JP2915537B2 - How to determine the amount of refrigerant in the refrigerator - Google Patents

How to determine the amount of refrigerant in the refrigerator

Info

Publication number
JP2915537B2
JP2915537B2 JP2273386A JP27338690A JP2915537B2 JP 2915537 B2 JP2915537 B2 JP 2915537B2 JP 2273386 A JP2273386 A JP 2273386A JP 27338690 A JP27338690 A JP 27338690A JP 2915537 B2 JP2915537 B2 JP 2915537B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
amount
superheat degree
pipe length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2273386A
Other languages
Japanese (ja)
Other versions
JPH04151475A (en
Inventor
忠司 藤▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2273386A priority Critical patent/JP2915537B2/en
Publication of JPH04151475A publication Critical patent/JPH04151475A/en
Application granted granted Critical
Publication of JP2915537B2 publication Critical patent/JP2915537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷凍機の冷媒封入量の判定方法に関するも
のである。
Description: TECHNICAL FIELD The present invention relates to a method for determining the amount of refrigerant charged in a refrigerator.

〔従来の技術〕[Conventional technology]

第7図は、従来の冷媒封入量判定方法を示す冷凍機の
系統図である。図において、1は圧縮機、2は圧縮機に
連る四方弁、3は同四方弁に連る室内熱交換機、4は同
室内熱交換機3に連る絞り、5は同絞り4に連り、かつ
前記四方弁2に連る室外熱交換器、6は圧縮機1の吐出
配管、7は同吸入配管、17および18は前記絞り4の前後
の管路上に設けられたサイトグラスである。実線矢印お
よび図の四方弁2の中の実線は暖房運転時の冷媒の流
れ、破線矢印および図の四方弁2の中の破線は、冷房運
転時の冷媒の流れを示している。
FIG. 7 is a system diagram of a refrigerator showing a conventional method of determining the amount of charged refrigerant. In the figure, 1 is a compressor, 2 is a four-way valve connected to the compressor, 3 is an indoor heat exchanger connected to the four-way valve, 4 is a throttle connected to the indoor heat exchanger 3, and 5 is connected to the same throttle 4. And an outdoor heat exchanger connected to the four-way valve 2, 6 is a discharge pipe of the compressor 1, 7 is the same suction pipe, and 17 and 18 are sight glasses provided on pipes before and after the throttle 4. The solid arrows and the solid lines in the four-way valve 2 in the figure show the flow of the refrigerant during the heating operation, and the broken arrows and the broken lines in the four-way valve 2 in the figure show the flow of the refrigerant during the cooling operation.

上記冷凍機は吐出配管6及び吸入配管7を介して圧縮
機1に接続された四方弁2に、室内熱交換器3、絞り4
および室外熱交換器5が順次接続されて閉サイクルの冷
凍サイクルを形成しているものであって、冷房運転時に
は、図に点線で示すように圧縮機1より吐出された冷媒
が四方弁2、室外熱交換器5、絞り4、室内熱交換器
3、四方弁2を経て圧縮器1に戻り室内を冷房し、また
暖房運転時には、図に実線で示すように圧縮器1より吐
出された冷媒が四方弁2、室内熱交換器3、絞り4、室
外熱交換器5、四方弁2を経て圧縮機1に戻り室内を暖
房するものである。上記絞り4は冷媒流量を冷房時及び
暖房時におけるそれぞれの必要な流量に調節するもので
ある。以上の作用によって、冷房、暖房の運転が行われ
る。サイトグラス17,18は冷凍機に入っている冷媒封入
量の適否の判定を行うために用いるものであって、これ
は冷凍サイクルにおいて、冷媒封入量が、ローチャージ
状態、または、冷媒ガス漏れ状態では、第8図に示すよ
うに、過冷却度が零以下となり、絞り4の前において冷
媒液がフラッシュ状態となる現象を利用して判定を行う
もので、サイトグラスを目視することによって、冷媒封
入量が適正かローチャージかどうかを判定するものであ
る。なお、絞り4の前後のサイトグラス17,18は暖房時
と冷房時にそれぞれ使い分けるように設けられているも
のである。
The refrigerator includes a four-way valve 2 connected to the compressor 1 via a discharge pipe 6 and a suction pipe 7 and an indoor heat exchanger 3 and a throttle 4.
And the outdoor heat exchanger 5 are sequentially connected to form a closed-cycle refrigeration cycle. During the cooling operation, the refrigerant discharged from the compressor 1 is supplied to the four-way valve 2 as shown by a dotted line in FIG. The refrigerant returns to the compressor 1 via the outdoor heat exchanger 5, the throttle 4, the indoor heat exchanger 3, and the four-way valve 2 to cool the room. In the heating operation, the refrigerant discharged from the compressor 1 as shown by a solid line in the figure. Returns to the compressor 1 through the four-way valve 2, the indoor heat exchanger 3, the throttle 4, the outdoor heat exchanger 5, and the four-way valve 2, and heats the room. The throttle 4 adjusts the flow rate of the refrigerant to the required flow rate during cooling and during heating, respectively. By the above operation, cooling and heating operations are performed. The sight glasses 17 and 18 are used to determine whether or not the amount of the refrigerant charged in the refrigerator is appropriate. In the refrigeration cycle, the amount of the charged refrigerant is in the low charge state or the refrigerant gas leakage state. In FIG. 8, as shown in FIG. 8, the judgment is made by utilizing the phenomenon that the degree of supercooling becomes equal to or less than zero and the refrigerant liquid is in a flash state before the throttle 4. It is to judge whether the amount of filling is proper or low charge. The sight glasses 17 and 18 before and after the aperture 4 are provided so as to be used separately for heating and cooling.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の判定方法においては、冷媒封入量がオーバチャ
ージの時は、適正時と同じく絞り4の前の冷媒はフラッ
シュしておらず、したがって封入量が適切でないにもか
かわらず、そのことを判定することができなかった。ま
た、冷媒封入量が適正時でも、室内温度と室外温度の組
合せによっては、絞り4の前の冷媒がフラッシュするこ
とがあり、正常に判定することができないことがあっ
た。更に、冷媒封入量が現在何%程度入っているのかを
定量的に判定することができなかった。
In the conventional determination method, when the amount of charged refrigerant is overcharged, the refrigerant in front of the throttle 4 is not flushed as in the case of proper charging, and therefore, it is determined even though the charged amount is not appropriate. I couldn't do that. Further, even when the amount of charged refrigerant is appropriate, the refrigerant in front of the throttle 4 may flash depending on the combination of the indoor temperature and the outdoor temperature, and the determination may not be performed normally. Furthermore, it has not been possible to quantitatively determine what percentage of the refrigerant charge is present.

また一方、接続配管長に関しては第9図に示す様に標
準長さに対する長短により運転状態が変化するので、絞
り4の前の冷媒のフラッシュ状態だけでは、冷媒封入量
を正常に判定する事ができないものである。特にビル用
空気調和機などに用いられる冷凍機では、接続配管長が
最大300mなどと非常に長くなるので、配管長の影響が大
きく、この点の考慮が必要であった。
On the other hand, as shown in FIG. 9, the operating state of the connection pipe varies depending on the length relative to the standard length. Therefore, it is possible to determine the refrigerant charging amount normally only by the flush state of the refrigerant before the throttle 4. It cannot be done. Especially in refrigerators used for air conditioners for buildings, etc., the connection pipe length is extremely long, such as 300 m at the maximum, so the influence of the pipe length is great, and this point must be considered.

本発明は、接続配管長比の影響も取入れ、かつ正確に
定量的に冷媒封入量を判定する方法を提供しようとする
ものである。
An object of the present invention is to provide a method for accurately and quantitatively determining the amount of refrigerant to be charged while taking into account the influence of the connection pipe length ratio.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は前記課題を解決したものであって、予め室内
温度、室外温度、吸入過熱度および吐出過熱度と、冷媒
封入率および接続配管長比との関係式を求めておき、室
内温度および室外温度の計測値、ならびに吸入過熱度お
よび吐出過熱度の計算値から、冷媒封入率と接続配管長
比を算出し、冷媒封入率から冷媒封入量を判定すること
を特徴とする冷凍機の冷媒封入量判定方法に関するもの
である。
The present invention has solved the above-mentioned problem, and previously obtained a relational expression between the indoor temperature, the outdoor temperature, the suction superheat degree and the discharge superheat degree, and the refrigerant encapsulation rate and the connection pipe length ratio, thereby obtaining the indoor temperature and the outdoor temperature. Refrigerant charging of a refrigerator characterized by calculating a refrigerant charging ratio and a connection pipe length ratio from a measured value of a temperature and a calculated value of a suction superheat degree and a discharge superheat degree, and judging a refrigerant charging amount from the refrigerant charging ratio. It relates to a method for determining the amount.

〔作用〕[Action]

予め求めておかれた、室内温度、室外温度、吸入過熱
度および吐出過熱度と、冷媒封入率および接続配管長比
との関係式は、例えば判定装置に記憶される。
The relational expressions of the indoor temperature, the outdoor temperature, the suction superheat degree and the discharge superheat degree, the refrigerant encapsulation rate and the connection pipe length ratio, which have been obtained in advance, are stored in, for example, a determination device.

室内温度と室外温度とは温度センサによって計測され
る。上記計測値と圧計センサによる圧力計測値によって
吸入過熱度と吐出過熱度とが、上記判定装置の中で計算
される。
The indoor temperature and the outdoor temperature are measured by a temperature sensor. The suction superheat degree and the discharge superheat degree are calculated in the determination device based on the measured value and the pressure measured value obtained by the pressure gauge sensor.

これらの計測値と計算値が上記判定装置の中で前記関
係式に代入されて解かれ、冷媒封入率と接続配管長率が
算出される。この冷媒封入率から冷媒封入量が判定され
る。
These measured values and calculated values are substituted into the above-mentioned relational expressions in the above-described determination device and solved, and the refrigerant charging rate and the connection pipe length rate are calculated. The refrigerant charging amount is determined from the refrigerant charging rate.

以上によって接続配管長比の影響を取り入れ、かつ正
確に定量的に冷媒封入量が判定される。
As described above, the influence of the connection pipe length ratio is taken into account, and the amount of refrigerant to be charged is accurately and quantitatively determined.

〔実施例〕〔Example〕

第1図は本発明の冷媒封入量判定方法の一実施例を示
す冷凍機の系統図である。図において、符号1〜7を付
した部分の構成および作用は従来技術と同じである。11
は吐出配管6に設けられた圧力センサ、13は同温度セン
サ、12は吸入配管7に設けられた圧力センサ、14は同温
度センサ、8は室内熱交換器3に設けられた温度セン
サ、9は室外熱交換器5に設けられた温度センサ、10は
上記圧力センサ11、12、および温度センサ8,9,13,14が
それぞれ接続されている判定装置、21は同判定装置内に
設けられているマルチプレクサ、22は同じくA/D変換
器、20は同じくコントローラ、26は同コントローラ20に
接続されている運転モード回路、23,24、および25は上
記判定装置10に連る表示装置である。
FIG. 1 is a system diagram of a refrigerator showing an embodiment of a refrigerant charging amount determination method of the present invention. In the figure, the configuration and operation of the portions denoted by reference numerals 1 to 7 are the same as those of the conventional technology. 11
Is a pressure sensor provided in the discharge pipe 6, 13 is the same temperature sensor, 12 is a pressure sensor provided in the suction pipe 7, 14 is the same temperature sensor, 8 is a temperature sensor provided in the indoor heat exchanger 3, 9 Is a temperature sensor provided in the outdoor heat exchanger 5, 10 is a judging device to which the pressure sensors 11, 12 and the temperature sensors 8, 9, 13, 14 are respectively connected, and 21 is provided in the judging device. A multiplexer, 22 is also an A / D converter, 20 is a controller, 26 is an operation mode circuit connected to the controller 20, and 23, 24, and 25 are display devices connected to the determination device 10. .

第2図は吐出配管6に設けられた圧力センサ11と温度
センサ13の取付け状態を示す断面図である。
FIG. 2 is a cross-sectional view showing a state where the pressure sensor 11 and the temperature sensor 13 provided in the discharge pipe 6 are mounted.

第3図は判定装置10に連る機器と同判定装置内部の機
器との接続図である。吐出配管6の中の高圧圧力と吐出
温度が圧力センサ11と温度センサ13によりおなじ箇所で
計測される。同様に、吸入配管7の中の低圧圧力と吸入
温度が圧力センサ12と温度センサ14により同じ箇所で計
測される。室内温度は温度センサ8により、また、室外
温度は温度センサ9により計測される。上記圧力センサ
11、12と温度センサ8,9,13,14により計測された計測値
は、判定装置10に入力され、同判定装置10ではマルチプ
レクサ21によって1点ずつA/D変換回路22に送り出さ
れ、順次計測値がアナログ値からディジタル値に変換さ
れて、コントローラ20に入力される。
FIG. 3 is a connection diagram of devices connected to the determination device 10 and devices inside the determination device. The high pressure and the discharge temperature in the discharge pipe 6 are measured at the same place by the pressure sensor 11 and the temperature sensor 13. Similarly, the low pressure and the suction temperature in the suction pipe 7 are measured by the pressure sensor 12 and the temperature sensor 14 at the same place. The indoor temperature is measured by the temperature sensor 8, and the outdoor temperature is measured by the temperature sensor 9. Above pressure sensor
The measurement values measured by the temperature sensors 11, 12, and the temperature sensors 8, 9, 13, 14 are input to the determination device 10, and are sent out to the A / D conversion circuit 22 one by one by the multiplexer 21 in the determination device 10, and sequentially. The measured value is converted from an analog value to a digital value and input to the controller 20.

第4図は、一般的な冷凍機において、冷凍機にかかる
負荷を大中小と変化させて運転した時の、配管長比と吐
出過熱度との関係図である。パラメータとして、冷媒封
入率を80,100,120%と変化させてある。横軸の配管長比
は100〜400%の範囲を示してある。即ち、第9図に示す
ように、接続配管長が長くなると吸入圧損が増大するた
め圧力(吸入圧力)は低下する。その結果、圧縮機1の
能力が低下し、蒸発器(第1図において冷房時は室内熱
交換器3)での熱交換能力が減少する。
FIG. 4 is a diagram showing a relationship between a pipe length ratio and a discharge superheat degree when a general refrigerator is operated while changing a load applied to the refrigerator to large, medium, or small. As a parameter, the refrigerant charging rate is changed to 80,100,120%. The pipe length ratio on the horizontal axis indicates a range of 100 to 400%. That is, as shown in FIG. 9, when the connection pipe length becomes longer, the suction pressure loss increases, so that the pressure (suction pressure) decreases. As a result, the capacity of the compressor 1 decreases, and the heat exchange capacity of the evaporator (the indoor heat exchanger 3 during cooling in FIG. 1) decreases.

しかしながら、絞り4がキャピラリチューブ等の一定
絞り機構の場合は、上記熱交換能力の低下に伴なって流
量が減少せず、流量過多の傾向となる。このため吸入過
熱度は小さくなって、いわゆる「液バック」状態となる
とともに、吐出過熱度も小さくなる。
However, when the throttle 4 is a fixed throttle mechanism such as a capillary tube, the flow rate does not decrease with the decrease in the heat exchange capacity, and the flow rate tends to be excessive. For this reason, the degree of suction superheat is reduced, so that a so-called “liquid back” state is achieved, and the degree of discharge superheat is also reduced.

第4図は、上記の状態を示しており、同図に示すよう
に、同一負荷と同一封入量としたとき、接続配管長が長
くなると吐出過熱度は減少することとなる。第5図は、
同様な運転条件における配管長比と吸入過熱度との関係
図である。第4図、第5図の関係を回帰式で表すと次の
ようになる。
FIG. 4 shows the above state. As shown in FIG. 4, when the same load and the same filling amount are used, the discharge superheat degree decreases as the connection pipe length increases. FIG.
FIG. 4 is a diagram showing a relationship between a pipe length ratio and a suction superheat degree under similar operating conditions. 4 and 5 are represented by a regression equation as follows.

冷媒封入率=a0+a1×吸入過熱度+a2×吐出過熱度+a3
×室内温度+a4×室外温度+a5×接続配管長比 ……(1) 接続配管長比=b0+b1×吸入過熱度+b2×吐出過熱度+
b3×室内温度+b4×室外温度+b5×冷媒封入率 ……(2) 式中の係数a0〜a5、b0〜b5は事前に求められている。こ
のようにして確定した上記式(1),(2)が第1図、
第3図に示したコントローラ20に記憶されている。
Refrigerant sealing ratio = a 0 + a 1 × suction superheat + a 2 × discharge superheat + a 3
× indoor temperature + a 4 × outdoor temperature + a 5 × connection pipe length ratio ... (1) connected pipe length ratio = b 0 + b 1 × suction superheat + b 2 × discharge superheat +
b 3 × room temperature + b 4 × outdoor temperature + b coefficient of 5 × refrigerant encapsulation efficiency ... (2) where a 0 ~a 5, b 0 ~b 5 are sought in advance. Equations (1) and (2) determined in this way are shown in FIG.
It is stored in the controller 20 shown in FIG.

第6図は室内・室外温度の計測、吸入過熱度の算出、
吐出過熱度の算出の順序を示すフローチャートである。
この手段によって得られた上記の各々の値を前記回帰式
(1),(2)に代入して整理すると次式のようにな
る。
FIG. 6 shows measurement of indoor / outdoor temperature, calculation of suction superheat,
It is a flowchart which shows the order of calculation of a discharge superheat degree.
Each of the above values obtained by this means is substituted into the regression equations (1) and (2) and arranged as follows.

冷媒封入率=a1′×接続配管長比+a0′ ……(3) 接続配管長比=b1′×冷媒封入率+b0′ ……(4) これは連立方程式として解くことが可能なものであり、
コントローラ20の中でこの解が求められ、冷媒封入率が
算出される。このようにして算出された冷媒封入率に応
じて、ローチャージの時は表示器23、適正チャージの時
は表示器24、オーバチャージの時は表示器25を作動させ
る。
Refrigerant sealing ratio = a 1 '× connection pipe length ratio + a 0' ...... (3) connected pipe length ratio = b 1 '× refrigerant encapsulation rate + b 0' ...... (4) which is capable of solving the simultaneous equations Things,
This solution is obtained in the controller 20, and the refrigerant charging rate is calculated. In accordance with the refrigerant charging rate calculated in this way, the display 23 is operated at the time of low charge, the display 24 at the time of proper charge, and the display 25 at the time of overcharge.

以上詳述した方法により、冷凍機内に封入されている
冷媒量の正確な判定が可能となる。
By the method described in detail above, it is possible to accurately determine the amount of the refrigerant sealed in the refrigerator.

〔発明の効果〕 本発明の、冷凍機の冷媒封入量判定方法においては、
予め室内温度、室外温度、吸入過熱度および吐出過熱度
と、冷媒封入率および接続配管長比との関係式を求めて
おき、室内温度および室外温度の計測値、ならびに吸入
過熱度および吐出過熱度の計算値から、冷媒封入率と接
続配管長比を算出し、冷媒封入率から冷媒封入量を判定
するので、接続配管長比の影響を取入れ、かつ正確に定
量的に冷媒封入量の判定を行うことができる。これによ
って、オーバチャージやローチャージ等によって発生す
る圧縮機の損傷が防止でき、現地での冷凍機の据付時に
おいても冷媒量の適正チャージが可能となる。
[Effects of the Invention] In the method of the present invention for determining the amount of refrigerant charged in a refrigerator,
A relational expression between the indoor temperature, the outdoor temperature, the suction superheat degree and the discharge superheat degree, the refrigerant charging rate and the connection pipe length ratio is determined in advance, and the measured values of the indoor temperature and the outdoor temperature, and the suction superheat degree and the discharge superheat degree From the calculated values, the refrigerant charging rate and the connection pipe length ratio are calculated, and the refrigerant charging rate is determined from the refrigerant charging rate.Therefore, the influence of the connection pipe length ratio is taken into account, and the refrigerant charging rate can be accurately and quantitatively determined. It can be carried out. This can prevent the compressor from being damaged due to overcharge, low charge, and the like, and can appropriately charge the refrigerant amount even when the refrigerator is installed on site.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の方法の一実施例を示す冷凍機の系統
図、第2図は吐出配管に設けられた圧力センサと温度セ
ンサの取付け状態を示す断面図、第3図は判定装置に連
る機器と同判定装置内部の機器の接続図、第4図は接続
配管長比と吐出過熱度との関係図、第5図は接続配管長
比と吸入過熱度との関係図、第6図は温度の計測、過熱
度の算出のフローチャート、第7図は従来の冷媒封入量
判定方法を示す冷凍機の系統図、第8図は冷媒量を変化
させた時の冷凍サイクルにおけるモリエル線図上でのエ
タルピと圧力の関係図、第9図は接続配管長を変化させ
た時のモリエル線図上でのエンタルピと圧力の関係図で
ある。 1……圧縮機、2……四方弁、3……室内熱交換器、4
……絞り、5……室外熱交換器、6……吐出配管、7…
…吸入配管、8……温度センサ、9……温度センサ、10
……判定装置、11……圧力センサ、12……圧力センサ、
13……温度センサ、14……温度センサ、20……コントロ
ーラ、21……マルチプレクサ、22……A/D変換器、23…
…表示器、24……表示器、25……表示器、26……運転モ
ード回路。
FIG. 1 is a system diagram of a refrigerator showing one embodiment of the method of the present invention, FIG. 2 is a sectional view showing a mounting state of a pressure sensor and a temperature sensor provided on a discharge pipe, and FIG. FIG. 4 is a connection diagram of the connection pipe length ratio and the discharge superheat degree, FIG. 5 is a connection diagram of the connection pipe length ratio and the suction superheat degree, FIG. FIG. 7 is a flowchart of temperature measurement and superheat degree calculation. FIG. 7 is a system diagram of a refrigerator showing a conventional method of determining the amount of charged refrigerant. FIG. 8 is a Mollier diagram in a refrigeration cycle when the amount of refrigerant is changed. FIG. 9 is a relational diagram between the enthalpy and the pressure on the Mollier diagram when the connection pipe length is changed. 1 ... compressor, 2 ... 4-way valve, 3 ... indoor heat exchanger, 4
... throttle, 5 ... outdoor heat exchanger, 6 ... discharge pipe, 7 ...
... Suction pipe, 8 ... Temperature sensor, 9 ... Temperature sensor, 10
…… Judgment device, 11 …… Pressure sensor, 12 …… Pressure sensor,
13 temperature sensor, 14 temperature sensor, 20 controller, 21 multiplexer, 22 A / D converter, 23
... Display unit, 24 ... Display unit, 25 ... Display unit, 26 ... Operation mode circuit.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】予め室内温度、室外温度、吸入過熱度およ
び吐出過熱度と、冷媒封入率および接続配管長比との関
係式を求めておき、室内温度および室外温度の計測値、
ならびに吸入過熱度および吐出過熱度の計算値から、冷
媒封入率と接続配管長比を算出し、冷媒封入率から冷媒
封入量を判定することを特徴とする冷凍機の冷媒封入量
判定方法。
1. A relational expression between an indoor temperature, an outdoor temperature, a suction superheat degree and a discharge superheat degree, a refrigerant charging rate and a connection pipe length ratio is determined in advance, and measured values of the indoor temperature and the outdoor temperature are determined.
A refrigerant charging rate and a connection pipe length ratio are calculated from calculated values of the suction superheat degree and the discharge superheat degree, and the refrigerant charging rate is determined from the refrigerant charging rate.
JP2273386A 1990-10-15 1990-10-15 How to determine the amount of refrigerant in the refrigerator Expired - Fee Related JP2915537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2273386A JP2915537B2 (en) 1990-10-15 1990-10-15 How to determine the amount of refrigerant in the refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2273386A JP2915537B2 (en) 1990-10-15 1990-10-15 How to determine the amount of refrigerant in the refrigerator

Publications (2)

Publication Number Publication Date
JPH04151475A JPH04151475A (en) 1992-05-25
JP2915537B2 true JP2915537B2 (en) 1999-07-05

Family

ID=17527176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2273386A Expired - Fee Related JP2915537B2 (en) 1990-10-15 1990-10-15 How to determine the amount of refrigerant in the refrigerator

Country Status (1)

Country Link
JP (1) JP2915537B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3152187B2 (en) 1997-11-21 2001-04-03 ダイキン工業株式会社 Refrigeration apparatus and refrigerant charging method
JP3963190B2 (en) 2005-04-07 2007-08-22 ダイキン工業株式会社 Refrigerant amount determination system for air conditioner
US8087258B2 (en) 2005-10-25 2012-01-03 Mitsubishi Electric Corporation Air conditioner, refrigerant filling method of air conditioner, method for judging refrigerant filling state of air conditioner as well as refrigerant filling and pipe cleaning method of air conditioner
JP4075933B2 (en) * 2006-01-30 2008-04-16 ダイキン工業株式会社 Air conditioner
JP5505126B2 (en) * 2010-06-28 2014-05-28 ダイキン工業株式会社 Refrigeration equipment
CN106766304B (en) * 2016-12-22 2019-04-26 中科美菱低温科技股份有限公司 A kind of separate type cryogenic refrigeration equipment

Also Published As

Publication number Publication date
JPH04151475A (en) 1992-05-25

Similar Documents

Publication Publication Date Title
US5214918A (en) Refrigerator and method for indicating refrigerant amount
US9222711B2 (en) Refrigerating and air-conditioning apparatus
KR101207004B1 (en) Air conditioner
EP1942307A2 (en) Air conditioner and method of determining refrigerant quantity
US9188376B2 (en) Refrigerant charge assisting device, air-conditioning apparatus, and refrigerant charge assisting program
KR20090013187A (en) Air conditioner
JP2007198642A (en) Air conditioner
WO2002103265A1 (en) Refrigerator
JP6849138B2 (en) Air conditioner, control device, and refrigerant connecting pipe
JP6551593B2 (en) Refrigerant amount estimation method and air conditioner
JP2017075760A (en) Air conditioner
JP2915537B2 (en) How to determine the amount of refrigerant in the refrigerator
JP2011012958A (en) Method for controlling refrigeration cycle apparatus
KR100670603B1 (en) Automatic Refrigerant Charging Apparatus for Air-Conditioner
JP5104225B2 (en) Air conditioner
JP3531440B2 (en) Air conditioner with refrigerant charge determination device and refrigerant charge determination method
JPH1183250A (en) Amount of refrigerant judging method of air conditioner
JP3584274B2 (en) Refrigerant amount adjustment method and refrigerant amount determination device
JP2007292429A (en) Air conditioner
JP2692894B2 (en) Air conditioner
JP5245576B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JPS60194260A (en) Refrigerator with electric expansion valve
JPH043866A (en) Method of discriminating enclosing amount of refrigerant in freezer
JPH03170753A (en) Air conditioner
JP4655107B2 (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees