(Tv_cond−Tco_out)}/2## EQU00008 ## Tm '= {(Tv_cond-Tco_mid) + (Tv_cond-Tco_out)} / 2
【0044】凝縮器の平均温度差としては、2ポイント
の測定データで定義される更に簡易な計算式を採用する
ことが可能である。又、回路規模を問題としない場合に
は、従来の対数平均温度差を採用しても可いのは勿論で
ある。As the average temperature difference of the condenser, it is possible to adopt a simpler calculation formula defined by the measurement data of 2 points. Further, if the circuit scale is not a problem, the conventional logarithmic average temperature difference may be adopted.
【0045】凝縮器熱交換量計算回路(87)では、冷却水
中間温度センサー(72)から得られる冷却水中間温度Tc
o_midと、冷却水出口温度センサー(70)から得られ
る冷却水出口温度Tco_outと、冷却水流量センサ
ー(75)から得られる冷却水流量Vcoから、下記数9に
よって凝縮器熱交換量Qcondが算出される。In the condenser heat exchange amount calculation circuit (87), the cooling water intermediate temperature Tc obtained from the cooling water intermediate temperature sensor (72) is obtained.
The condenser heat exchange amount Qcond is calculated by the following equation 9 from o_mid, the cooling water outlet temperature Tco_out obtained from the cooling water outlet temperature sensor (70), and the cooling water flow rate Vco obtained from the cooling water flow rate sensor (75). It
【0046】[0046]
【数9】 Qcond=Vco×(Tco_out−Tco_mid)## EQU00009 ## Qcond = Vco.times. (Tco_out-Tco_mid)
【0047】凝縮器異常度計算回路(88)は、凝縮器平均
温度差計算回路(86)から得られる実際の凝縮器平均温度
差Tm′と、凝縮器熱交換量計算回路(87)から得られる
凝縮器熱交換量Qcondに基づいて、下記数10によ
って凝縮器(11)の異常度Acondを算出するものであ
る。The condenser abnormality degree calculation circuit (88) obtains the actual condenser average temperature difference Tm 'obtained from the condenser average temperature difference calculation circuit (86) and the condenser heat exchange amount calculation circuit (87). The abnormality degree Acond of the condenser (11) is calculated by the following equation 10 based on the generated condenser heat exchange amount Qcond.
【0048】[0048]
【数10】Acond=(Tm′−Tmn′)/Tmn′## EQU10 ## Acond = (Tm'-Tmn ') / Tmn'
【0049】ここで、Tmn′は正常運転時における理
想的な平均温度差であって、予め凝縮器熱交換量Qco
ndとの関係でグラフ化され、或いはテーブル化され
て、メモリに記憶されているものである。Here, Tmn 'is an ideal average temperature difference during normal operation, and the heat exchange amount Qco of the condenser is previously set.
It is stored in the memory after being graphed or tabulated in relation to nd.
【0050】凝縮器異常度計算回路(88)から得られる凝
縮器異常度は故障判定回路(89)へ供給されて、所定の評
価基準と比較される。そして、故障判定回路(89)は該比
較結果に基づいて故障の程度を判定し、その結果を表示
装置(9)へ出力するのである。The condenser abnormality degree obtained from the condenser abnormality degree calculation circuit (88) is supplied to the failure determination circuit (89) and compared with a predetermined evaluation standard. Then, the failure judgment circuit (89) judges the degree of failure based on the comparison result, and outputs the result to the display device (9).
【0051】図3に示す凝縮器についての異常検出装置
によれば、冷温水機の部分負荷時においても凝縮器の異
常を的確に検出して、早期に保守点検を行なうことが出
来るばかりでなく、回路構成上も、図1に示す吸収器に
ついての異常検出装置と同様の効果が得られる。According to the abnormality detecting device for the condenser shown in FIG. 3, not only the abnormality of the condenser can be accurately detected and the maintenance and inspection can be performed early even when the chiller-heater has a partial load. In terms of circuit configuration, the same effect as that of the abnormality detecting device for the absorber shown in FIG. 1 can be obtained.
【0052】上記実施例の説明は、本発明を説明するた
めのものであって、特許請求の範囲に記載の発明を限定
し、或は範囲を減縮する様に解すべきではない。又、本
発明の各部構成は上記実施例に限らず、特許請求の範囲
に記載の技術的範囲内で種々の変形が可能であることは
勿論である。The above description of the embodiments is for explaining the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope. The configuration of each part of the present invention is not limited to the above-mentioned embodiment, and it goes without saying that various modifications can be made within the technical scope described in the claims.
【0053】例えば、上記実施例では、凝縮器(11)及び
吸収器(22)或いは蒸発器(21)についての熱交換量の計算
の際、冷却水或いは冷水の流量を実測することとしてい
るが、定流量の場合には、冷却水或いは冷水の出入口温
度の測定データのみに基づいて、演算によって熱交換量
を導出することが可能である。For example, in the above embodiment, the flow rate of the cooling water or the cooling water is actually measured when the heat exchange amount of the condenser (11) and the absorber (22) or the evaporator (21) is calculated. In the case of a constant flow rate, it is possible to derive the heat exchange amount by calculation based on only the measured data of the cooling water or the inlet / outlet temperature of the cold water.
【図1】本発明に係る異常検出装置の構成を示すブロッ
ク図である。FIG. 1 is a block diagram showing a configuration of an abnormality detection device according to the present invention.
【図2】熱交換量に対する平均温度差の変化を表わすグ
ラフである。FIG. 2 is a graph showing changes in average temperature difference with respect to heat exchange amount.
【図3】凝縮器についての異常検出装置の構成を示すブ
ロック図である。FIG. 3 is a block diagram showing a configuration of an abnormality detection device for a condenser.
【図4】本発明を実施すべき吸収式冷温水機の構成を表
わす図である。FIG. 4 is a diagram showing a configuration of an absorption chiller-heater in which the present invention is implemented.
(71) 冷却水入口温度センサー (72) 冷却水中間温度センサー (73) 吸収液入口温度センサー (74) 吸収液出口温度センサー (8) 演算装置 (9) 表示装置 (71) Cooling water inlet temperature sensor (72) Cooling water intermediate temperature sensor (73) Absorbing liquid inlet temperature sensor (74) Absorbing liquid outlet temperature sensor (8) Computing device (9) Display device
Claims (4)
機の異常検出装置において、 吸収器での熱交換に関与する冷却水及び吸収液につい
て、夫々の1或いは複数位置での代表温度を測定する温
度測定手段と、 前記代表温度の四則演算によって定義される温度差デー
タの計算式が格納され、該計算式を用いて、前記温度測
定手段による測定データから実際の温度差データを算出
する温度差データ計算手段と、 吸収器での熱交換量或いは該熱交換量に応じて変化する
他の熱交換量を、測定及び演算によって導出する熱交換
量導出手段と、 正常運転時における理想の温度差データが、熱交換量と
の関係で格納されている理想温度差データ格納手段と、 前記熱交換量導出手段から得られる熱交換量に基づき、
温度差データ計算手段から得られる実際の温度差データ
を同一熱交換量での理想温度差データと対比して、吸収
器の異常を表わす異常データを作成する異常判定手段と
を具えていることを特徴とする吸収式冷温水機の異常検
出装置。1. In an abnormality detection device for an absorption chiller-heater equipped with an evaporator, an absorber, etc., a representative of cooling water and absorbing liquid involved in heat exchange in the absorber at one or a plurality of positions, respectively. Temperature measurement means for measuring temperature, a calculation formula of temperature difference data defined by the four arithmetic operations of the representative temperature is stored, and using the calculation formula, actual temperature difference data is obtained from the measurement data by the temperature measurement device. A temperature difference data calculating means for calculating, a heat exchange amount in the absorber, or a heat exchange amount deriving means for deriving another heat exchange amount that changes depending on the heat exchange amount, by a heat exchange amount deriving means during normal operation. The ideal temperature difference data, ideal temperature difference data storage means stored in relation to the heat exchange amount, based on the heat exchange amount obtained from the heat exchange amount derivation means,
The temperature difference data calculation means compares the actual temperature difference data with the ideal temperature difference data at the same heat exchange amount, and an abnormality determination means for generating abnormality data indicating an abnormality of the absorber is provided. Abnormality detection device for absorption type water heaters and heaters.
出口での冷却水の温度を測定する温度センサー(71)(72)
と、該冷却水の流量を測定する流量センサー(75)と、こ
れらのセンサーの測定データに基づいて吸収器の熱交換
量を算出する演算手段とを具えている請求項1に記載の
異常検出装置。2. The heat exchange amount derivation means is a temperature sensor (71) (72) for measuring the temperature of cooling water at the inlet and outlet of the absorber.
The abnormality detection according to claim 1, further comprising: a flow rate sensor (75) for measuring the flow rate of the cooling water; and a calculation means for calculating the heat exchange amount of the absorber based on the measurement data of these sensors. apparatus.
出口での冷水の温度を測定する温度センサー(76)(77)
と、該冷水の流量を測定する流量センサー(78)と、これ
らのセンサーの測定データに基づいて蒸発器の熱交換量
を算出する演算手段とを具えている請求項1に記載の異
常検出装置。3. The heat exchange amount derivation means is a temperature sensor (76) (77) for measuring the temperature of cold water at the inlet and outlet of the evaporator.
The abnormality detection device according to claim 1, further comprising: a flow rate sensor (78) for measuring the flow rate of the cold water; and a calculation means for calculating the heat exchange amount of the evaporator based on the measurement data of these sensors. .
mと理想温度差データTmnを変数として下記数1で定
義される異常度Aを算出し、これを異常データとして出
力する請求項1乃至請求項3の何れかに記載の異常検出
装置。 【数1】A=(Tm−Tmn)/Tmn4. The abnormality determination means is used for the actual temperature difference data T.
The abnormality detection device according to claim 1, wherein the abnormality degree A defined by the following equation 1 is calculated using m and the ideal temperature difference data Tmn as variables, and this is output as abnormality data. ## EQU1 ## A = (Tm-Tmn) / Tmn
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6187757A JP3054554B2 (en) | 1994-07-18 | 1994-07-18 | Abnormality detector for absorption type water heater |
US08/392,332 US5623426A (en) | 1994-02-23 | 1995-02-22 | Failure diagnosing system for absorption chillers |
CNB951006517A CN1154824C (en) | 1994-02-23 | 1995-02-23 | Failure diagnosing system for absorption chillers |
KR1019950008214A KR100317155B1 (en) | 1994-05-19 | 1995-04-08 | Fault diagnosis system of absorption chiller |
CNB01117613XA CN1153035C (en) | 1994-02-23 | 2001-05-05 | Absorption refrigerating machine fault diagnosis system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6187757A JP3054554B2 (en) | 1994-07-18 | 1994-07-18 | Abnormality detector for absorption type water heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0829028A true JPH0829028A (en) | 1996-02-02 |
JP3054554B2 JP3054554B2 (en) | 2000-06-19 |
Family
ID=16211674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6187757A Expired - Fee Related JP3054554B2 (en) | 1994-02-23 | 1994-07-18 | Abnormality detector for absorption type water heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3054554B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005114302A (en) * | 2003-10-10 | 2005-04-28 | Kawasaki Thermal Engineering Co Ltd | Heating and cooling machine with flow sensor function |
JP2010216779A (en) * | 2009-03-19 | 2010-09-30 | Hitachi Appliances Inc | Second class absorption heat pump |
CN103272249A (en) * | 2013-06-14 | 2013-09-04 | 山东新华医疗器械股份有限公司 | Sterilization cabinet provided with multicore temperature probe |
-
1994
- 1994-07-18 JP JP6187757A patent/JP3054554B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005114302A (en) * | 2003-10-10 | 2005-04-28 | Kawasaki Thermal Engineering Co Ltd | Heating and cooling machine with flow sensor function |
JP2010216779A (en) * | 2009-03-19 | 2010-09-30 | Hitachi Appliances Inc | Second class absorption heat pump |
CN103272249A (en) * | 2013-06-14 | 2013-09-04 | 山东新华医疗器械股份有限公司 | Sterilization cabinet provided with multicore temperature probe |
Also Published As
Publication number | Publication date |
---|---|
JP3054554B2 (en) | 2000-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5623426A (en) | Failure diagnosing system for absorption chillers | |
JP4301085B2 (en) | Deterioration diagnosis system for heat source equipment | |
JP6660275B2 (en) | Capacity diagnosis system and capacity diagnosis method for absorption refrigerator | |
JP3054554B2 (en) | Abnormality detector for absorption type water heater | |
JP3054553B2 (en) | Absorption chiller / heater failure diagnosis device | |
JP3083930B2 (en) | Failure diagnosis system for absorption refrigerator | |
JP3083929B2 (en) | Failure diagnosis system for absorption refrigerator | |
JP3253190B2 (en) | Cooling water flow rate estimation method for absorption chiller / heater | |
JP3054552B2 (en) | Absorption chiller / heater failure diagnosis device | |
JP3253211B2 (en) | Absorption chiller / heater fault diagnosis system | |
JP2909368B2 (en) | Cooling water dirt diagnosis system for absorption chiller / heater | |
JP3083931B2 (en) | Failure diagnosis system for absorption refrigerator | |
JP2902946B2 (en) | Abnormality determination device for absorption type water heater | |
JPH07234048A (en) | Trouble diagnostic system for absorption type water cooling and heating machine | |
KR100317155B1 (en) | Fault diagnosis system of absorption chiller | |
JP3579248B2 (en) | Diagnosis method of cooling water dirt | |
JPH0791783A (en) | Trouble diagnosing system for absorption chilled and warm water machine | |
JP7022658B2 (en) | Performance diagnosis system for absorption chillers | |
JP3195085B2 (en) | Absorption refrigerator | |
JPH07324851A (en) | Malfunction detecting method for heat exchanger and absorption type hot and chilled water generator | |
JPS6316245A (en) | Measuring instrument for uncondensable gas pressure | |
JPH0233584A (en) | Vacuum degree diagnosing device for absorption type water cooling and heating machine | |
JP2810430B2 (en) | Absorption refrigerator protection device | |
JPS613961A (en) | Absorption refrigerator | |
JPH0625640B2 (en) | Absorption chiller / heater diagnostic method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090407 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100407 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110407 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120407 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130407 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140407 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |