JPH04151475A - Method of judging enclosed amount of refrigerant for freezer - Google Patents

Method of judging enclosed amount of refrigerant for freezer

Info

Publication number
JPH04151475A
JPH04151475A JP27338690A JP27338690A JPH04151475A JP H04151475 A JPH04151475 A JP H04151475A JP 27338690 A JP27338690 A JP 27338690A JP 27338690 A JP27338690 A JP 27338690A JP H04151475 A JPH04151475 A JP H04151475A
Authority
JP
Japan
Prior art keywords
refrigerant
enclosing
amount
temperature
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27338690A
Other languages
Japanese (ja)
Other versions
JP2915537B2 (en
Inventor
Tadashi Fujisaki
藤崎 忠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2273386A priority Critical patent/JP2915537B2/en
Publication of JPH04151475A publication Critical patent/JPH04151475A/en
Application granted granted Critical
Publication of JP2915537B2 publication Critical patent/JP2915537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To accurately and quantitatively judge an amount of enclosing refrigerant by a method wherein an enclosing rate of refrigerant and a ratio of connected pipe length are calculated in reference to a measured value of each of indoor temperature and outdoor temperature and calculated values of absorbing and discharging over-heated degree in view of a predetermined equation and then an enclosing amount of refrigerant is judged in reference to an enclosing rate of refrigerant. CONSTITUTION:A reaction among predetermined indoor temperature, outdoor temperature, absorbing over-heated degree, discharging over-heated degree, an enclosing rate of refrigerant and a ratio of connected pipe length is stored in a judgment device 10. The indoor temperature and the outdoor temperature are measured by temperature sensors 8 and 9. The absorbing over-heated degree and the discharging over-heated degree are calculated within the judgement device 10 in reference to the former measured value and the measured pressure values set by pressure sensors 11 and 12. These measured values and calculated values are substituted for the relation in the judgement device 10 and resolved. The enclosing rate of refrigerant and a rate of length of connected pipes are calculated and then the enclosing amount of refrigerant is judged from this enclosing rate of refrigerant. With such an arrangement, it is possible to apply an influence of the ratio of length of the connected pipes and to judge accurately an enclosing amount of refrigerant in its volumetric manner.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷凍機の冷媒封入量の判定方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for determining the amount of refrigerant enclosed in a refrigerator.

〔従来の技術〕[Conventional technology]

第7図は、従来の冷媒封入量判定方法を示す冷凍機の系
統図である。図において、1は圧縮機、2は圧縮機に連
る四方弁、3は同四方弁Gこ連る室内熱交換機、4は同
室内熱交換機3に連る絞り、5は同絞り4に連り、かつ
前記四方弁2に連る室外熱交換器、6は圧縮機1の吐出
配管、7は同吸入配管、17および18は前記絞り4の
前後の管路上に設けられたサイトグラスである。実線矢
印および図の四方弁2の中の実線は暖房運転時の冷媒の
流れ、破線矢印および図の四方弁2の中の破線は、冷房
運転時の冷媒の流れを示している。
FIG. 7 is a system diagram of a refrigerator showing a conventional method for determining the amount of refrigerant charged. In the figure, 1 is a compressor, 2 is a four-way valve connected to the compressor, 3 is an indoor heat exchanger connected to the four-way valve G, 4 is a throttle connected to the indoor heat exchanger 3, and 5 is connected to the same throttle 4. 6 is a discharge pipe of the compressor 1, 7 is a suction pipe thereof, and 17 and 18 are sight glasses provided on the pipes before and after the throttle 4. . The solid line arrow and the solid line inside the four-way valve 2 in the figure show the flow of refrigerant during heating operation, and the broken line arrow and the broken line inside the four-way valve 2 in the figure show the flow of refrigerant during cooling operation.

上記冷凍機は吐出配管6及び吸入配管7を介して圧縮機
1に接続された四方弁2に、室内熱交換器3、絞り4お
よび室外熱交換器5が順次接続されて閉サイクルの冷凍
サイクルを形成しているものであって、冷房運転時には
、図に点線で示すように圧縮機1より吐出された冷媒が
四方弁2、室外熱交換器5、絞り4、室内熱交換器3、
四方弁2を経て圧縮器1に戻り室内を冷房し、また暖房
運転時には、図に実線で示すように圧縮器1より吐出さ
れた冷媒が四方弁2、室内熱交換器3、絞り4、室外熱
交換器5、四方弁2を経て圧縮機1に戻り室内をIll
房するものである。上記絞り4は冷媒流量を冷房時及び
暖房時におけるそれぞれの必要な流量に調節するもので
ある。以上の作用によって、冷房、暖房の運転が行われ
る。サイトグラス17.18は冷凍機に入っている冷媒
封入量の適否の判定を行うために用いるものであって、
これは冷凍サイクルにおいて、冷媒封入量が、ローチャ
ージ状態、または、冷媒ガス漏れ状態では、第8図に示
すように、過冷却度が零以下となり、絞り4の前におい
て冷媒液がフラッシュ状態となる現象を利用して判定を
行うもので、サイトグラスを目視することによって、冷
媒封入量が適正かローチャージかどうかを判定するもの
である。なお、絞り4の前後のサイトグラス17.18
は暖房時と冷房時にそれぞれ使い分けるように設けられ
ているものである。
The above refrigerator has a closed cycle refrigeration cycle in which an indoor heat exchanger 3, an aperture 4, and an outdoor heat exchanger 5 are sequentially connected to a four-way valve 2 connected to a compressor 1 via a discharge pipe 6 and a suction pipe 7. During cooling operation, the refrigerant discharged from the compressor 1 passes through the four-way valve 2, the outdoor heat exchanger 5, the throttle 4, the indoor heat exchanger 3, as shown by the dotted line in the figure.
The refrigerant returns to the compressor 1 via the four-way valve 2 to cool the room, and during heating operation, the refrigerant discharged from the compressor 1 is sent to the four-way valve 2, indoor heat exchanger 3, throttle 4, and outdoors as shown by the solid line in the figure. Returns to compressor 1 via heat exchanger 5 and four-way valve 2
It is something to be kept. The throttle 4 is used to adjust the flow rate of the refrigerant to the required flow rate during cooling and heating. Cooling and heating operations are performed by the above actions. The sight glasses 17 and 18 are used to judge the suitability of the amount of refrigerant sealed in the refrigerator, and
This is because in a refrigeration cycle, when the amount of refrigerant charged is in a low charge state or in a state where refrigerant gas leaks, the degree of supercooling becomes zero or less, as shown in Figure 8, and the refrigerant liquid is in a flash state in front of the throttle 4. By visually observing the sight glass, it is possible to determine whether the amount of refrigerant filled is appropriate or low charging is being performed. In addition, sight glass 17.18 before and after aperture 4
are designed to be used separately for heating and cooling.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の判定方法においては、冷媒封入量がオーバチャー
ジの時は、適正時と同しく絞り4の前の冷媒はフラッシ
ュしておらず、したがって封入量が適切でないにもかか
わらず、そのことを判定することができなかった。また
、冷媒封入量が適正時でも、室内温度と室外温度の組合
せによっては、絞り4の前の冷媒がフラッシュすること
があり、正常に判定することができないことがあった。
In the conventional determination method, when the amount of refrigerant charged is overcharged, the refrigerant in front of the throttle 4 is not flushed, as is the case when it is correct, so this is determined even though the amount of refrigerant charged is not appropriate. I couldn't. In addition, even when the amount of refrigerant enclosed is appropriate, depending on the combination of indoor temperature and outdoor temperature, the refrigerant in front of the throttle 4 may flash, and a normal determination may not be possible.

更に、冷媒封入量が現在何%程度入っているのかを定量
的に判定することができなかった。
Furthermore, it was not possible to quantitatively determine the current percentage of the refrigerant enclosed.

また一方、接続配管長に関しては第9図に示す様に標準
長さに対する長短により運転状態が変化するので、絞り
4の前の冷媒のフラッシュ状態だけでは、冷媒封入量を
正常に判定する事ができないものである。特にビル用空
気調和機などに用いられる冷凍機では、接続配管長が最
大300mなどと非常に長くなるので、配管長の影響が
大きく、この点の考慮が必要であった。
On the other hand, as shown in Fig. 9, the operating conditions change depending on the length of the connecting piping compared to the standard length, so it is not possible to correctly determine the amount of refrigerant filled only by the flash state of the refrigerant before the throttle 4. It is something that cannot be done. In particular, in the case of refrigerators used in air conditioners for buildings, etc., the connecting piping length is extremely long, such as a maximum of 300 m, so the influence of the piping length is large, and this point needs to be taken into consideration.

本発明は、接続配管長比の影響も取入れ、かつ正確に定
量的に冷媒封入量を判定する方法を従供しようとするも
のである。
The present invention aims to provide a method that also incorporates the influence of the connection pipe length ratio and accurately and quantitatively determines the amount of refrigerant enclosed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記課題を解決したものであって、予め室内温
度、室外温度、吸入過熱度および吐出過熱度と、冷媒封
入率および接続配管長比との関係式を求めておき、室内
温度および室外温度の計測値、ならびに吸入過熱度およ
び吐出過熱度の計算値から、冷媒封入率と接続配管長比
を算出し、冷媒封入率から冷媒封入量を判定することを
特徴とする冷凍機の冷媒封入量判定方法に関するもので
ある。
The present invention solves the above-mentioned problem, and calculates in advance a relational expression between indoor temperature, outdoor temperature, suction superheat degree, discharge superheat degree, refrigerant filling rate and connection pipe length ratio, and then calculates the indoor temperature and outdoor temperature. Refrigerant filling of a refrigerator, characterized in that a refrigerant filling rate and a connection pipe length ratio are calculated from a measured temperature value and calculated values of suction superheating degree and discharge superheating degree, and the refrigerant filling amount is determined from the refrigerant filling rate. The present invention relates to a quantity determination method.

〔作用〕[Effect]

予め求めておかれた、室内温度、室外温度、吸入過熱度
および吐出過熱度と、冷媒封入率および接続配管長比と
の関係式は、例えば判定装置に記憶される。
The predetermined relational expressions between the indoor temperature, outdoor temperature, suction superheat degree, discharge superheat degree, refrigerant filling rate, and connection pipe length ratio are stored, for example, in the determination device.

室内温度と室外温度とは温度センサによって計測される
。上記計測値と圧計センサによる圧力計測値によって吸
入過熱度と吐出過熱度とが、上記判定装置の中で計算さ
れる。
The indoor temperature and outdoor temperature are measured by a temperature sensor. The degree of suction superheat and the degree of discharge superheat are calculated in the determination device based on the measured value and the pressure measured value by the pressure gauge sensor.

これらの計測値と計算値が上記判定装置の中で前記関係
式に代入されて解かれ、冷媒封入率と接続配管長率が算
出される。この冷媒封入率から冷媒封入量が判定される
These measured values and calculated values are substituted into the relational expression and solved in the determination device, and the refrigerant filling rate and the connection pipe length rate are calculated. The amount of refrigerant to be filled is determined from this refrigerant filling rate.

以上によって接続配管長比の影響を取り入れ、かつ正確
に定量的に冷媒封入量が判定される。
As described above, the amount of refrigerant to be filled can be accurately and quantitatively determined while taking into account the influence of the connection pipe length ratio.

〔実施例〕〔Example〕

第1図は本発明の冷媒封入量判定方法の一実施例を示す
冷凍機の系統図である。図において、符号1〜7を付し
た部分の構成および作用は従来技術と同じである。11
は吐出配管6に設けられた圧力センサ、13は同温度セ
ンサ、12は吸入配管7に設けられた圧力センサ、14
は同温度センサ、8は室内熱交換器3に設けられた温度
センサ、9は室外熱交換器5に設けられた温度センサ、
10は上記圧力センサ11,12、および温度センサ8
,9,13.14がそれぞれ接続されている判定装置、
21は同判定装置内に設けられているマルチプレクサ、
22は同じ<A/D変換器、20は同しくコントローラ
、26は同コントローラ20に接続されている運転モー
ド回路、23゜24、および25は上記判定装置10に
連る表示装置である。
FIG. 1 is a system diagram of a refrigerator showing an embodiment of the method for determining the amount of refrigerant charged according to the present invention. In the figure, the structures and functions of the parts numbered 1 to 7 are the same as those of the prior art. 11
13 is a pressure sensor provided in the discharge pipe 6, 13 is a temperature sensor, 12 is a pressure sensor provided in the suction pipe 7, 14
8 is the same temperature sensor, 8 is the temperature sensor provided in the indoor heat exchanger 3, 9 is the temperature sensor provided in the outdoor heat exchanger 5,
10 is the pressure sensor 11, 12 and the temperature sensor 8.
, 9, 13 and 14 are respectively connected to the determination device,
21 is a multiplexer provided in the determination device;
22 is the same A/D converter, 20 is also the controller, 26 is an operation mode circuit connected to the controller 20, and 23, 24, and 25 are display devices connected to the determination device 10.

第2図は吐出配管6に設けられた圧力センサ11と温度
センサ13の取付は状態を示す断面図である。
FIG. 2 is a sectional view showing how the pressure sensor 11 and temperature sensor 13 provided in the discharge pipe 6 are installed.

第3図は判定装置10に連る機器と同判定装置内部の機
器との接続図である。吐出配管6の中の高圧圧力と吐出
温度が圧力センサ11と温度センサ13によりおなし箇
所で計測される。同様に、吸入配管7の中の低圧圧力と
吸入温度が圧力センサ12と温度センサ14により同じ
箇所で計測される。室内温度は温度センサ8により、ま
た、室外温度は温度センサ9により計測される。上記圧
力センサ11,12と温度センサ8,9,13゜14に
より計測された計測値は、判定装置10に入力され、同
判定装置10ではマルチプレクサ21によって1点ずつ
A/D変換回路22に送り出され、順次計測値がアナロ
グ値からディジタル値に変換されて、コントローラ20
に入力される。
FIG. 3 is a connection diagram of equipment connected to the determination device 10 and equipment inside the determination device. The high pressure in the discharge pipe 6 and the discharge temperature are measured by a pressure sensor 11 and a temperature sensor 13 at the discharge point. Similarly, the low pressure and suction temperature in the suction pipe 7 are measured at the same location by the pressure sensor 12 and the temperature sensor 14. The indoor temperature is measured by a temperature sensor 8, and the outdoor temperature is measured by a temperature sensor 9. The measurement values measured by the pressure sensors 11, 12 and temperature sensors 8, 9, 13° 14 are input to the determination device 10, and in the determination device 10, the multiplexer 21 sends them one by one to the A/D conversion circuit 22. The measured values are sequentially converted from analog values to digital values and sent to the controller 20.
is input.

第4図は、−数的な冷凍機において、冷凍機にかかる負
荷を大中小と変化させて運転した時の、配管長比と吐出
過熱度との関係図である。パラメータとして、冷媒封入
率を80,100,120%と変化させである。横軸の
配管長比は100〜400%の範囲を示しである。第5
図は、同様な運転条件における配管長比と吸入過熱度と
の関係図である。第4図、第5図の関係を回帰式で表す
と次のようになる。
FIG. 4 is a diagram showing the relationship between the pipe length ratio and the discharge superheat degree when a numerical refrigerator is operated with the load applied to the refrigerator varied from large to medium and small. As a parameter, the refrigerant filling rate was changed to 80, 100, and 120%. The pipe length ratio on the horizontal axis is in the range of 100 to 400%. Fifth
The figure is a diagram showing the relationship between the pipe length ratio and the degree of suction superheat under similar operating conditions. The relationship in FIGS. 4 and 5 can be expressed as a regression equation as follows.

冷媒封入率=a、+a、X吸入過熱度+at×吐出過熱
度+a、X室内温度 +a4×室外温度十a。
Refrigerant filling rate = a, +a, X suction superheat degree + at x discharge superheat degree + a, X indoor temperature + a4 x outdoor temperature 10 a.

×接続配管長比−−−−−−−−−−−−−一−−−−
−−・・−(1)接続配管長比=bo +b+ x吸入
過熱度+bア×吐出過熱度十す、X室内温度 +b4×室外温度十す。
×Connection piping length ratio-------
--...- (1) Connection pipe length ratio = bo + b + x degree of suction superheat + b a x degree of discharge superheat + x indoor temperature + b4 x outdoor temperature x.

×冷媒封入率−−−−−−−−−・−−−−−−−−−
−−−−−−(2)式中の係数a0〜aS、b6〜b5
は事前に求められている。このようにして確定した上記
式(1)。
×Refrigerant filling rate−−−−−−−−・−−−−−−−−−
----- Coefficients a0 to aS, b6 to b5 in formula (2)
is required in advance. The above formula (1) was determined in this way.

(2)が第1図、第3図に示したコントローラ20に記
憶されている。
(2) is stored in the controller 20 shown in FIGS. 1 and 3.

第6図は室内・室外温度の計測、吸入過熱度の算出、吐
出過熱度の算出の順序を示すフローチャートである。こ
の手段によって得られた上記の各々の値を前記回帰式(
1)、 (2)に代入して整理すると次式のようになる
FIG. 6 is a flowchart showing the order of measuring indoor and outdoor temperatures, calculating the degree of suction superheat, and calculating the degree of discharge superheat. Each of the above values obtained by this means is calculated using the regression equation (
Substituting into 1) and (2) and rearranging, we get the following formula.

冷媒封入率=a、’X接続配管長比+a0接続配管長比
=b1′×冷媒封入率十b0これは連立方程式として解
くことが可能なものであり、コシトローラ20の中でこ
の解が求められ、冷媒封入率が算出される。このように
して算出された冷媒封入率に応じて、ローチャージの時
は表示器23、適正チャージの時は表示器24、オーバ
チャージの時は表示器25を作動させる。
Refrigerant filling rate = a, 'X connection pipe length ratio + a0 connection pipe length ratio = b1' , the refrigerant filling rate is calculated. According to the refrigerant filling rate calculated in this manner, the display 23 is operated when low charging is performed, the display 24 is activated when appropriate charging is performed, and the display 25 is activated when overcharging is performed.

以上詳述した方法により、冷凍機内に封入されている冷
媒量の正確な判定が可能となる。
The method detailed above makes it possible to accurately determine the amount of refrigerant sealed in the refrigerator.

〔発明の効果〕〔Effect of the invention〕

本発明の、冷凍機の冷媒封入量判定方法においては、予
め室内温度、室外温度、吸入過熱度および吐出過熱度と
、冷媒封入率および接続配管長比との関係式を求めてお
き、室内温度および室外温度の計測値、ならびに吸入過
熱度および吐出過熱度の計算値から、冷媒封入率と接続
配管長比を算出し、冷媒封入率から冷媒封入量を判定す
るので、接続配管長比の影響を取入れ、かつ正確に定量
的に冷媒封入量の判定を行うことができる。これによっ
て、オーバチャージやローチャージ等によって発生する
圧縮機の損傷が防止でき、現地での冷凍機の据付時にお
いても冷媒量の適正チャージが可能となる。
In the method of determining the amount of refrigerant charged in a refrigerator according to the present invention, a relational expression between indoor temperature, outdoor temperature, suction superheat degree, discharge superheat degree, refrigerant charge ratio, and connection pipe length ratio is determined in advance, and the indoor temperature The refrigerant filling rate and the connection pipe length ratio are calculated from the measured values of the indoor and outdoor temperatures, and the calculated values of the suction superheat degree and the discharge superheat degree, and the refrigerant charge amount is determined from the refrigerant filling rate, so the influence of the connection pipe length ratio The amount of refrigerant enclosed can be determined accurately and quantitatively. As a result, damage to the compressor caused by overcharging, undercharging, etc. can be prevented, and an appropriate amount of refrigerant can be charged even when the refrigerator is installed on site.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の一実施例を示す冷凍機の系統図
、第2図は吐出配管に設けられた圧力センサと温度セン
サの取付は状態を示す断面図、第3図は判定装置に連る
機器と同判定装置内部の機器の接続図、第4図は接続配
管長比と吐出過熱度との関係図、第5図は接続配管長比
と吸入過熱度との関係図、第6図は温度の計測、過熱度
の算出のフローチャート、第7図は従来の冷媒封入量判
定方法を示す冷凍機の系統図、第8図は冷媒量を変化さ
せた時の冷凍サイクルにおけるモリエル線図上でのエタ
ルピと圧力の関係図、第9図は接続配管長を変化させた
時のモリエル線図上でのエンタルピと圧力の関係図であ
る。 l・・・圧縮機、 2・・・四方弁、 3・・・室内熱交換器、 4・・・絞り、5・・・室外
熱交換器、 6・・・吐出配管、7・・・吸入配管、 
8・・・温度センサ、9・・・温度センサ、  10・
・・判定装置、11・・・圧力センサ、  12・・・
圧力センサ、13・・・温度センサ、  14・・・温
度センサ、20・・・コントローラ、 21・・・マルチプレクサ、 22・・・A/D変換器、 23・・・表示器、24・
・・表示器、 25・・・表示器、26・・・運転モー
ド回路。
Fig. 1 is a system diagram of a refrigerator showing an embodiment of the method of the present invention, Fig. 2 is a cross-sectional view showing the installation state of the pressure sensor and temperature sensor provided in the discharge pipe, and Fig. 3 is a determination device. Figure 4 is a diagram showing the relationship between the connecting piping length ratio and the degree of discharge superheat. Figure 5 is a diagram showing the relationship between the connecting piping length ratio and the degree of suction superheat. Figure 6 is a flowchart for measuring temperature and calculating the degree of superheat. Figure 7 is a system diagram of a refrigerator showing the conventional method for determining the amount of refrigerant charged. Figure 8 is the Mollier line in the refrigeration cycle when changing the amount of refrigerant. FIG. 9 is a diagram showing the relationship between enthalpy and pressure on the Mollier diagram when the connecting pipe length is changed. 1... Compressor, 2... Four-way valve, 3... Indoor heat exchanger, 4... Throttle, 5... Outdoor heat exchanger, 6... Discharge piping, 7... Suction Piping,
8... Temperature sensor, 9... Temperature sensor, 10.
...Determination device, 11...Pressure sensor, 12...
Pressure sensor, 13... Temperature sensor, 14... Temperature sensor, 20... Controller, 21... Multiplexer, 22... A/D converter, 23... Display, 24...
...Display device, 25...Display device, 26...Operation mode circuit.

Claims (1)

【特許請求の範囲】[Claims]  予め室内温度、室外温度、吸入過熱度および吐出過熱
度と、冷媒封入率および接続配管長比との関係式を求め
ておき、室内温度および室外温度の計測値、ならびに吸
入過熱度および吐出過熱度の計算値から、冷媒封入率と
接続配管長比を算出し、冷媒封入率から冷媒封入量を判
定することを特徴とする冷凍機の冷媒封入量判定方法。
The relational expressions between indoor temperature, outdoor temperature, suction superheat degree, and discharge superheat degree, refrigerant filling rate, and connection piping length ratio are determined in advance, and the measured values of indoor temperature and outdoor temperature, suction superheat degree, and discharge superheat degree are calculated. A method for determining the amount of refrigerant charged in a refrigerator, comprising: calculating a refrigerant filling rate and a connection pipe length ratio from the calculated value, and determining the amount of refrigerant filled from the refrigerant filling rate.
JP2273386A 1990-10-15 1990-10-15 How to determine the amount of refrigerant in the refrigerator Expired - Fee Related JP2915537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2273386A JP2915537B2 (en) 1990-10-15 1990-10-15 How to determine the amount of refrigerant in the refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2273386A JP2915537B2 (en) 1990-10-15 1990-10-15 How to determine the amount of refrigerant in the refrigerator

Publications (2)

Publication Number Publication Date
JPH04151475A true JPH04151475A (en) 1992-05-25
JP2915537B2 JP2915537B2 (en) 1999-07-05

Family

ID=17527176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2273386A Expired - Fee Related JP2915537B2 (en) 1990-10-15 1990-10-15 How to determine the amount of refrigerant in the refrigerator

Country Status (1)

Country Link
JP (1) JP2915537B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027314A1 (en) * 1997-11-21 1999-06-03 Daikin Industries, Ltd. Refrigerator and method of filling it with coolant
WO2007049372A1 (en) 2005-10-25 2007-05-03 Mitsubishi Electric Corporation Air-conditioning apparatus, method of refrigerant filling in air-conditioning apparatus, method of judging state of refrigerant filling in air-conditioning apparatus, and method of refrigerant filling/piping cleaning for air-conditioning apparatus
WO2007086506A1 (en) * 2006-01-30 2007-08-02 Daikin Industries, Ltd. Air conditioner
JP2012007848A (en) * 2010-06-28 2012-01-12 Daikin Industries Ltd Refrigerating unit
US8215121B2 (en) 2005-04-07 2012-07-10 Daikin Industries, Ltd. Refrigerant quantity determining system of air conditioner
CN106766304A (en) * 2016-12-22 2017-05-31 中科美菱低温科技股份有限公司 A kind of separate type cryogenic refrigeration equipment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999027314A1 (en) * 1997-11-21 1999-06-03 Daikin Industries, Ltd. Refrigerator and method of filling it with coolant
US6233961B1 (en) 1997-11-21 2001-05-22 Daikin Industries, Ltd. Refrigerator and method of filling it with coolant
US8215121B2 (en) 2005-04-07 2012-07-10 Daikin Industries, Ltd. Refrigerant quantity determining system of air conditioner
WO2007049372A1 (en) 2005-10-25 2007-05-03 Mitsubishi Electric Corporation Air-conditioning apparatus, method of refrigerant filling in air-conditioning apparatus, method of judging state of refrigerant filling in air-conditioning apparatus, and method of refrigerant filling/piping cleaning for air-conditioning apparatus
US8087258B2 (en) 2005-10-25 2012-01-03 Mitsubishi Electric Corporation Air conditioner, refrigerant filling method of air conditioner, method for judging refrigerant filling state of air conditioner as well as refrigerant filling and pipe cleaning method of air conditioner
US9103574B2 (en) 2005-10-25 2015-08-11 Mitsubishi Electric Corporation Air conditioner, refrigerant filling method of air conditioner, method for judging refrigerant filling state of air conditioner as well as refrigerant filling and pipe cleaning method of air conditioner
WO2007086506A1 (en) * 2006-01-30 2007-08-02 Daikin Industries, Ltd. Air conditioner
JP2007198710A (en) * 2006-01-30 2007-08-09 Daikin Ind Ltd Air conditioner
AU2007208694B2 (en) * 2006-01-30 2010-04-01 Daikin Industries, Ltd. Air conditioner
US7997093B2 (en) 2006-01-30 2011-08-16 Daikin Industries, Ltd. Air conditioner
JP2012007848A (en) * 2010-06-28 2012-01-12 Daikin Industries Ltd Refrigerating unit
CN106766304A (en) * 2016-12-22 2017-05-31 中科美菱低温科技股份有限公司 A kind of separate type cryogenic refrigeration equipment

Also Published As

Publication number Publication date
JP2915537B2 (en) 1999-07-05

Similar Documents

Publication Publication Date Title
US5214918A (en) Refrigerator and method for indicating refrigerant amount
US10775084B2 (en) System for refrigerant charge verification
KR101207004B1 (en) Air conditioner
JP4317878B2 (en) Air conditioner and method for judging refrigerant amount
US9188376B2 (en) Refrigerant charge assisting device, air-conditioning apparatus, and refrigerant charge assisting program
CN107289599B (en) Device and method for detecting leakage amount of air conditioner refrigerant
KR20090013187A (en) Air conditioner
WO2007086445A1 (en) Air conditioner
CN107631527B (en) Method and system for detecting whether variable-frequency refrigeration equipment lacks refrigerant
JPH0821675A (en) Air conditioner and refrigerant quantity-determining method therefor
JPS62158966A (en) Air conditioner with detector for quantity of refrigerant
JPH04151475A (en) Method of judging enclosed amount of refrigerant for freezer
JP2017075760A (en) Air conditioner
KR100670603B1 (en) Automatic Refrigerant Charging Apparatus for Air-Conditioner
JPH1183250A (en) Amount of refrigerant judging method of air conditioner
JP3490908B2 (en) Refrigerant refrigerant leak detection system
JP2008051496A (en) Air conditioner
JP3584274B2 (en) Refrigerant amount adjustment method and refrigerant amount determination device
JP2007292429A (en) Air conditioner
JP3560497B2 (en) Refrigeration compressor test equipment
JPH043866A (en) Method of discriminating enclosing amount of refrigerant in freezer
JPH0311278A (en) Detector for storage of quantity of refrigerant sealed into air conditioner
JPH06117736A (en) Detecting device for sealed refrigerant quantity
JPH07218058A (en) Refrigerating/air conditioning device having function for determining proper refrigerant amount
Baxter et al. Experimental Evaluation of Refrigerant Leak Characteristics for Different HVAC&R Equipment Types

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees