JPH0233584A - Vacuum degree diagnosing device for absorption type water cooling and heating machine - Google Patents

Vacuum degree diagnosing device for absorption type water cooling and heating machine

Info

Publication number
JPH0233584A
JPH0233584A JP18333988A JP18333988A JPH0233584A JP H0233584 A JPH0233584 A JP H0233584A JP 18333988 A JP18333988 A JP 18333988A JP 18333988 A JP18333988 A JP 18333988A JP H0233584 A JPH0233584 A JP H0233584A
Authority
JP
Japan
Prior art keywords
temperature
vacuum degree
outlet temperature
vacuum
operator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18333988A
Other languages
Japanese (ja)
Other versions
JPH071136B2 (en
Inventor
Noriyuki Nishiyama
教之 西山
Makoto Nakamura
誠 中村
Wahei Arita
有田 和平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Yazaki Corp
Original Assignee
Tokyo Gas Co Ltd
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Yazaki Corp filed Critical Tokyo Gas Co Ltd
Priority to JP18333988A priority Critical patent/JPH071136B2/en
Publication of JPH0233584A publication Critical patent/JPH0233584A/en
Publication of JPH071136B2 publication Critical patent/JPH071136B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To diagnose a vacuum degree from only the temperatures of the constituting elements of an absorption type water cooling and heating machine and a piping system connecting respective elements by a method wherein the present values of judging elements and the judging reference values of the same are obtained based on the temperatures of respective units, which are detected by temperature detectors, and the present values are compared with the judging reference values. CONSTITUTION:A vacuum degree diagnosing device 30 is formed of a main body 31, formed movably, and temperature detectors 31a-32e, detecting the temperatures of respective units of an absorption type water cooling and heating machine. The main body 31 is formed of a judging reference value operator 33, a present value operator 34, a comparing operator 35, a weight operator 36, a total amount of weight comparing operator 37 and an indicating unit 38. A vacuum degree judging means is formed of the comparing operator 35, the weight operator 36 and the total amount of weight comparing operator 37. There exist strong correlations between the evaporating temperature and the vacuum degree of liquid refrigerant, between a temperature difference of the outlet temperature of absorbing solution and the inlet temperature of cooling water and the vacuum degree and between a temperature difference of the absorbing solution outlet temperature and the cooling water outlet temperature and the vacuum degree while the diagnosis of the vacuum degree may be effected by employing these three factors as elements for judgement.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は吸収冷温水機の作動状態の診断装置に係り、具
体的には冷温水機の真空度の状態を各部の温度を計測す
ることによって診断する吸収冷温水機の真空度診断装置
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a diagnostic device for the operating state of an absorption chiller/heater, and specifically, it is a device for diagnosing the operating status of an absorption chiller/heater, and specifically, it is a device for diagnosing the operating status of an absorption chiller/heater. The present invention relates to a vacuum degree diagnostic device for an absorption chiller/heater that diagnoses by

〔従来の技術〕[Conventional technology]

一般に、吸収冷温水機は、凝縮器から供給される液冷媒
を蒸発させて冷温水管内を通流される冷温水と熱交換さ
せる蒸発器と、この蒸発器で蒸発された冷媒蒸気を冷却
水が通流される冷却水管表面にて吸収液に接触させて吸
収させる吸収器とを備えて構成される。そして、吸収器
から流出される冷媒蒸気を吸収してなる稀溶液を加熱し
て冷媒蒸気と吸収液とに分離し、それぞれ前記凝縮器と
前記吸収器とに循環供給するようにしている。
In general, an absorption chiller/heater includes an evaporator that evaporates liquid refrigerant supplied from a condenser and exchanges heat with cold/hot water flowing through cold/hot water pipes, and an evaporator that converts the evaporated refrigerant vapor in the evaporator into cooling water. The absorber is configured to include an absorber that contacts and absorbs the absorption liquid on the surface of the cooling water pipe through which it flows. Then, a dilute solution obtained by absorbing refrigerant vapor flowing out from the absorber is heated and separated into refrigerant vapor and absorption liquid, which are each circulated and supplied to the condenser and the absorber.

このように構成される吸収冷温水機を高効率で運転する
ために、吸収冷温水機内の真空度を適宜診断して高真空
度を保持する必要がある。
In order to operate the absorption chiller/heater configured in this manner with high efficiency, it is necessary to appropriately diagnose the degree of vacuum within the absorption chiller/heater to maintain a high degree of vacuum.

従来、上記真空度を診断する方法として、蒸発器または
吸収器に検圧バルブを介して圧力検出器(連成計、マノ
メーター、圧力センサー等)を取り付け、その接続管内
部を真空引きしたあと、検圧バルブを開けて冷温水機の
機内圧力を導き、検出器が示した値から判断することが
知られている。
Conventionally, as a method for diagnosing the degree of vacuum, a pressure detector (compound gauge, manometer, pressure sensor, etc.) is attached to the evaporator or absorber via a pressure detection valve, and after the inside of the connecting pipe is evacuated, It is known to open a pressure detection valve to determine the internal pressure of a water cooler/heater, and then make a judgment based on the value shown by the detector.

また、他の方法として、蒸発器の冷媒液温度を計測し、
その温度より冷媒の飽和蒸気圧を計算(又は、線図)に
より求めたものと、吸収液の吸収器出口温度と、その液
を採液(採液バルブより真空ポンプを用いて採る)して
濃度を計り、その濃度、温度から溶液の飽和蒸気圧を計
算(又は、溶液の線図)により求めたものとを比較して
真空度の診断を行っていた。
Another method is to measure the refrigerant liquid temperature in the evaporator.
The saturated vapor pressure of the refrigerant was determined from that temperature by calculation (or diagram), the absorber outlet temperature of the absorption liquid, and the liquid was sampled (taken from the liquid sampling valve using a vacuum pump). The degree of vacuum was diagnosed by measuring the concentration and comparing it with the saturated vapor pressure of the solution calculated from the concentration and temperature (or a diagram of the solution).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の公知技術では1次のような問題点
があった。
However, the conventional known technology has the following first-order problems.

(1)作業に熟練を要する。(1) The work requires skill.

(2)精度の高い高価な計測機器や真空ポンプなどの機
器を必要とする。またそれらの機器の現場への搬入・搬
出が大変である。
(2) Requires equipment such as highly accurate and expensive measuring equipment and vacuum pumps. In addition, it is difficult to transport these devices to and from the site.

(3)作業時に冷凍機のバルブ(検圧、採液)の開閉を
行うため真空破壊の危険性が伴う。
(3) The valves of the refrigerator (pressure test, liquid sampling) are opened and closed during work, so there is a risk of vacuum breakdown.

(4)一般的に吸収冷温水機の溶液は腐食性が高いため
、機器を痛めたり、作業時の溶液の飛散によって腐食(
錆)を招く恐れがある。
(4) In general, the solution used in absorption water coolers and heaters is highly corrosive, so it may damage the equipment or cause corrosion due to the solution scattering during work.
This may lead to rust.

(5)点検に要する時間と費用が大きい。(5) The time and cost required for inspection are large.

本発明の課題は、吸収冷温水機の真空度状態の診断を、
冷温水機の構成要素及び各要素を接続する管系の温度情
報のみから、圧力計や濃度計を用いることなく精度よく
行うことのできる真空度診断装置を提供するにある。
The problem of the present invention is to diagnose the vacuum state of an absorption chiller/heater.
It is an object of the present invention to provide a degree of vacuum diagnosis device that can accurately diagnose the degree of vacuum based only on temperature information of the constituent elements of a water cooler and a pipe system connecting each element, without using a pressure gauge or a concentration meter.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記課題を解決するため、冷温水の出口温度T
b、蒸発器における液冷媒の蒸発温度Te、吸収器から
流出される吸収液出口温度Td。
In order to solve the above problems, the present invention aims at
b, evaporation temperature Te of the liquid refrigerant in the evaporator, and outlet temperature Td of the absorption liquid flowing out from the absorber.

冷却水の入口温度Taと出口温度Tcをそれぞれ検出す
る温度検出器と、蒸発温度Te、吸収液出口温度Tdと
冷却水入口温度Taの差Tda、吸収液出口温度Tdと
冷却水出口温度TCの差TdCをそれぞれ判断要素とし
、前記検出された冷温水出口温度Tbと冷却水入口温度
Taに基づいて予め定められた正常な運転状態における
各判断要素の判断基準値を求める判断基準値演算手段と
、前記検出された各部の温度に基づいて前記判断要素の
現状値を求め、該現状値と前記判断基準値を比較して真
空度の良否を判定する真空度判定手段とを具備してなる
真空度診断装置としたことにある。
Temperature detectors each detect the inlet temperature Ta and outlet temperature Tc of the cooling water; Judgment reference value calculation means for determining a judgment reference value of each judgment element in a predetermined normal operating state based on the detected cold/hot water outlet temperature Tb and cooling water inlet temperature Ta, using the difference TdC as a judgment element. , vacuum degree determining means for determining the current value of the determination element based on the detected temperature of each part, and comparing the current value with the determination reference value to determine whether the degree of vacuum is good or bad. The reason is that it has become a degree diagnostic device.

〔作用〕[Effect]

吸収冷温水機の液冷媒の蒸発温度Teと真空度との間、
また吸収液出口温度Tdと冷却水入口温度Taの温度差
Tdaと真空度との間、また吸収液出口温度Tdと冷却
水出口温度Tcの温度差’I−dcと真空度との間には
、それぞれ強い相関関係がある。そこで本発明はこの三
項目を判断要素として真空度の診断を行なう。
Between the evaporation temperature Te of the liquid refrigerant of the absorption chiller/heater and the degree of vacuum,
Also, between the temperature difference Tda between the absorption liquid outlet temperature Td and the cooling water inlet temperature Ta and the degree of vacuum, and between the temperature difference 'I-dc between the absorption liquid outlet temperature Td and the cooling water outlet temperature Tc and the degree of vacuum, , each has a strong correlation. Therefore, the present invention diagnoses the degree of vacuum using these three items as determining factors.

また、上記の判断要素に基づいて真空度の良否を判断す
るための判断基準値は、吸収冷温水機の運転状態(負荷
状態)に関係する。また、運転状態は冷温水出口温度T
bと冷却水入口温度Taに相関することから、これらの
検出温度に基づいて正常な真空度のときの運転状態にお
ける前記判断要素の値を求め、これを判断基準値とする
Further, the criterion value for determining whether the degree of vacuum is good or bad based on the above-mentioned determining factors is related to the operating state (load state) of the absorption chiller/heater. In addition, the operating status is the cold/hot water outlet temperature T
Since b is correlated with the cooling water inlet temperature Ta, the value of the above-mentioned judgment element in the operating state at a normal degree of vacuum is determined based on these detected temperatures, and this is used as the judgment reference value.

しかして、本発明によれば、温度検出器により検出され
た各部の温度に基づいて、判断要素の現状値とその判断
基準値が求められ、それらを比較して真空度の良否が判
定される。
Therefore, according to the present invention, the current value of the judgment element and its judgment reference value are determined based on the temperature of each part detected by the temperature detector, and the quality of the degree of vacuum is determined by comparing them. .

この判断は上記3つの判断要素ごとに行ない。This judgment is made for each of the above three judgment factors.

それらの良否に基づいて総合的に判断する。Comprehensive judgment will be made based on their quality.

この場合において、真空度の良否判定に及ぼす影響度合
いが判断要素ごとに異なることから、各判断要素の比較
結果に重み付けを行なって判定することが望ましい。
In this case, since the degree of influence on the quality/failure determination of the degree of vacuum differs depending on the determination element, it is desirable to weight the comparison results of each determination element and make the determination.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて説明する。第1図に本
発明の一実施例真空度診断装置30の構成概要図を示す
。本実施例の真空度診断装置30は移動可能に形成され
た本体31と、吸収冷温水機の各部の温度を検出する温
度検出器32a〜32eからなる。本体31は判断基準
値演算器33と、現状値演算器34と、比較演算器35
と、重み演算器36と、重み集計値比較演算器37と。
Hereinafter, the present invention will be explained based on examples. FIG. 1 shows a schematic diagram of the configuration of a vacuum degree diagnosing device 30 according to an embodiment of the present invention. The vacuum degree diagnostic device 30 of this embodiment includes a movable main body 31 and temperature detectors 32a to 32e that detect the temperature of each part of the absorption chiller/heater. The main body 31 includes a judgment reference value calculator 33, a current value calculator 34, and a comparison calculator 35.
, a weight calculation unit 36 , and a weight total value comparison calculation unit 37 .

表示器38を含んで形成されている。比較演算器35と
重み演算器36と重み集計値比較演算器37により、真
空度判定手段が形成されている。また、温度検出器32
a〜32eは本体31に設けられた接続子39a〜39
eにそれぞれ可撓線で接続され、各接続子39a〜39
eは判断基準値演算器33と現状値演算器34に適宜接
続されている。
It is formed to include a display 38. The comparison calculator 35, the weight calculator 36, and the weighted total value comparison calculator 37 form vacuum degree determining means. In addition, the temperature detector 32
a to 32e are connectors 39a to 39 provided on the main body 31
e respectively with flexible wires, and each connector 39a to 39
e is connected to the judgment reference value calculator 33 and the current value calculator 34 as appropriate.

以下、上記各演算器の詳細構成を動作とともに説明する
。なお、診断対象として、第2図に示す吸収冷温水機を
例にとって説明する。
The detailed configuration of each of the arithmetic units described above will be explained below along with the operation thereof. The explanation will be given by taking an absorption chiller/heater shown in FIG. 2 as an example of the diagnosis target.

まず、第2図に示す吸収冷温水機について説明する。冷
媒を吸収してなる稀溶液は再生器1にて加熱されて分離
器2に導びかれ、ここにおいて冷媒蒸気と吸収液に分離
される。この吸収液は未蒸発の冷媒を含む中濃溶液とな
っており、第1の熱交換器9を介して低温再生器3に導
びかれ、ここでさらに冷媒が蒸発分離される。低温再生
器3から流出される濃溶液は第2の熱交換器8を介して
吸収器6の頂部に注入される。
First, the absorption chiller/heater shown in FIG. 2 will be explained. A dilute solution formed by absorbing the refrigerant is heated in a regenerator 1 and led to a separator 2, where it is separated into refrigerant vapor and absorption liquid. This absorption liquid is a medium-concentrated solution containing unevaporated refrigerant, and is led to the low-temperature regenerator 3 via the first heat exchanger 9, where the refrigerant is further evaporated and separated. The concentrated solution leaving the low temperature regenerator 3 is injected into the top of the absorber 6 via the second heat exchanger 8 .

一方、・分離器2で分離された冷媒蒸気は低温再生器3
を介して凝縮器4に導びかれ、ここにおいて冷却水管1
8内を通流されている冷却水に熱を奪われて凝縮される
。凝縮されて生じた液冷媒は蒸発器5の頂部に導かれ、
蒸発器5の内部に配設された冷温水管20の表面に流下
される。これにより液冷媒は蒸発され、その蒸発熱は冷
温水管20内を通流されている冷温水と熱交換される。
On the other hand, the refrigerant vapor separated in the separator 2 is transferred to the low temperature regenerator 3.
The cooling water is led to the condenser 4 via the cooling water pipe 1.
Heat is taken away by the cooling water flowing through 8 and condensed. The condensed liquid refrigerant is led to the top of the evaporator 5,
The water flows down onto the surface of a hot and cold water pipe 20 disposed inside the evaporator 5. As a result, the liquid refrigerant is evaporated, and the heat of evaporation is exchanged with the cold/hot water flowing through the cold/hot water pipe 20.

蒸発器5で気化された冷媒蒸気は吸収器6に導びかれ、
吸収器6内に配設された冷却水管18の表面に流下され
ている吸収液(濃溶液)に接触して吸収される。このと
き発生する吸収熱は冷却水により除去される。吸収器6
にて冷媒を吸収してなる稀溶液は溶液循環ポンプ7によ
り抜き出され、第1と第2の熱交換器8,9を介して再
生器1に戻される。
The refrigerant vapor vaporized in the evaporator 5 is guided to the absorber 6,
It comes into contact with the absorption liquid (concentrated solution) flowing down onto the surface of the cooling water pipe 18 disposed in the absorber 6 and is absorbed. The absorbed heat generated at this time is removed by cooling water. Absorber 6
The dilute solution that has absorbed the refrigerant is extracted by the solution circulation pump 7 and returned to the regenerator 1 via the first and second heat exchangers 8 and 9.

このように構成される吸収冷温水機の内部は高い真空度
に保持されるが、真空度が低下すると次のような温度変
化現象が生ずる。
The interior of the absorption chiller/heater configured as described above is maintained at a high degree of vacuum, but when the degree of vacuum decreases, the following temperature change phenomenon occurs.

■蒸発器5の蒸発温度Teは真空度低下とともに上昇す
る。
(2) The evaporation temperature Te of the evaporator 5 increases as the degree of vacuum decreases.

(シ蒸発器5の底部に流下される未蒸発の液冷媒を頂部
に還流させる冷媒ポンプをもたない冷温水機においては
、蒸発器5での冷媒蒸発量が減少すると未蒸発の液冷媒
が増加する。この液冷媒は吸収器6に流れて吸収液と直
接混合され希釈熱を発生する。この熱は冷却水管18に
接していないので冷却水へ捨てられる機会がなく吸収器
6から出る稀溶液の温度を高める。よって稀溶液の吸収
器出口温度Tdと冷却水入口温度Taとの温度差Tda
 (=Td−Ta)は真空度が低下すれば大きくなる。
(In a water cooler/hot water machine that does not have a refrigerant pump that returns unevaporated liquid refrigerant flowing down to the bottom of the evaporator 5 to the top, when the amount of refrigerant evaporated in the evaporator 5 decreases, the unevaporated liquid refrigerant This liquid refrigerant flows into the absorber 6 and is directly mixed with the absorption liquid to generate dilution heat.Since this heat is not in contact with the cooling water pipe 18, there is no chance of it being discarded into the cooling water, and the rare case where it is emitted from the absorber 6. Increase the temperature of the solution.Therefore, the temperature difference Tda between the absorber outlet temperature Td of the dilute solution and the cooling water inlet temperature Ta
(=Td-Ta) increases as the degree of vacuum decreases.

■上記■と同じ理由、および真空度低下に伴う冷凍能力
の低下により冷却水への除去熱量が減少し、冷却水出口
温度Tcの低下との相乗作用により、稀溶液の吸収器出
口温度Tdと冷却水出口温度Tcとの温度差Tdc (
=Td−Tc)は真空度が低下すれば大きくなる。した
がって、この三項口を判断要素として真空度診断を行な
うことができるのである。
■For the same reason as ■ above, and due to the decrease in the refrigerating capacity due to the decrease in vacuum degree, the amount of heat removed to the cooling water decreases, and due to the synergistic effect with the decrease in the cooling water outlet temperature Tc, the absorber outlet temperature Td of the dilute solution decreases. Temperature difference Tdc (
=Td-Tc) increases as the degree of vacuum decreases. Therefore, the degree of vacuum can be diagnosed using this three-terminal port as a determining factor.

上記判断に必要な各部の温度のうち、冷却水人口温度T
aは温度検出器32aにより、冷温水出口温度Tbは温
度検出器32bにより、冷却水出口温度Tcは温度検出
器32cにより、吸収液出11温度Tdは温度検出器3
2dにより、蒸発温度Tcは温度検出器32eによりそ
れぞれ検出するようになっている。これらの検出器32
 a = dは管路等に取付けて対応する温度を測定可
能に形成されている。
Among the temperatures of each part necessary for the above judgment, the cooling water population temperature T
a is detected by the temperature detector 32a, cold and hot water outlet temperature Tb is detected by the temperature detector 32b, cooling water outlet temperature Tc is detected by the temperature detector 32c, and absorption liquid outlet 11 temperature Td is detected by the temperature detector 3.
2d, the evaporation temperature Tc is detected by the temperature detector 32e. These detectors 32
a = d is formed so that it can be attached to a pipe or the like to measure the corresponding temperature.

検出された温度のうち、冷却水入口温度Taと冷温水出
口温度Tbは判断基準値演算器33に入力され、第1表
に示す判断要素に対応した判断基1(ji値が求められ
る。
Among the detected temperatures, the cooling water inlet temperature Ta and the cold/hot water outlet temperature Tb are input to the judgment reference value calculator 33, and judgment criteria 1 (ji values) corresponding to the judgment factors shown in Table 1 are determined.

第  1  表 することから、上記2つの温度TaとTbに基づき、か
つROM上に記憶されている予め定められた計算式に基
づいて求められる。
From the first expression, it is determined based on the above two temperatures Ta and Tb and based on a predetermined calculation formula stored in the ROM.

第4図に真空破壊発生前後の各判断要素の変化の実測例
を示す。
FIG. 4 shows an example of actual measurement of changes in each judgment element before and after the occurrence of vacuum breakdown.

一方、検出され入力された冷却水入口温度Ta、冷却水
出口温度Tc、稀溶液吸収器出口温度Tdおよび蒸発器
温度Teに基づいて、現状値演算器34により、第2表
に示す前記判断要素毎の現状の温度差(現状値)が算出
される。
On the other hand, based on the detected and input cooling water inlet temperature Ta, cooling water outlet temperature Tc, dilute solution absorber outlet temperature Td, and evaporator temperature Te, the current value calculator 34 calculates the judgment factors shown in Table 2. The current temperature difference (current value) for each time is calculated.

第  2  表 この判断基準値J1〜J3は、正常な真空状態にあれば
こうなるであろうと考えられる判断要素の値であり、そ
の値はまた負荷状態などにより変化第3図のフローチャ
ートに示すように比較演算器35に入力され、該比較演
算器35により前記判断要素ごとに判断基準値と現状値
が比較され、当該判断要素における真空度の良好、不良
の判断が行われる。現状値が判断基準値より小さい場合
は良(EGV)、大きい場合は不良(ELV)と判定し
、それらの大小の比較結果が重み演算器36に出力され
る。重み演算器36は各判断要素ごとに良(EGV)と
不良(ELV)の2つの判定枠(具体的にはレジスタ)
を有しており、比較演算器35の比較結果に対応するE
GV又はELVのいずれかの判定枠に重み値W1.W2
.W、がそれぞれセットされる。この重み値は真空度判
定に及ぼす各判断要素の影響度合いを表わしたもので、
総計が1又は100%になるように、予め設定され記憶
されている。重み集計値比較演算器37は重み演算器3
6の各判定枠から良(EGV)又は不良(ELV)ごと
に分けて内容を取込み、それらの値を集計する。モして
EGV集計値とELVの集計値を比較し、ELVの集計
値が大であれば真空度不良と判定し、その判定信号を表
示器38に出力し、EGVの集計値が大であれば真空度
良好の判定信号を表示器38に出力する。なお、表示器
38には求めたE G LとELVの集計値を表示する
ようにしてもよい。また、表示器38は液晶表示の他、
ランプ表示を適用することもできる。
Table 2 These judgment reference values J1 to J3 are the values of judgment factors that are considered to be the same under normal vacuum conditions, and the values also vary depending on the load condition etc. As shown in the flowchart in Figure 3. is input to the comparison calculator 35, which compares the judgment reference value and the current value for each judgment element, and determines whether the degree of vacuum in the judgment element is good or bad. If the current value is smaller than the judgment reference value, it is judged to be good (EGV), and if it is larger than the judgment reference value, it is judged to be bad (ELV), and the comparison result of these sizes is output to the weight calculator 36. The weight calculator 36 has two judgment frames (specifically, registers) of good (EGV) and bad (ELV) for each judgment element.
E corresponding to the comparison result of the comparison calculator 35
Weight value W1. is assigned to either GV or ELV judgment frame. W2
.. W, are set respectively. This weight value represents the degree of influence of each judgment element on the degree of vacuum judgment.
It is set and stored in advance so that the total is 1 or 100%. The weight summary value comparison calculator 37 is the weight calculator 3
6, the content is divided into good (EGV) or bad (ELV) and the values are totaled. The EGV total value is compared with the ELV total value, and if the ELV total value is large, it is determined that the degree of vacuum is poor, and the determination signal is output to the display 38. For example, a judgment signal indicating that the degree of vacuum is good is output to the display 38. Note that the display 38 may display the calculated total values of EGL and ELV. In addition to the liquid crystal display, the display 38 also has a liquid crystal display.
A lamp display can also be applied.

なお、真空度不良の診断がなされたとき、その信号を利
用して油気装置を作動させることもできる。また冷媒ポ
ンプを有する冷温水機においては。
Note that when a diagnosis of poor vacuum is made, the signal can be used to operate the oil/air system. Also, for water coolers and hot water machines that have a refrigerant pump.

蒸発器5における冷媒蒸発量が減少しても稀溶液と冷媒
液がが混合することがなく、単に吸収器6における吸収
熱量が減るだけである。このため前記現象とは逆に稀溶
液の吸収器出口温度Tdは低下する。このように冷媒ポ
ンプがあるものと無いものとでは、稀溶液吸収器出口温
度Tdは逆の現象を呈するので判断を逆にすれば上記実
施例と同様に診断できる。すなわち、判断要素のTda
とTdcの判断の不等号を逆にして行なえばよい。
Even if the amount of refrigerant evaporated in the evaporator 5 decreases, the dilute solution and the refrigerant liquid do not mix, and the amount of heat absorbed in the absorber 6 simply decreases. Therefore, contrary to the above phenomenon, the absorber outlet temperature Td of the dilute solution decreases. As described above, the dilute solution absorber outlet temperature Td exhibits opposite phenomena depending on whether there is a refrigerant pump or not, so the diagnosis can be made in the same manner as in the above embodiment by reversing the judgment. In other words, the judgment factor Tda
The inequality sign of the determination of Tdc and Tdc may be reversed.

なおまた、上記実施例では3つの判断要素により真空度
を判定するものについて示したが、3つの判断要素のう
ちの任意の1つ又は2つの組合せにより判定することも
可能である。その場合、真空度判定の精度や信頼度はそ
れに応じて低下する場合がある。
Furthermore, in the above embodiment, the degree of vacuum is determined using three determination elements, but it is also possible to determine the degree of vacuum using any one or a combination of two of the three determination elements. In that case, the accuracy and reliability of vacuum degree determination may decrease accordingly.

また、上記実施例は診断対象として二重効用吸収冷温水
機について示したが1判断基準値を算出する計算式を差
換えることにより単効用吸収冷温水機にも適用可能であ
る。
In addition, although the above embodiment has been described for a dual-effect absorption chiller/heater as a diagnostic target, it can also be applied to a single-effect absorption chiller/heater by replacing the calculation formula for calculating the one-judgment reference value.

上に述べたように、吸収冷温水機の真空度が良好である
か、不良であるかを濃度計や圧力計を用いることなく、
温度を検出することによって診断することが可能であり
、しかもあらかじめ冷温水機に特別の装置を設けておく
必要がない。また診断に必要な作業は、移動式の真空度
診断装置に付層している5個の温度検出器を診断対象の
吸収冷温水機に取付けるのみであり、作業時間が短かく
てすむ。又複数の判断要素を組み合わせて診断を行うた
め診断の精度が高い。
As mentioned above, it is possible to tell whether the vacuum level of an absorption chiller/heater is good or bad without using a concentration meter or pressure gauge.
Diagnosis can be made by detecting the temperature, and there is no need to install any special equipment in the water cooler/heater in advance. In addition, the only work required for diagnosis is to attach the five temperature detectors attached to the mobile vacuum degree diagnostic device to the absorption chiller/heater to be diagnosed, and the work time can be shortened. Furthermore, since the diagnosis is performed by combining a plurality of judgment factors, the accuracy of the diagnosis is high.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、温度検出器と、検出された温度に基づ
いて判断基準値を算出する判断基準値演算手段と、検出
された温度に基づいて現状値を算出する現状値演算手段
と、算出された判断基準値と現状値に基づいて真空度を
判断する真空度判定手段とにより構成し、吸収冷温水機
の構成要素及び各要素を接続する管系の温度のみから真
空度を診断するようにしていることから、圧力計や濃度
計を用いることなくかつ精度よく診断できるという効果
がある。
According to the present invention, a temperature detector, a judgment reference value calculating means for calculating a judgment reference value based on the detected temperature, a current value calculating means for calculating a current value based on the detected temperature, and a calculating means for calculating a current value based on the detected temperature. The device is configured with a degree of vacuum determination means that determines the degree of vacuum based on the determined reference value and the current value, and the degree of vacuum is diagnosed only from the temperature of the components of the absorption chiller/heater and the pipe system connecting each element. This has the effect of making it possible to diagnose accurately without using a pressure gauge or concentration meter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成を示す概要図、第2図は
第1図実施例の診断装置を吸収冷温水機へ取付けた状態
を示すブロック図、第3図は第1図実施例の真空度診断
の手順を示すフローチャート、第4図は吸収冷温水機に
故意に真空度不良を与えたときの各判断要素の変化を示
す図である。 1・・・再生器、4・・・凝縮器、5・・・蒸発器、6
・・・吸収器、8,9・・・溶液熱交換器、18・・・
冷却水管、2o・・・冷温水管、30・・・真空度診断
装置、32・・・温度検出器。 33・・・判断基準値演算器、34・・・現状値演算器
、35・・・比較演算器、36・・・重み演算器、37
・・重み値集計値比較演算器、 38・・・表示器。 第1図
Fig. 1 is a schematic diagram showing the configuration of an embodiment of the present invention, Fig. 2 is a block diagram showing a state in which the diagnostic device of the embodiment of Fig. 1 is attached to an absorption chiller/heater, and Fig. 3 is an implementation of the embodiment shown in Fig. 1. FIG. 4 is a flowchart showing the procedure of vacuum degree diagnosis in an example. FIG. 4 is a diagram showing changes in each determination element when a vacuum degree defect is intentionally given to the absorption chiller/heater. 1... Regenerator, 4... Condenser, 5... Evaporator, 6
...Absorber, 8,9...Solution heat exchanger, 18...
Cooling water pipe, 2o...Cold/hot water pipe, 30...Vacuum degree diagnostic device, 32...Temperature detector. 33... Judgment reference value calculator, 34... Current value calculator, 35... Comparison calculator, 36... Weight calculator, 37
...Weight value summary value comparison calculator, 38... Display device. Figure 1

Claims (1)

【特許請求の範囲】 1、凝縮器から供給される液冷媒を蒸発させて冷温水管
内を通流される冷温水と熱交換させる蒸発器と、該蒸発
器で蒸発された冷媒蒸気を冷却水が通流される冷却水管
表面にて吸収液に接触させて吸収させる吸収器とを備え
、該吸収器から流出される冷媒蒸気を吸収してなる稀溶
液を加熱して冷媒蒸気と吸収液とに分離し、それぞれ前
記凝縮器と前記吸収器とに循環供給するようにしてなる
吸収冷温水機の真空度の良否を判定する真空度診断装置
において、前記冷温水の出口温度T_b、前記蒸発器に
おける液冷媒の蒸発温度T_e、前記吸収器から流出さ
れる吸収液出口温度T_d、前記冷却水の入口温度T_
aと出口温度T_cをそれぞれ検出する温度検出器と、
蒸発温度T_e、吸収液出口温度T_dと冷却水入口温
度T_aの差T_d_a、吸収液出口温度T_dと冷却
水出口温度T_cの差T_d_cをそれぞれ判断要素と
し、前記検出された冷温水出口温度T_bと冷却水入口
温度T_aに基づいて予め定められた正常な運転状態に
おける前記各判断要素の判断基準値を求める判断基準値
演算手段と、前記検出された各部の温度に基づいて前記
判断要素の現状値を求め、該現状値と前記判断基準値を
比較して真空度の良否を判定する真空度判定手段と、を
具備してなる吸収冷温水機の真空度診断装置。 2、前記真空度判定手段は前記各判断要素の比較結果に
それぞれ予め定められた重みを付加して判定することを
特徴とする請求項1記載の真空度診断装置。
[Claims] 1. An evaporator that evaporates liquid refrigerant supplied from a condenser and exchanges heat with cold and hot water flowing through a cold and hot water pipe; It is equipped with an absorber that contacts and absorbs the absorption liquid on the surface of the cooling water pipe that flows through it, and the dilute solution formed by absorbing the refrigerant vapor flowing out from the absorber is heated and separated into the refrigerant vapor and the absorption liquid. In a vacuum degree diagnostic device for determining the quality of the vacuum degree of an absorption chiller/heater that circulates and supplies the water to the condenser and the absorber, the outlet temperature T_b of the cold and hot water, the liquid in the evaporator The evaporation temperature T_e of the refrigerant, the outlet temperature T_d of the absorption liquid flowing out from the absorber, and the inlet temperature T_ of the cooling water.
a and an outlet temperature T_c;
The evaporation temperature T_e, the difference T_d_a between the absorption liquid outlet temperature T_d and the cooling water inlet temperature T_a, and the difference T_d_c between the absorption liquid outlet temperature T_d and the cooling water outlet temperature T_c are used as determination factors, respectively, and the detected cold/hot water outlet temperature T_b and the cooling Judgment reference value calculation means for calculating the judgment reference value of each judgment element in a predetermined normal operating state based on the water inlet temperature T_a; vacuum degree determining means for determining whether the degree of vacuum is good or bad by comparing the current value with the judgment reference value. 2. The vacuum degree diagnosing device according to claim 1, wherein said vacuum degree determining means makes a determination by adding predetermined weights to the comparison results of said respective determination elements.
JP18333988A 1988-07-22 1988-07-22 Absorption chiller / heater vacuum degree diagnostic device Expired - Lifetime JPH071136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18333988A JPH071136B2 (en) 1988-07-22 1988-07-22 Absorption chiller / heater vacuum degree diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18333988A JPH071136B2 (en) 1988-07-22 1988-07-22 Absorption chiller / heater vacuum degree diagnostic device

Publications (2)

Publication Number Publication Date
JPH0233584A true JPH0233584A (en) 1990-02-02
JPH071136B2 JPH071136B2 (en) 1995-01-11

Family

ID=16133993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18333988A Expired - Lifetime JPH071136B2 (en) 1988-07-22 1988-07-22 Absorption chiller / heater vacuum degree diagnostic device

Country Status (1)

Country Link
JP (1) JPH071136B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052811A (en) * 2007-08-28 2009-03-12 Daikin Ind Ltd Exhaust heat drive-type absorption refrigerating device
JP2009058208A (en) * 2007-09-03 2009-03-19 Yazaki Corp Absorption type water cooler/heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052811A (en) * 2007-08-28 2009-03-12 Daikin Ind Ltd Exhaust heat drive-type absorption refrigerating device
JP2009058208A (en) * 2007-09-03 2009-03-19 Yazaki Corp Absorption type water cooler/heater

Also Published As

Publication number Publication date
JPH071136B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
Grace et al. Sensitivity of refrigeration system performance to charge levels and parameters for on-line leak detection
Li et al. Virtual refrigerant pressure sensors for use in monitoring and fault diagnosis of vapor-compression equipment
KR20120002926A (en) Method for function monitoring and/or control of a cooling system, and a corresponding cooling system
JP4049610B2 (en) Abnormality detection device for heat pump heat exchanger
JPH0233584A (en) Vacuum degree diagnosing device for absorption type water cooling and heating machine
JP4009288B2 (en) Method and apparatus for detecting flash gas
CN212513661U (en) Heat exchanger test bench
JP3054553B2 (en) Absorption chiller / heater failure diagnosis device
JP2000321103A (en) Tester for refrigerating compressor
JP3083930B2 (en) Failure diagnosis system for absorption refrigerator
JPH07234048A (en) Trouble diagnostic system for absorption type water cooling and heating machine
CN109458752B (en) Double-effect lithium bromide absorption type low-temperature water chilling unit for online detection of density steam
JPS613961A (en) Absorption refrigerator
JP3054552B2 (en) Absorption chiller / heater failure diagnosis device
US11933528B2 (en) Methods and systems for determining phase state or subcooling state
JPH0829028A (en) Abnormal state sensing device of absorptive cold and hot water machine
JP3258692B2 (en) Abnormality detector for absorption refrigerator
CN109458754B (en) Single-effect lithium bromide absorption type low-temperature water chilling unit for online detection of density steam
JP3187878B2 (en) Absorption refrigerator protection device
JP3058677B2 (en) Absorption refrigerator
JP7022658B2 (en) Performance diagnosis system for absorption chillers
JP3195085B2 (en) Absorption refrigerator
JP3083931B2 (en) Failure diagnosis system for absorption refrigerator
JP3258687B2 (en) Abnormality detector for absorption refrigerator
JP2009058208A (en) Absorption type water cooler/heater