JP2000321103A - Tester for refrigerating compressor - Google Patents

Tester for refrigerating compressor

Info

Publication number
JP2000321103A
JP2000321103A JP11128775A JP12877599A JP2000321103A JP 2000321103 A JP2000321103 A JP 2000321103A JP 11128775 A JP11128775 A JP 11128775A JP 12877599 A JP12877599 A JP 12877599A JP 2000321103 A JP2000321103 A JP 2000321103A
Authority
JP
Japan
Prior art keywords
temperature
compressor
gas
throttle mechanism
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11128775A
Other languages
Japanese (ja)
Other versions
JP3560497B2 (en
Inventor
Akihiro Noda
昭洋 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SATAKE REINETSU KK
Original Assignee
SATAKE REINETSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SATAKE REINETSU KK filed Critical SATAKE REINETSU KK
Priority to JP12877599A priority Critical patent/JP3560497B2/en
Publication of JP2000321103A publication Critical patent/JP2000321103A/en
Application granted granted Critical
Publication of JP3560497B2 publication Critical patent/JP3560497B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tester for a refrigerating compressor having high performance by a gas refrigerant flowmeter method adapted to a small-sized refrigerator. SOLUTION: A differential pressure sensor 14 for sensing a pressure difference between an upper flow and a lower flow of a throttling mechanism 13 of a gas flowmeter 6 for measuring a discharge gas from a compressor under test is provided in a constant temperature case 15e, and a second temperature sensor 15a and a cold heat cooler 15b are provided in the case 15e. A controller 15c for controlling a circumferential temperature of the sensor 14 to the same temperature as a gas refrigerant temperature by the detection of a first temperature sensor 5 of the gas refrigerant of an upstream side of the mechanism 13 is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス冷媒流量計法
による冷凍用圧縮機の試験装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for testing a refrigerating compressor using a gas refrigerant flow meter method.

【0002】[0002]

【従来の技術】ルームエアコンや冷蔵庫などに使用され
る冷凍用圧縮機の試験方法はJISB 8606に各種
のものが列記されているが、小型冷凍機には向かないと
考えれられていたガス冷媒流量計法によるものは開発さ
れず、蒸発器熱量計法の中の二次冷媒熱量計法による試
験装置が主として用いられてきた。
2. Description of the Related Art Various types of testing methods for refrigerating compressors used in room air conditioners and refrigerators are listed in JIS B 8606, but the gas refrigerant flow rate which is considered to be unsuitable for small refrigerators is described. The test method based on the secondary refrigerant calorimeter method in the evaporator calorimeter method has not been developed, and the test apparatus based on the secondary refrigerant calorimeter method has been mainly used.

【0003】[0003]

【発明が解決しようとする課題】従来の二次冷媒熱量計
法の試験装置では二次冷媒として入手が容易であったフ
ロンガスが使用されてきたが、最近はオゾン層の破壊防
止などのフロンガス規制により使用が困難となる最大の
問題点があり、又この方法では冷凍能力に対応するのに
電気ヒーターで熱バランスさせて冷凍能力を算出し、安
定化制御も含めて電力消費量が大きい問題点があった。
In the conventional secondary refrigerant calorimeter test apparatus, fluorocarbon gas, which was easily available as a secondary refrigerant, has been used. Recently, however, fluorocarbon gas regulations such as prevention of destruction of the ozone layer have been used. This method has the biggest problem that it becomes difficult to use it.In addition, this method uses a heat balance with an electric heater to calculate the refrigeration capacity to cope with the refrigeration capacity, and has a large power consumption including stabilization control. was there.

【0004】本発明は上記の問題点を解消し、フロンガ
スを使用せず、省エネルギーで、小型の冷凍機に適した
ガス冷媒流量計法による高精度な冷凍用圧縮機の試験装
置を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems and to provide a high-precision refrigeration compressor test apparatus using a gas refrigerant flowmeter method which is energy-saving and does not use chlorofluorocarbon gas and is suitable for a small refrigerator. With the goal.

【0005】[0005]

【課題を解決するための手段】本発明は上記の目的を達
成すべく、サイクル内を流れる供試圧縮機からの吐出ガ
ス冷媒流量を測定し該圧縮機の冷凍能力を試験する方式
の試験装置において、ガス流量計に、該ガス流量計の絞
り機構の上下流の圧力差を検知する差圧センサーの周辺
温度を該絞り機構の上流側のガス冷媒温度と同じ温度に
制御する温度制御手段を設けたことを特徴とする。
SUMMARY OF THE INVENTION In order to attain the above object, the present invention measures a flow rate of a refrigerant discharged from a test compressor flowing in a cycle and tests a refrigeration capacity of the compressor. In the gas flow meter, temperature control means for controlling the peripheral temperature of the differential pressure sensor for detecting the pressure difference between the upstream and downstream of the throttle mechanism of the gas flow meter to the same temperature as the gas refrigerant temperature on the upstream side of the throttle mechanism. It is characterized by having been provided.

【0006】[0006]

【発明の実施の形態】本発明の1実施の形態を図面によ
り説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to the drawings.

【0007】図1において、1は本発明の1実施の形態
である冷凍用圧縮機の試験装置を示し、その冷凍試験サ
イクルにおいてJIS B 8606のガス冷媒流量計
法では圧縮機の吸込み側又は吐出し側のどちらかにガス
流量計を設けるが本発明では吐出し側のガス流量による
試験方法に則っている。
In FIG. 1, reference numeral 1 denotes a refrigerating compressor test apparatus according to an embodiment of the present invention. In the refrigerating test cycle, the gas refrigerant flow meter method of JIS B 8606 uses the suction side or discharge side of the compressor. A gas flow meter is provided on either side of the discharge side, but according to the present invention, the test method is based on the gas flow rate on the discharge side.

【0008】該試験装置1においては、供試用圧縮機2
の吸込み側と吐出し側の所定位置に同一個所での測定の
ための圧力/温度計3が各々設けられ、該圧縮機2の吐
出口2aより吸入口2bに接続されている冷凍サイクル
管路10に、油分離器4とガス温度を検出する第1温度
センサー5と、絞り機構13と差圧センサー14よりな
るガス流量計6と、凝縮器7と、受液器8と、第1流量
調節弁10aと、ガス冷却器9が順次介在され、又前記
凝縮器7の上流側の前記冷凍サイクル管路10から分岐
して前記ガス冷却器9に至るバイパス管路11に第2流
量調節弁11aが介在されていると共に前記圧縮機2の
吸入側の前記冷凍サイクル管路10と前記油分離器4と
の間に分岐接続されているオイル戻り管路12に第3流
量調節弁12aが介在されている。
In the test apparatus 1, a test compressor 2
Pressure / thermometers 3 are provided at predetermined positions on the suction side and the discharge side for measurement at the same location, respectively, and the refrigerating cycle pipeline is connected from the discharge port 2a of the compressor 2 to the suction port 2b. 10, an oil separator 4, a first temperature sensor 5 for detecting gas temperature, a gas flow meter 6 including a throttle mechanism 13 and a differential pressure sensor 14, a condenser 7, a liquid receiver 8, a first flow rate A control valve 10a and a gas cooler 9 are sequentially interposed, and a second flow control valve is provided in a bypass line 11 branched from the refrigeration cycle line 10 upstream of the condenser 7 to the gas cooler 9. A third flow control valve 12a is interposed in an oil return line 12 which is interposed between the refrigeration cycle line 10 and the oil separator 4 on the suction side of the compressor 2 and has an oil return line 11a. Have been.

【0009】本発明の特徴は前記ガス流量計6にあり、
該ガス流量計6は小口径管の絞り機構13とその上下流
の圧力差により流量を計測するための周囲温度が制御さ
れた差圧センサー14よりなる。
The feature of the present invention resides in the gas flow meter 6.
The gas flow meter 6 includes a small-diameter pipe throttle mechanism 13 and a differential pressure sensor 14 whose ambient temperature is controlled to measure a flow rate based on a pressure difference between the upstream and downstream of the throttle mechanism 13.

【0010】図2において、絞り機構13は管径Dを有
する管13aとノズル径dとノズル長Lを有するノズル
13bよりなり、ガス流量計測のためのJIS Z 8
762に記載の絞り機構ではポンプ用に管径Dが50m
m〜1200mm迄のものが示されているが、圧縮機用
にはあまりにも太すぎて小型の冷凍機の能力に適さない
ので、その小能力に見合う小口径管による絞り機構を得
るために数多くの実験を行い、その結果低レイノルズ数
の管径Dが4mm〜12mm、ノズル径dが2mm〜
8.4mm、ノズル長Lが4mm〜23mmの数種類の
組合せによる家庭で使用されるエアコン用、ルームエア
コン用、冷蔵庫用、小型冷蔵庫用などに適した小口径管
の絞り機構13を得ることができた。
In FIG. 2, a throttle mechanism 13 comprises a pipe 13a having a pipe diameter D, a nozzle 13b having a nozzle diameter d and a nozzle length L, and is a JIS Z 8 for measuring a gas flow rate.
In the throttle mechanism described in 762, the pipe diameter D is 50 m for the pump.
Although it is shown from m to 1200 mm, it is too thick for a compressor and not suitable for the capacity of a small refrigerator. As a result, the tube diameter D of the low Reynolds number was 4 mm to 12 mm, and the nozzle diameter d was 2 mm to
It is possible to obtain a throttle mechanism 13 for a small-diameter pipe suitable for household air conditioners, room air conditioners, refrigerators, small refrigerators, and the like by using several combinations of 8.4 mm and a nozzle length L of 4 mm to 23 mm. Was.

【0011】この絞り機構13を前述の小口径管にする
ことにより小流量の計測を高精度に測定することができ
る。
By using this small diameter pipe as the throttle mechanism 13, it is possible to measure a small flow rate with high accuracy.

【0012】又、前記差圧センサー14は前記ノズル1
3bの上下流の管13a内に各々連通する小室13c、
13dの差圧を測定する。
The differential pressure sensor 14 is connected to the nozzle 1
Small chambers 13c respectively communicating with the pipes 13a on the upstream and downstream sides of 3b,
Measure the differential pressure of 13d.

【0013】この差圧センサー14の測定値は温度によ
り変動するので、正確な測定値を得るために該差圧セン
サー14の周囲温度を温度制御手段15により前記ガス
冷媒温度と同じにする必要があり、そこで恒温ボックス
15e内に該差圧センサー14を設けると共に該ボック
ス15e内に、該ボックス15e内の温度検出のための
第2温度センサー15aと加熱或いは加冷する例えばペ
ルチェ素子からなる加冷熱器15bとを設け、これら第
2温度センサー15aと加冷熱器15bとを制御器15
cに接続すると共に、該制御器15bと前記流量計6の
上流側の前記第1温度センサー5との間を点線で示す信
号線15dで接続し、該制御器15cで温度制御した。
Since the measured value of the differential pressure sensor 14 varies depending on the temperature, it is necessary to make the ambient temperature of the differential pressure sensor 14 equal to the gas refrigerant temperature by the temperature control means 15 in order to obtain an accurate measured value. There, the differential pressure sensor 14 is provided in a constant temperature box 15e, and in the box 15e, a second temperature sensor 15a for detecting the temperature in the box 15e is heated or cooled. A heater 15b is provided, and the second temperature sensor 15a and the cooling / heating unit 15b are connected to the controller 15b.
c, the controller 15b and the first temperature sensor 5 on the upstream side of the flowmeter 6 were connected by a signal line 15d indicated by a dotted line, and the temperature was controlled by the controller 15c.

【0014】これらからなる温度制御手段15によりガ
ス冷媒温度と差圧センサー14の周囲温度が同じになり
該差圧センサー14の温度誤差のない正確な測定値を得
ることができる。
By means of the temperature control means 15 composed of these, the gas refrigerant temperature and the ambient temperature of the differential pressure sensor 14 become the same, and an accurate measurement value without a temperature error of the differential pressure sensor 14 can be obtained.

【0015】次に本発明の1実施の形態である冷凍用圧
縮機の試験装置1の使用方法を図面により説明する。
Next, a method of using the test apparatus 1 for a refrigerating compressor according to one embodiment of the present invention will be described with reference to the drawings.

【0016】先ず、供試圧縮機2は通常の運転に必要な
付属装置を全て取付け、定められた冷媒と潤滑油を封入
して準備作業が終了する。
First, the test compressor 2 is equipped with all the auxiliary devices necessary for normal operation, and the specified refrigerant and lubricating oil are filled in, thereby completing the preparatory work.

【0017】次に、供試圧縮機2を作動させると、該供
試圧縮機2の吐出口2aより少量のオイルを含む吐出ガ
スが油分離器4に入り、ガス冷媒と潤滑油とに分離さ
れ、ガス冷媒は過熱状態でガス流量計6を通過して流量
測定され、更にガス冷媒の約1/5が凝縮器7に分流
し、該凝縮器7は冷却水が外側を流れるコイル状の2重
管7aで形成され、過熱されたガス冷媒は該2重管7a
の冷却水に熱を放出し液化して受液器8に入り、又残り
の約4/5のガス冷媒はバイパス管路11に分流して第
2流量調節弁11aを介してガス冷却器9に入り、前記
受液器8に溜った液化した冷媒を第1流量調節弁10a
で流量調節して減圧されている該ガス冷却器9内に噴射
し、ガス冷却器9内において前記残りの約4/5の過熱
ガスは冷却され、所定温度に下がった合流したガス冷媒
は前記供試圧縮機2の吸入口2bに吸入されて一連の試
験サイクルを形成する。
Next, when the test compressor 2 is operated, a discharge gas containing a small amount of oil from the discharge port 2a of the test compressor 2 enters the oil separator 4, and is separated into a gas refrigerant and a lubricating oil. The gas refrigerant passes through the gas flow meter 6 in a superheated state, and the flow rate is measured. Further, about 1/5 of the gas refrigerant is diverted to the condenser 7, and the condenser 7 has a coil shape in which cooling water flows outside. The superheated gas refrigerant formed by the double pipe 7a
The heat is released to the cooling water to liquefy and enter the receiver 8, and the remaining about 4/5 of the gas refrigerant is diverted to the bypass pipe 11, and is diverted to the gas cooler 9 through the second flow control valve 11a. Into the first flow control valve 10a.
Injecting into the gas cooler 9 whose flow rate has been adjusted and decompressed, the remaining about 4/5 of the superheated gas is cooled in the gas cooler 9 and the combined gas refrigerant having dropped to a predetermined temperature is It is sucked into the suction port 2b of the test compressor 2 to form a series of test cycles.

【0018】尚、油分離器4で分離された潤滑油はオイ
ル戻り管路12により再び吸入口2bより供試圧縮機2
内に戻る。
The lubricating oil separated by the oil separator 4 is again returned from the suction port 2b to the test compressor 2 by the oil return line 12.
Return inside.

【0019】上記の試験サイクルにおいて本発明のガス
流量計6は、周囲温度をガス冷媒温度と同じ温度に制御
された差圧センサーにより温度誤差のない正確な測定を
行うことができ、又小口径管の絞り機構により小流量の
測定を高精度に行うことができる。
In the above test cycle, the gas flow meter 6 of the present invention can perform accurate measurement without a temperature error by a differential pressure sensor whose ambient temperature is controlled to the same temperature as the gas refrigerant temperature. The measurement of a small flow rate can be performed with high precision by the restriction mechanism of the pipe.

【0020】即ち、前記ガス流量計6において、第1温
度センサー5の第1検出温度と第2温度センサー15a
の第2検出温度を入力した制御器15cは第2検出温度
を第1検出温度に等しくなるように加冷熱器15bに制
御信号を出力し、該加冷熱器15bからの加熱或いは冷
却作用により差圧センサー14の周囲温度をノズル13
bを流れるガス冷媒の温度に等しくする。
That is, in the gas flow meter 6, the first detected temperature of the first temperature sensor 5 and the second temperature sensor 15a
The controller 15c having input the second detected temperature outputs a control signal to the cooling heater 15b so that the second detected temperature becomes equal to the first detected temperature, and the difference is generated by the heating or cooling action from the cooling heater 15b. The ambient temperature of the pressure sensor 14 is
b to be equal to the temperature of the gas refrigerant flowing through it.

【0021】更に、本発明のガス冷媒流量計法による試
験装置は、フロンガスを使用しないばかりでなく、冷媒
の種類を選ばず、小流量の測定可能なガス流量計により
冷媒の使用量が略半量の試験サイクルとなり、装置全体
で消費する電力エネルギーを1/3〜1/10に低減さ
せることができ、又設置スペースも半分にすることがで
きる。
Furthermore, the test apparatus using the gas refrigerant flow meter method of the present invention not only does not use chlorofluorocarbon gas, but also uses a gas flow meter capable of measuring a small flow rate regardless of the type of refrigerant, so that the amount of refrigerant used is almost half. , The power energy consumed by the entire apparatus can be reduced to 1/3 to 1/10, and the installation space can be halved.

【0022】[0022]

【発明の効果】このように本発明によると、フロンガス
を使用せずガス流量計の差圧センサーの周囲温度をガス
冷媒温度と同じに制御することにより温度誤差のない正
確な測定を行う効果を有し、又小流量計測が行える絞り
機構により試験サイクルの大巾な省エネルギーの効果を
有する。
As described above, according to the present invention, by controlling the ambient temperature of the differential pressure sensor of the gas flow meter to be the same as the gas refrigerant temperature without using chlorofluorocarbon gas, an accurate measurement without a temperature error can be obtained. With a throttle mechanism capable of measuring a small flow rate, a large energy saving effect of the test cycle can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施の形態の試験装置のシステム構
成図である。
FIG. 1 is a system configuration diagram of a test apparatus according to an embodiment of the present invention.

【図2】その主要部の説明図である。FIG. 2 is an explanatory diagram of a main part thereof.

【符号の説明】[Explanation of symbols]

1 試験装置 2 供試圧縮機 6 ガス流量計 13 絞り機構 14 差圧センサー 15 温度制御手段 DESCRIPTION OF SYMBOLS 1 Test apparatus 2 Compressor under test 6 Gas flow meter 13 Throttle mechanism 14 Differential pressure sensor 15 Temperature control means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 サイクル内を流れる供試圧縮機からの吐
出ガス冷媒流量を測定し該圧縮機の冷凍能力を試験する
方式の試験装置において、ガス流量計に、該ガス流量計
の絞り機構の上下流の圧力差を検知する差圧センサーの
周辺温度を該絞り機構の上流側のガス冷媒温度と同じ温
度に制御する温度制御手段を設けたことを特徴とする冷
凍用圧縮機の試験装置。
1. A test apparatus for measuring the flow rate of refrigerant discharged from a test compressor flowing through a cycle and testing the refrigerating capacity of the compressor, wherein a gas flow meter is provided with a throttle mechanism of the gas flow meter. A refrigerating compressor test apparatus, comprising: temperature control means for controlling a temperature around a differential pressure sensor for detecting an upstream and downstream pressure difference to be the same as a gas refrigerant temperature upstream of the throttle mechanism.
【請求項2】 前記温度制御手段は、前記差圧センサー
を内部に設けた恒温ボックスと、前記絞り機構の近傍に
設けた第1温度センサーと、該恒温ボックス内に設けた
第2温度センサー及び加冷熱器と、該第1温度センサー
の検出温度と該第2温度センサーの検出温度を入力し、
これら検出温度の温度差に応じて該加冷熱器に制御信号
を出力する制御器とからなることを特徴とする請求項1
に記載の冷凍用圧縮機の試験装置。
2. The temperature control means includes: a constant temperature box provided with the differential pressure sensor therein; a first temperature sensor provided near the throttle mechanism; a second temperature sensor provided in the constant temperature box; A heating / cooling heater, and a detection temperature of the first temperature sensor and a detection temperature of the second temperature sensor.
2. A controller for outputting a control signal to said cooling / heating unit in accordance with the temperature difference between the detected temperatures.
A testing device for a refrigerating compressor according to item 1.
【請求項3】 前記絞り機構は家庭用のエアコンや冷蔵
庫などの小能力圧縮機の小流量のガス冷媒流量に対応す
る低レイノルズ数の小口径管よりなることを特徴とする
請求項1に記載の冷凍用圧縮機の試験装置。
3. The throttle mechanism according to claim 1, wherein the throttle mechanism comprises a small-diameter pipe having a low Reynolds number corresponding to a small flow rate of a gas refrigerant flow of a small capacity compressor such as a home air conditioner or a refrigerator. Refrigeration compressor testing equipment.
JP12877599A 1999-05-10 1999-05-10 Refrigeration compressor test equipment Expired - Lifetime JP3560497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12877599A JP3560497B2 (en) 1999-05-10 1999-05-10 Refrigeration compressor test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12877599A JP3560497B2 (en) 1999-05-10 1999-05-10 Refrigeration compressor test equipment

Publications (2)

Publication Number Publication Date
JP2000321103A true JP2000321103A (en) 2000-11-24
JP3560497B2 JP3560497B2 (en) 2004-09-02

Family

ID=14993171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12877599A Expired - Lifetime JP3560497B2 (en) 1999-05-10 1999-05-10 Refrigeration compressor test equipment

Country Status (1)

Country Link
JP (1) JP3560497B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321318C (en) * 2004-04-05 2007-06-13 中国计量学院 On-line measuring scheme and constructing method for refrigerating amount of compressor
KR100820143B1 (en) * 2002-03-14 2008-04-08 엘지전자 주식회사 Apparatus for testing compressor
JP2009204626A (en) * 2009-06-19 2009-09-10 Horiba Stec Co Ltd Differential pressure flowmeter
CN102221424A (en) * 2011-03-14 2011-10-19 凌子龙 Calorimeter signal acquisition device, calorimeters and method for computing heating load
US8082745B2 (en) 2007-05-24 2011-12-27 Denso Corporation Refrigeration cycle system
CN109579922A (en) * 2019-02-01 2019-04-05 飞思仪表(深圳)有限公司 A kind of plug-in type differential pressure flowmeter and flow-measuring method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820143B1 (en) * 2002-03-14 2008-04-08 엘지전자 주식회사 Apparatus for testing compressor
CN1321318C (en) * 2004-04-05 2007-06-13 中国计量学院 On-line measuring scheme and constructing method for refrigerating amount of compressor
US8082745B2 (en) 2007-05-24 2011-12-27 Denso Corporation Refrigeration cycle system
JP2009204626A (en) * 2009-06-19 2009-09-10 Horiba Stec Co Ltd Differential pressure flowmeter
CN102221424A (en) * 2011-03-14 2011-10-19 凌子龙 Calorimeter signal acquisition device, calorimeters and method for computing heating load
CN109579922A (en) * 2019-02-01 2019-04-05 飞思仪表(深圳)有限公司 A kind of plug-in type differential pressure flowmeter and flow-measuring method

Also Published As

Publication number Publication date
JP3560497B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US6868678B2 (en) Non-intrusive refrigerant charge indicator
CN106949680B (en) Detection method and detection system for performance coefficient of compressor unit of refrigeration system
US8775123B2 (en) Method for determination of the coefficient of performanace of a refrigerating machine
JP4317878B2 (en) Air conditioner and method for judging refrigerant amount
CN102149990B (en) Leakage diagnosing device, leakage diagnosing method, and refrigerating device
Grace et al. Sensitivity of refrigeration system performance to charge levels and parameters for on-line leak detection
CN102147142A (en) Air conditioner and method for controlling air conditioner
JP2007255818A (en) Diagnosing device for refrigerating cycle device, heat source-side unit and use-side unit having diagnosing device, and refrigerating cycle device
CN101910759A (en) Air conditioner and method of determining amount of refrigerant
JP2008249239A (en) Control method of cooling device, cooling device and refrigerating storage
Li et al. Virtual refrigerant pressure sensors for use in monitoring and fault diagnosis of vapor-compression equipment
Tran et al. Refrigerant-based measurement method of heat pump seasonal performances
JP3560497B2 (en) Refrigeration compressor test equipment
JP5487831B2 (en) Leakage diagnosis method and leak diagnosis apparatus
JP3490908B2 (en) Refrigerant refrigerant leak detection system
CN106151002B (en) A kind of multi-evaporation temperature system compressors performance testing device
JPH1183250A (en) Amount of refrigerant judging method of air conditioner
Zhao et al. Development of a stepped capillary tube as a low cost throttling device for a residential heat pump system
KR100882005B1 (en) Device for detecting the status of coolant charged in the heat exchange system and method for controllling the same
JPH0875280A (en) Freezing and air conditioning device with non-azeotropic mixture refrigerant
JPH07151432A (en) Insufficient refrigerant detector for refrigerator
JP3584274B2 (en) Refrigerant amount adjustment method and refrigerant amount determination device
CN114658644A (en) Two-stage compression two-stage throttling volumetric refrigerant compressor performance test system and test method
JPH04151475A (en) Method of judging enclosed amount of refrigerant for freezer
JPH07218058A (en) Refrigerating/air conditioning device having function for determining proper refrigerant amount

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term