JPH06117736A - Detecting device for sealed refrigerant quantity - Google Patents

Detecting device for sealed refrigerant quantity

Info

Publication number
JPH06117736A
JPH06117736A JP26120792A JP26120792A JPH06117736A JP H06117736 A JPH06117736 A JP H06117736A JP 26120792 A JP26120792 A JP 26120792A JP 26120792 A JP26120792 A JP 26120792A JP H06117736 A JPH06117736 A JP H06117736A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
temperature
expansion valve
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26120792A
Other languages
Japanese (ja)
Inventor
Hisao Nagashima
久夫 永島
Hideaki Sato
英明 佐藤
Toshio Ohara
敏夫 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP26120792A priority Critical patent/JPH06117736A/en
Publication of JPH06117736A publication Critical patent/JPH06117736A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To provide a sealed refrigerant quantity detection device which is capable of detecting the amount of refrigerant having a proper degree of supercooling at the inlet of an expansion valve in a refrigeration cycle without using a sensor or an arithmetic operation means. CONSTITUTION:A sealed refrigerant quantity detection device 1 is installed closer to a high pressure liquid pipeline 7 on the inlet side of an expansion valve 5 of a refrigeration cycle 30. Refrigerant in a two phase vapor-liquid state is sealed in a chamber 1a on the right-side of the refrigerant quantity detection device 1 while the pressure of refrigerant in the pipeline 7 is arranged to flow into a left-side chamber 1b. The layout of the piping line 7 closer to the device 1 forces the temperature in the right side chamber to be identical to that in the pipeline 7. As a pressure Psc, which is equivalent to that temperature, prevails in the right-side chamber 1a, a differential pressure between the pressure Psc and the pressure Pc in the pipeline 7 moves bellows 11. A display 14 which moves with the bellows 11 serves to determine whether or not the amount of refrigerant is proper.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍機または空気調和
機等に用いられる冷凍サイクル内の冷媒の封入量を検知
する冷媒封入量検知装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerant filling amount detecting device for detecting a filling amount of refrigerant in a refrigerating cycle used in a refrigerator or an air conditioner.

【0002】[0002]

【従来の技術】図1に示すように、ガス状の冷媒を圧縮
する圧縮機2、この圧縮機2で圧縮されたガス状の冷媒
を冷却して液冷媒にする凝縮器3、この凝縮器3で液状
になった冷媒を膨張させ霧状の冷媒にする膨張弁5、及
び、この膨張弁5で霧状になった冷媒を空気と熱交換さ
せる蒸発器6を備える冷凍サイクル30において、膨張
弁5の入口側の液冷媒を適度に過冷却すると、冷凍サイ
クル30の成績係数が良くなることが従来より知られて
いる。
2. Description of the Related Art As shown in FIG. 1, a compressor 2 for compressing a gaseous refrigerant, a condenser 3 for cooling the gaseous refrigerant compressed by the compressor 2 into a liquid refrigerant, and this condenser In the refrigeration cycle 30 including the expansion valve 5 that expands the refrigerant that is liquefied in 3 into a mist-like refrigerant, and the evaporator 6 that heat-exchanges the refrigerant that is atomized in the expansion valve 5 with air, It is conventionally known that when the liquid refrigerant on the inlet side of the valve 5 is appropriately supercooled, the coefficient of performance of the refrigeration cycle 30 is improved.

【0003】膨張弁5の入口側の液冷媒を過冷却させる
ためには、冷凍サイクル30内に冷媒を適度に充填する
必要がある。ところが、冷媒を過度に封入しすぎると、
膨張弁5の入口の液冷媒が過冷却度を持ちすぎ、かえっ
て成績係数が悪化する。そこで、初期冷凍サイクルへ冷
媒を封入する時や冷媒を追加する時に、適度な過冷却度
となっているかを検知する必要がある。
In order to supercool the liquid refrigerant on the inlet side of the expansion valve 5, it is necessary to properly fill the refrigeration cycle 30 with the refrigerant. However, if the refrigerant is filled too much,
The liquid refrigerant at the inlet of the expansion valve 5 has an excessive degree of supercooling, which rather deteriorates the coefficient of performance. Therefore, it is necessary to detect whether or not the degree of subcooling is appropriate when the refrigerant is charged into the initial refrigeration cycle or when the refrigerant is added.

【0004】過冷却度を検知する装置としては、特開平
3−177762号公報に開示される如く、圧力センサ
や温度センサ、及び演算手段を用いるものがある。この
装置では、圧力センサを用いて圧縮機2後の冷媒の圧力
を検出し、この圧力における凝縮器3後の過冷却度0°
Cの温度T1を演算する。温度センサにより実際の凝縮
器3後の温度T2を測定し、この温度T2と温度T1の
差を算出して、過冷却度を検出するものがある。
As a device for detecting the degree of supercooling, there is one which uses a pressure sensor, a temperature sensor, and a calculation means, as disclosed in Japanese Patent Laid-Open No. 3-177762. In this device, the pressure of the refrigerant after the compressor 2 is detected using a pressure sensor, and the degree of supercooling after the condenser 3 at this pressure is 0 °.
The temperature T1 of C is calculated. There is a method in which the actual temperature T2 after the condenser 3 is measured by a temperature sensor and the difference between the temperature T2 and the temperature T1 is calculated to detect the degree of supercooling.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の過冷却度の検知装置では、温度センサや圧力セン
サ、及び演算手段が必要であり、装置が高価であるとい
う問題があった。
However, the above-mentioned conventional supercooling degree detecting device has a problem that the temperature sensor, the pressure sensor, and the calculating means are required, and the device is expensive.

【0006】そこで、本発明では、センサや演算手段を
用いること無く、冷凍サイクル内の膨張弁入口側で適正
な過冷却度を持つために必要な冷媒量と比べて、実際の
冷媒量が適正量であるのか否かを検知することができる
冷媒封入量検知装置を提供することを目的とする。
Therefore, in the present invention, the actual amount of refrigerant is appropriate as compared with the amount of refrigerant required to have a proper degree of subcooling at the expansion valve inlet side in the refrigeration cycle without using a sensor or a calculation means. An object of the present invention is to provide a refrigerant enclosure amount detection device capable of detecting whether or not the amount is the amount.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するために、ガス状の冷媒を圧縮する圧縮機と、この
圧縮機で圧縮されたガス状の冷媒を冷却して液冷媒にす
る凝縮器と、この凝縮器で液状になった冷媒を膨張させ
霧状の冷媒にする膨張弁と、この膨張弁で霧状になった
冷媒を空気と熱交換させる蒸発器とを有し、前記圧縮機
と前記凝縮器と前記膨張弁と前記蒸発器との各々の間を
冷媒が流入する配管にて連結し、前記膨張弁入口側の冷
媒が過冷却度を持つ冷凍サイクル内に封入された冷媒量
を検知する冷媒封入量検知装置において、前記凝縮器と
前記膨張弁との間の前記配管内の冷媒の温度が伝わる感
温部を有し、その内部に前記冷媒と同種類の気液二相状
態の冷媒を収容した容器と、この容器の外周に設けら
れ、容器内と外部とを断熱する断熱部材と、この容器内
の冷媒の圧力を受ける第1の受圧部と、前記凝縮器と前
記膨張弁との間の前記配管内の冷媒の圧力を受ける第2
の受圧部と、前記第1の受圧部が受けた圧力と、前記第
2の受圧部が受けた圧力との圧力差を検出する圧力差検
出手段と、この圧力差検出手段により検出された圧力差
を表示し、もって冷媒量が適量か否かを表示する表示手
段と、を備える冷媒封入量検知装置を採用するものであ
る。
In order to achieve the above object, the present invention provides a compressor for compressing a gaseous refrigerant, and a gaseous refrigerant compressed by the compressor to be a liquid refrigerant. A condenser, an expansion valve that expands the liquid refrigerant in the condenser into a mist-like refrigerant, and an evaporator that heat-exchanges the atomized refrigerant with the air, Each of the compressor, the condenser, the expansion valve, and the evaporator is connected by a pipe through which a refrigerant flows, and the refrigerant on the inlet side of the expansion valve is enclosed in a refrigeration cycle having a supercooling degree. In the refrigerant enclosure amount detection device for detecting the refrigerant amount, the temperature sensor has a temperature sensing part for transmitting the temperature of the refrigerant in the pipe between the condenser and the expansion valve, and the inside of the temperature sensing part is the same kind of gas as the refrigerant. A container containing a refrigerant in a liquid two-phase state, and provided on the outer periphery of this container, inside and outside the container And the heat insulating member to insulate the first pressure receiving portion which receives the pressure of the refrigerant in the container, the second receiving a pressure of the refrigerant in said piping between said condenser and said expansion valve
Pressure receiving portion, a pressure difference detecting means for detecting a pressure difference between the pressure received by the first pressure receiving portion and the pressure received by the second pressure receiving portion, and the pressure detected by the pressure difference detecting means. A refrigerant filling amount detection device including a display unit that displays the difference and thus displays whether or not the amount of refrigerant is appropriate is adopted.

【0008】[0008]

【作用】上記構成よりなる本発明の冷媒封入量検知装置
によれば、容器内の気液二相状態の冷媒は、容器の感温
部により凝縮器と膨張弁との間の配管内の冷媒の温度を
受ける。容器は断熱部材により外部と断熱されているた
めに、容器内の冷媒の温度が配管内の冷媒の温度と等し
くなる。
According to the refrigerant enclosure amount detection apparatus of the present invention having the above-mentioned structure, the refrigerant in the gas-liquid two-phase state in the container is the refrigerant in the pipe between the condenser and the expansion valve due to the temperature sensing portion of the container. Receive the temperature of. Since the container is insulated from the outside by the heat insulating member, the temperature of the refrigerant in the container becomes equal to the temperature of the refrigerant in the pipe.

【0009】一方、容器内の冷媒は気液二相状態である
ために、温度に対する圧力が一義的に決まるので、配管
内の冷媒の温度に対しても容器内の冷媒の圧力が一義的
に決まる。
On the other hand, since the refrigerant in the container is in a gas-liquid two-phase state, the pressure with respect to the temperature is uniquely determined. Therefore, the pressure of the refrigerant in the container is also unique with respect to the temperature of the refrigerant in the pipe. Decided.

【0010】第1の受圧部が受けた容器内の冷媒の圧力
と、第2の受圧部が受けた凝縮器と膨張弁との間の配管
内の冷媒の圧力との圧力差を圧力差検出手段により検出
する。過冷却度は、この圧力差に比例するために、圧力
差が検出できれば、過冷却度を検出することができる。
従って、この圧力差を検出し、表示することで、膨張弁
入口側にて適正な過冷却度を持つ量の冷媒が冷凍サイク
ル内に封入されているか否かを検知することができる。
The pressure difference between the pressure of the refrigerant in the container received by the first pressure receiving portion and the pressure of the refrigerant in the pipe between the condenser and the expansion valve received by the second pressure receiving portion is detected. It is detected by means. Since the degree of supercooling is proportional to this pressure difference, if the pressure difference can be detected, the degree of supercooling can be detected.
Therefore, by detecting and displaying this pressure difference, it is possible to detect whether or not the refrigerant having an appropriate degree of supercooling at the inlet side of the expansion valve is enclosed in the refrigeration cycle.

【0011】[0011]

【実施例】以下、本発明の冷媒封入量検知方法及びその
装置の一実施例について、図面と共に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method and apparatus for detecting the amount of enclosed refrigerant of the present invention will be described below with reference to the drawings.

【0012】図1に示すように、冷凍サイクル30は、
ガス状の冷媒を圧縮するコンプレッサ2と、このコンプ
レッサ2で圧縮されたガス状の冷媒を冷却して液冷媒に
するコンデンサ3と、このコンデンサ3で液状になった
冷媒を膨張させ霧状の冷媒にする膨張弁5と、及び、こ
の膨張弁5で霧状になった冷媒を空気と熱交換させるエ
バポレータ6とを備えている。4は、膨張弁5の入口側
の高圧リキッド配管7にて過冷却度を持たせるために冷
媒を過冷却させるサブクールコンデンサである。
As shown in FIG. 1, the refrigeration cycle 30 includes
A compressor 2 for compressing a gaseous refrigerant, a condenser 3 for cooling the gaseous refrigerant compressed by the compressor 2 into a liquid refrigerant, and a mist-like refrigerant for expanding the liquid refrigerant in the condenser 3 The expansion valve 5 and the evaporator 6 for exchanging heat of the atomized refrigerant with the expansion valve 5 with air. Reference numeral 4 is a subcool condenser that supercools the refrigerant so that the high pressure liquid pipe 7 on the inlet side of the expansion valve 5 has a supercooling degree.

【0013】この冷凍サイクル30内に冷媒を適度に充
填すると、コンデンサ3及びサブクールコンデンサ4に
より冷媒が過冷却され、図10のモリエル線図に示す如
く、過冷却度SC(サブクール)を持つことが従来より
知られている。
When the refrigeration cycle 30 is appropriately filled with a refrigerant, the refrigerant is supercooled by the condenser 3 and the subcool condenser 4, and may have a supercooling degree SC (subcool) as shown in the Mollier diagram of FIG. Known from the past.

【0014】この過冷却度を判断する本発明の冷媒封入
量検知装置について、図1、図2に基づいて説明する。
図2に示すように、冷媒封入量検知装置1は、中空四角
柱形状を呈し、伸縮可能なベローズ11がその内部に配
されて、内部を2室に分割している。一方の部屋である
図示右側の部屋(右室)1a内には、冷凍サイクル30
内を循環する冷媒と同一の冷媒を、気液二相状態にて予
め充填し、密閉しておく。本装置1のベローズ11は熱
伝導性および耐圧を考えて金属ベローズを用いており、
伸縮が自在である。また、本装置1の外周の材質は配管
7の温度が内部の冷媒に伝わり易い様に、熱伝導性の良
い金属(例えば銅)にて構成する。なお、装置1の形状
は中空四角柱形状に限らず、中空円柱形状等でも良い。
A refrigerant filling amount detecting device of the present invention for judging the degree of supercooling will be described with reference to FIGS. 1 and 2.
As shown in FIG. 2, the refrigerant enclosed amount detection device 1 has a hollow quadrangular prism shape, and an expandable / contractible bellows 11 is arranged inside thereof to divide the inside into two chambers. A refrigeration cycle 30 is provided in the right room (right room) 1a, which is one room in the figure.
The same refrigerant that circulates inside is previously filled in a gas-liquid two-phase state and hermetically sealed. The bellows 11 of the device 1 uses a metal bellows in consideration of thermal conductivity and pressure resistance,
It can be expanded and contracted freely. The material of the outer periphery of the device 1 is made of a metal (for example, copper) having good thermal conductivity so that the temperature of the pipe 7 is easily transmitted to the internal refrigerant. The shape of the device 1 is not limited to the hollow quadrangular prism shape, and may be a hollow cylinder shape or the like.

【0015】装置1の他方の部屋である左側の部屋(左
室)1bの側面には孔22が設けてあり、この孔22と
配管7に設けた虫バルブ8とをチャージングホース10
により連結する。チャージングホース10により孔22
と虫バルブ8とを連結して、装置1の左室1bと配管7
とを連通することで、左室1b内には配管7内の冷媒が
流入し、配管7内の実際の圧力が導入される。左室1b
と右室1aとを仕切るベローズ11の図示左側面には、
過冷却度の大きさを指示する指示部14が接着固定され
ている。この指示部14の材質は、樹脂でも金属でも良
い。そして、左室1bの上面には、その内部が観察可能
なようにサイトグラス13が設けてあり、指示部14の
位置が外側から目視できる。左室1bと右室1aとは、
Oリング15によりシールされている。
A hole 22 is provided in the side surface of the left room (left room) 1b which is the other room of the apparatus 1. The hole 22 and the insect valve 8 provided in the pipe 7 are connected to the charging hose 10.
Connect by. Hole 22 by charging hose 10
The insect valve 8 is connected to the left chamber 1b of the device 1 and the pipe 7.
By communicating with, the refrigerant in the pipe 7 flows into the left chamber 1b, and the actual pressure in the pipe 7 is introduced. Left ventricle 1b
The left side surface of the bellows 11 shown in FIG.
An indicator 14 for instructing the degree of supercooling is adhered and fixed. The indicator 14 may be made of resin or metal. A sight glass 13 is provided on the upper surface of the left ventricle 1b so that the inside of the left ventricle 1b can be observed, and the position of the indicator 14 can be visually observed from the outside. The left ventricle 1b and the right ventricle 1a are
It is sealed by an O-ring 15.

【0016】また、配管7内の冷媒の温度のみが、装置
1の右室1a内の冷媒に完全に伝わる様に、断熱パッキ
ン16で装置1の右室1aと配管7を覆い、外部の温度
が右室1a内の冷媒に伝わらない様にする。
In order that the temperature of the refrigerant in the pipe 7 is completely transmitted to the refrigerant in the right chamber 1a of the device 1, the heat insulating packing 16 covers the right chamber 1a of the device 1 and the pipe 7, and the external temperature Are not transmitted to the refrigerant in the right chamber 1a.

【0017】なお、ベローズ11は、右室1a内の圧力
と左室1b内の圧力との圧力差に従って装置1の長手方
向に伸縮し、指示部14は、これと共に長手方向に移動
するように設けられている。この時の移動量を調整する
ために、右室1a内には、装置1の長手方向に力を加え
るバネ12が設けられている。
The bellows 11 expands and contracts in the longitudinal direction of the device 1 in accordance with the pressure difference between the pressure in the right chamber 1a and the pressure in the left chamber 1b, and the indicator 14 moves in the longitudinal direction with it. It is provided. In order to adjust the amount of movement at this time, a spring 12 that applies a force in the longitudinal direction of the device 1 is provided in the right chamber 1a.

【0018】図2(B)に過冷却度の大きさを表示する
方法を示す。右室1a内の圧力と左室1b内の圧力との
圧力差により、ベローズ11が伸縮し、それに合わせて
指示部14も移動するので、この位置を、サイトグラス
13より目視することで、過冷却度が最適であるかを判
断することが出来る。
FIG. 2B shows a method of displaying the degree of supercooling. The bellows 11 expands and contracts due to the pressure difference between the pressure in the right chamber 1a and the pressure in the left chamber 1b, and the indicator 14 moves accordingly. Therefore, by visually observing this position from the sight glass 13, It is possible to judge whether the cooling degree is optimum.

【0019】また、左室1bの内周には、その内周側に
向けて突出する突起状のストッパ21が設けられ、ベロ
ーズ11が図示左側方向に伸びた時に、このストッパ2
1により指示部14が当接して、ベローズ11の伸びる
方向が制限される。
Further, on the inner circumference of the left chamber 1b, there is provided a stopper 21 projecting toward the inner circumference thereof, and when the bellows 11 extends leftward in the drawing, this stopper 2
1 causes the pointing portion 14 to come into contact with the bellows 11 to limit the extending direction of the bellows 11.

【0020】なお、冷凍サイクル30の高圧リキッド配
管7には、冷媒封入量検知装置1の下面1cが密着する
ように、窪ませた平面部7aを設ける。また、冷媒は、
気液二相状態において、温度と圧力とが比例するので、
この特性を生かして右室1a内に気液二相状態にして充
填される。冷媒の温度は、コンデンサ3の出口側にて6
0℃程度である。また、冷媒封入を行う環境は0℃を下
る環境では無いことを考慮して、これらの温度を補償で
きるように、0℃〜80℃の間で気液二相状態を確保で
きれば良い。
The high-pressure liquid pipe 7 of the refrigeration cycle 30 is provided with a recessed flat portion 7a so that the lower surface 1c of the refrigerant enclosure amount detection device 1 is in close contact. Also, the refrigerant is
In gas-liquid two-phase state, since temperature and pressure are proportional,
Utilizing this characteristic, the right chamber 1a is filled in a gas-liquid two-phase state. The temperature of the refrigerant is 6 at the outlet side of the condenser 3.
It is about 0 ° C. Further, considering that the environment in which the refrigerant is sealed is not an environment below 0 ° C., it suffices to ensure a gas-liquid two-phase state between 0 ° C. and 80 ° C. so that these temperatures can be compensated.

【0021】気液二相状態を、0℃〜80℃の間にて確
保するためには、気相、液相の密度を考慮すると封入す
るべき冷媒封入量(WR )は、次の範囲内にあれば良
い。
In order to secure the gas-liquid two-phase state between 0 ° C. and 80 ° C., considering the densities of the gas phase and the liquid phase, the amount (W R ) of the refrigerant to be sealed should be within the following range. It should be inside.

【0022】[0022]

【数1】(ρG 80×V<WR <(ρL 80×V[Number 1] (ρ G) 80 × V < W R <(ρ L) 80 × V

【0023】[0023]

【数2】(ρG 0 ×V<WR <(ρL 0 ×V ここで、(ρG 80、(ρL 80は、それぞれ80℃で
の冷媒の気相と液相の密度である。(ρG 0
(ρL 0 は、それぞれ0℃での冷媒の気相と液相の密
度である。また、Vは冷媒封入量検知装置1の右室1a
の容積を示す。
[Number 2] (ρ G) 0 × V < W R <(ρ L) 0 × V where, (ρ G) 80, ( ρ L) 80 is the gas and liquid phases of the refrigerant at 80 ° C. respectively Is the density of. (Ρ G ) 0 ,
L ) 0 is the density of the vapor phase and the liquid phase of the refrigerant at 0 ° C., respectively. Further, V is the right chamber 1a of the refrigerant enclosure amount detection device 1.
Shows the volume of.

【0024】冷媒の液密度ρL は、温度が高くなるにつ
れて低くなり、冷媒のガス密度ρGは、温度が高くなる
につれて高くなるので、(ρL 80×Vと(ρL 0 ×
Vとでは、(ρL 80×Vの方が小さい。また、
(ρG 80×Vと(ρG 0 ×Vとでは、(ρG 80×
Vの方が大きい。
The liquid density ρ L of the refrigerant decreases as the temperature increases, and the gas density ρ G of the refrigerant increases as the temperature increases. Therefore, (ρ L ) 80 × V and (ρ L ) 0 ×
With V, (ρ L ) 80 × V is smaller. Also,
With (ρ G ) 80 × V and (ρ G ) 0 × V, (ρ G ) 80 ×
V is larger.

【0025】従って、両方の条件を満たす条件は、上記
の数1と等しくなる。次に、本装置1の作動原理を説明
する。まず、図2に示すように、装置1の下側面1cを
高圧リキッド配管7の平面部7aと密着させる。そし
て、この下側面1cから配管7内部の液冷媒の温度をひ
ろい、右室1a内の冷媒の温度を配管7内の冷媒の温度
と等しくする。この時、断熱材にて形成された断熱パッ
キン16により装置1の右室1aと配管7とを覆い、外
部の温度が右室1a内の冷媒に伝わらないようにする。
従って、装置1内の冷媒の温度が配管7内の冷媒の温度
と等しくなる。
Therefore, the condition satisfying both conditions is equal to the above-mentioned expression 1. Next, the operating principle of the device 1 will be described. First, as shown in FIG. 2, the lower surface 1c of the device 1 is brought into close contact with the flat surface portion 7a of the high-pressure liquid pipe 7. Then, the temperature of the liquid refrigerant inside the pipe 7 is expanded from the lower side surface 1c to make the temperature of the refrigerant inside the right chamber 1a equal to the temperature of the refrigerant inside the pipe 7. At this time, the heat insulating packing 16 formed of a heat insulating material covers the right chamber 1a and the pipe 7 of the apparatus 1 so that the external temperature is not transmitted to the refrigerant in the right chamber 1a.
Therefore, the temperature of the refrigerant in the device 1 becomes equal to the temperature of the refrigerant in the pipe 7.

【0026】図10のモリエル線図に示すように、気液
二相状態の冷媒では、温度に対する圧力が一義的に決ま
る。モリエル線図上での冷凍サイクル30を実線31に
て示すと、膨張弁5の入口側の冷媒がサブクールSCを
持つ場合に、膨張弁5の入口側の冷媒の状態は、圧力
がPc[Kg/cm2abs ]であり、温度がB(°C)であ
る。この膨張弁5の入口側の冷媒の温度B(°C)に対
する冷媒の飽和液線40上の圧力Pscを求め、この圧
力Pscと状態の圧力Pcとの圧力差ΔP(=Pc−
Psc)を求める。サブクール量SCは圧力差ΔPに比
例するので、この圧力差ΔPが求まれば、サブクール量
SCが求まる。
As shown in the Mollier diagram of FIG. 10, the pressure with respect to temperature is uniquely determined in the gas-liquid two-phase refrigerant. When the refrigeration cycle 30 on the Mollier diagram is shown by a solid line 31, when the refrigerant on the inlet side of the expansion valve 5 has a subcool SC, the refrigerant on the inlet side of the expansion valve 5 has a pressure of Pc [Kg / cm 2 abs] and the temperature is B (° C). The pressure Psc on the saturated liquid line 40 of the refrigerant with respect to the temperature B (° C) of the refrigerant on the inlet side of the expansion valve 5 is calculated, and the pressure difference ΔP (= Pc- between the pressure Psc and the state pressure Pc).
Psc). Since the subcool amount SC is proportional to the pressure difference ΔP, if the pressure difference ΔP is obtained, the subcool amount SC is obtained.

【0027】ところで、本装置1においては、装置1内
の冷媒の温度が、配管7内の冷媒の温度と等しくなる
と、右室1a内の冷媒は気液二相状態の点線32上にあ
るので、その温度に対する圧力が一義的に決まる。つま
り、図10の上記説明に対応して説明すると、右室1a
内の圧力が、配管7内の冷媒の温度B(°C)に対する
飽和液線40上の圧力Pscとなる。
By the way, in the present device 1, when the temperature of the refrigerant in the device 1 becomes equal to the temperature of the refrigerant in the pipe 7, the refrigerant in the right chamber 1a is on the dotted line 32 in the gas-liquid two-phase state. , The pressure for that temperature is uniquely determined. That is, to explain corresponding to the above description of FIG. 10, the right ventricle 1a
The internal pressure becomes the pressure Psc on the saturated liquid line 40 with respect to the temperature B (° C) of the refrigerant in the pipe 7.

【0028】この右室1a内の冷媒の圧力Pscと、左
室1b内に流入した配管7内の冷媒の圧力Pcとの圧力
差によりベローズ11が伸縮する。この伸縮量として圧
力差を検出することで、膨張弁5の入口側において適正
な過冷却度を持つことのできる量の冷媒が冷凍サイクル
内に封入されているか否かを判断する。
The bellows 11 expands and contracts due to the pressure difference between the pressure Psc of the refrigerant in the right chamber 1a and the pressure Pc of the refrigerant in the pipe 7 flowing into the left chamber 1b. By detecting the pressure difference as the expansion / contraction amount, it is determined whether or not the refrigerant is sealed in the refrigeration cycle in an amount capable of having an appropriate degree of supercooling on the inlet side of the expansion valve 5.

【0029】図10に示すように、過冷却度が小さく、
−’−’−のように冷凍サイクル30が形成さ
れるときは、配管7内の冷媒の温度C(°C)が高く、
その温度C(°C)に対応した圧力Psc’は大きい。
この時は、配管7内の圧力Pcと、右室1a内の圧力P
sc’との圧力差は小さく、配管7内の冷媒がベローズ
11を右側に押す力の方が僅かに大きい程度である。右
室1a内はバネ12が介されているため、ベローズ11
は左側に押されて伸びた状態となり、指示部14が左室
1bの方へ寄っていき、図2(B)において、過冷却度
が小の方にてバランスする。
As shown in FIG. 10, the degree of supercooling is small,
When the refrigeration cycle 30 is formed as shown by −′−′−, the temperature C (° C) of the refrigerant in the pipe 7 is high,
The pressure Psc 'corresponding to the temperature C (° C) is large.
At this time, the pressure Pc in the pipe 7 and the pressure P in the right chamber 1a
The pressure difference from sc ′ is small, and the force of the refrigerant in the pipe 7 pushing the bellows 11 to the right is slightly larger. Since the spring 12 is interposed in the right chamber 1a, the bellows 11
Is pushed to the left side to be in an extended state, the indicator 14 approaches the left ventricle 1b, and in FIG. 2B, the degree of supercooling is smaller to balance.

【0030】一方、過冷却度が大きく、−−−
のように冷凍サイクル30が形成されるときは、配管7
内の冷媒の温度B(°C)が低く、その温度B(°C)
に対応した圧力Pscは小さい。この時は、配管7内の
圧力Pcと、右室1a内の圧力Pscとの圧力差が大き
く、配管7内の冷媒がベローズ11を右側に押す力の方
がかなり大きい。従って、ベローズ11は縮み、指示部
14は右側へ寄る。
On the other hand, the degree of supercooling is large, and
When the refrigeration cycle 30 is formed as shown in FIG.
The temperature B (° C) of the internal refrigerant is low, and the temperature B (° C)
The pressure Psc corresponding to is small. At this time, the pressure difference between the pressure Pc in the pipe 7 and the pressure Psc in the right chamber 1a is large, and the force of the refrigerant in the pipe 7 pushing the bellows 11 to the right is considerably larger. Therefore, the bellows 11 contracts and the indicator 14 moves to the right.

【0031】このようにして、冷媒の封入量が過冷却度
を持たせるのに適正な量となっているか否かを検知する
ことができる。次に、冷媒封入時について説明する。
In this way, it is possible to detect whether or not the amount of the refrigerant enclosed is an appropriate amount for providing the degree of supercooling. Next, the time when the refrigerant is charged will be described.

【0032】冷媒封入の初期において、冷媒量が少なく
過冷却度が無い状態では、配管7内の冷媒は気液二相の
飽和状態であり、ほぼPc=Pscとなって圧力差がな
いため、この状態ではベローズ11が伸びきり、ストッ
パ21に指示部14が当接した状態になる。これから、
冷媒を徐々に封入していき、過冷却度が取れ始め、また
増加するにつれて、右室1a内の圧力Pscが徐々に小
さくなり、配管7内の圧力Pcと右室1a内の圧力Ps
cとの圧力差が大きくなってくる。すると、ベローズ1
1は、過冷却度の増加とともに縮む。
At the initial stage of refrigerant charging, when the refrigerant amount is small and there is no supercooling degree, the refrigerant in the pipe 7 is in a gas-liquid two-phase saturated state, and there is almost no pressure difference because Pc = Psc. In this state, the bellows 11 is fully extended and the stopper 21 is in contact with the indicator 14. from now on,
The pressure Psc in the right chamber 1a gradually decreases as the degree of supercooling begins to be gradually increased and the refrigerant gradually increases, and the pressure Pc in the pipe 7 and the pressure Ps in the right chamber 1a gradually increase.
The pressure difference from c increases. Then bellows 1
No. 1 shrinks as the degree of supercooling increases.

【0033】そこで、図2(B)に示すように、指示部
14が適正状態を示す位置にて冷媒封入を中止すれば、
適正な過冷却度を持つ冷媒量とすることができる。ま
た、サブクールサイクルは、図6に示すように、冷房負
荷(冷媒流量)によりサイクルの効率が最高となる最適
過冷却度がある。すなわち、冷媒封入時の状況でも、外
気温によって冷房負荷が変わり、最適な過冷却度が変化
する。冷媒封入時の外気条件によって最適過冷却度も異
なるので、図5に示すように、あらかじめ外気温に対し
ての最適過冷却値の位置を明記したプレートをサイトグ
ラス13の上に取り付けておけば、外気条件が大きく変
わっても、その外気条件に一致した位置で指示部がきた
所で、冷媒封入を中止すれば、常に最適な過冷却度とな
る様に冷媒封入することができる。なお、本実施例で
は、外気条件を、夏、春秋、冬と3種類に分類したが、
これに限るものでは無く、これより多くの場合に分類し
ても良い。
Therefore, as shown in FIG. 2 (B), if the charging of the refrigerant is stopped at the position where the indicator 14 indicates the proper state,
The amount of refrigerant having an appropriate degree of supercooling can be set. In addition, as shown in FIG. 6, the subcool cycle has an optimum degree of supercooling that maximizes cycle efficiency depending on the cooling load (refrigerant flow rate). That is, even in the situation when the refrigerant is charged, the cooling load changes depending on the outside air temperature, and the optimum degree of supercooling changes. Since the optimum degree of supercooling varies depending on the outside air condition when the refrigerant is charged, as shown in FIG. 5, if a plate in which the position of the optimum degree of supercooling with respect to the outside temperature is specified is attached on the sight glass 13 in advance. Even if the outside air condition changes significantly, if the instruction of the indicator comes at a position corresponding to the outside air condition, if the refrigerant charging is stopped, it is possible to always charge the refrigerant so that the degree of supercooling is optimum. In the present embodiment, the outside air conditions are classified into three types, summer, spring / autumn, and winter.
It is not limited to this, and may be classified into more cases than this.

【0034】本発明の第2の実施例を図3、図4に示
す。図3に示すように、冷凍サイクル30の高圧リキッ
ド配管7の温度が伝わる部屋が右室1aとは別体に設け
られ、その内部に冷凍サイクル30内の冷媒と同一の冷
媒が封入された冷媒封入室17を設ける。冷媒封入室1
7内には、第1実施例と同様にして、気液二相状態の冷
媒を充填しておき、キャピラリ管18にて冷媒封入室1
7と右室1aとをつなぐ。
A second embodiment of the present invention is shown in FIGS. As shown in FIG. 3, a room in which the temperature of the high-pressure liquid pipe 7 of the refrigeration cycle 30 is transmitted is provided separately from the right room 1a, and the same refrigerant as the refrigerant in the refrigeration cycle 30 is enclosed in the room. An enclosure chamber 17 is provided. Refrigerant enclosure chamber 1
In the same manner as in the first embodiment, 7 is filled with a refrigerant in a gas-liquid two-phase state, and the capillary tube 18 is used to fill the refrigerant enclosure chamber 1.
7 and the right ventricle 1a.

【0035】この構成においては、配管7内の冷媒の温
度が、冷媒封入室17へ伝わり、この冷媒封入室17で
は、その温度に対応した圧力となり、キャピラリ18を
介して、右室1a内に圧力Pscとなって伝わる。
In this structure, the temperature of the refrigerant in the pipe 7 is transmitted to the refrigerant enclosing chamber 17, and the pressure in the refrigerant enclosing chamber 17 becomes a pressure corresponding to the temperature, and the pressure in the right chamber 1a is passed through the capillary 18. The pressure Psc is transmitted.

【0036】この実施例では、配管7の形状は円筒形状
のままとし、冷媒封入室17の下面を図4に示す如く、
断面半円形状とすることで、配管7の温度が伝わり易い
様に、接触する面積を大きくしてある。また、冷媒封入
室17と配管7とが密着する様にクリップ19で装着
し、その外周側から断熱パッキン20を巻く。
In this embodiment, the shape of the pipe 7 remains cylindrical, and the lower surface of the refrigerant enclosure chamber 17 is as shown in FIG.
By having a semicircular cross section, the contact area is increased so that the temperature of the pipe 7 can be easily transmitted. Further, the refrigerant sealing chamber 17 and the pipe 7 are attached so as to be in close contact with each other, and the heat insulating packing 20 is wound from the outer peripheral side thereof.

【0037】この様に、配管7内の温度が伝わる感温部
を別体に設けても良い。なお、この第2実施例における
作動は、上記第1実施例と同様である。次に、本発明の
第3、第4実施例を図7〜図9に示す。
As described above, a temperature sensitive portion for transmitting the temperature in the pipe 7 may be provided separately. The operation of the second embodiment is the same as that of the first embodiment. Next, the third and fourth embodiments of the present invention are shown in FIGS.

【0038】図7に示す第3実施例では、第1実施例に
おける右室1aに相当する冷媒室17を設け、この冷媒
室17を配管7に密着する。すると、冷媒室17の内部
の冷媒が高圧リキッド配管7を流れる冷媒の温度に対応
した圧力となるので、キャピラリ管18を介して、その
圧力を測定する。他方では、虫バルブ8からキャピラリ
管10を介して、実際の圧力を測定する。そして、この
圧力差を求める。上記実施例と同様にして、過冷却度が
大きくなるにつれ、冷媒室17内の圧力が低くなり、差
圧計での差圧が大きくなる。また、冬、春秋、夏という
条件に従い、最適な過冷却度も大きくなり、差圧も大き
くなる。そこで、図8のように差圧計に、各条件下での
最適値を明記しておくと良い。
In the third embodiment shown in FIG. 7, a refrigerant chamber 17 corresponding to the right chamber 1a in the first embodiment is provided, and this refrigerant chamber 17 is closely attached to the pipe 7. Then, the pressure of the refrigerant inside the refrigerant chamber 17 becomes a pressure corresponding to the temperature of the refrigerant flowing through the high-pressure liquid pipe 7. Therefore, the pressure is measured via the capillary tube 18. On the other hand, the actual pressure is measured from the insect valve 8 via the capillary tube 10. Then, this pressure difference is obtained. As in the above embodiment, as the degree of supercooling increases, the pressure inside the refrigerant chamber 17 decreases and the differential pressure in the differential pressure gauge increases. Also, depending on the conditions of winter, spring, autumn, and summer, the optimum degree of supercooling becomes large and the differential pressure also becomes large. Therefore, it is advisable to clearly indicate the optimum value under each condition on the differential pressure gauge as shown in FIG.

【0039】図9に示す第4実施例は、過冷却度検知装
置60内に冷凍サイクル30内の冷媒を微少量だけ流
し、この冷媒を用いて検知するものである。この実施例
の検知装置60は、その内部に第3実施例の各部に相当
する差圧形25、冷媒室17、キャピラリ管10、18
を設けたものである。この装置60内に微小流量の冷媒
を流すために、膨張弁5の入口側の冷媒を虫バルブ8か
らチャージングホース50内を流入させて、冷媒室17
内の冷媒の温度をこの温度とし、この冷媒を低圧側のバ
ルブ81から冷凍サイクル30内に流入させる。この
時、この冷媒を減圧させる絞り51により、膨張弁5で
の減圧量と略等しい圧力分減圧する。本実施例の構成に
おける作動は、図7に示す第3実施例と同様である。な
お、この構成によれば、冷媒室17の配管7への密着性
を気にせずに済み、虫バルブ8、81とチャージングホ
ース50等とを連結するのみで良く、操作が容易であ
る。
In the fourth embodiment shown in FIG. 9, a very small amount of the refrigerant in the refrigeration cycle 30 is allowed to flow into the supercooling degree detecting device 60, and this refrigerant is used for detection. The detection device 60 of this embodiment has therein a differential pressure type 25 corresponding to each part of the third embodiment, a refrigerant chamber 17, and capillary tubes 10 and 18.
Is provided. In order to allow a minute amount of refrigerant to flow into the device 60, the refrigerant on the inlet side of the expansion valve 5 is caused to flow from the insect valve 8 into the charging hose 50, and the refrigerant chamber 17
The temperature of the refrigerant inside is set to this temperature, and this refrigerant is caused to flow into the refrigeration cycle 30 through the valve 81 on the low pressure side. At this time, the throttle 51 for reducing the pressure of this refrigerant reduces the pressure by a pressure substantially equal to the pressure reduction amount in the expansion valve 5. The operation of the configuration of this embodiment is similar to that of the third embodiment shown in FIG. According to this configuration, it is not necessary to care about the adhesion of the refrigerant chamber 17 to the pipe 7, and it is sufficient to connect the insect valves 8 and 81 and the charging hose 50 and the like, and the operation is easy.

【0040】なお、上記の実施例において、冷媒が封入
された右室1a内の気液二相状態の冷媒の液面側が配管
7に密着する方が伝熱性が良い。
In the above embodiment, the heat transfer is better when the liquid surface side of the refrigerant in the gas-liquid two-phase state in the right chamber 1a in which the refrigerant is sealed is in close contact with the pipe 7.

【0041】[0041]

【発明の効果】以上説明したように、本発明の冷媒封入
量検知装置においては、凝縮器と膨張弁との間の配管内
の冷媒の温度が内部に伝わり、冷凍サイクル内の冷媒と
同種類の気液二相状態の冷媒を収容した容器と、この容
器内の冷媒の圧力を伝える第1の圧力伝達部と、凝縮器
と膨張弁との間の配管内の冷媒の圧力を伝える第2の圧
力伝達部と、第1の圧力伝達部により伝えられた圧力
と、第2の圧力伝達部により伝えられた圧力との圧力差
を検出する圧力差検出手段とを備え、容器内の冷媒の温
度を、配管内の冷媒の温度と等しくし、この温度におけ
る容器内の冷媒の圧力と、配管内の冷媒の圧力とを比較
して圧力差を検出する。この圧力差から適正量の冷媒が
冷凍サイクル内に封入されているか否かを検知すること
ができる。
As described above, in the refrigerant enclosure amount detection device of the present invention, the temperature of the refrigerant in the pipe between the condenser and the expansion valve is transmitted to the inside, and the same type as the refrigerant in the refrigeration cycle. Of the gas-liquid two-phase refrigerant, a first pressure transmitting section for transmitting the pressure of the refrigerant in the vessel, and a second pressure transmitting section for transmitting the pressure of the refrigerant in the pipe between the condenser and the expansion valve. Of the refrigerant in the container, and a pressure difference detecting means for detecting a pressure difference between the pressure transmitted by the first pressure transmitting section and the pressure transmitted by the second pressure transmitting section. The temperature is made equal to the temperature of the refrigerant in the pipe, and the pressure of the refrigerant in the container at this temperature is compared with the pressure of the refrigerant in the pipe to detect the pressure difference. From this pressure difference, it is possible to detect whether or not an appropriate amount of refrigerant is enclosed in the refrigeration cycle.

【0042】従って、従来のようにセンサや演算手段を
用いること無く、冷凍サイクル内の膨張弁入口側で適正
な過冷却度を持つために必要な冷媒量に対し、実際の冷
媒の量が適正量であるのか否かを検知することのできる
冷媒封入量検知装置を提供することができる。
Therefore, the actual amount of refrigerant is appropriate to the amount of refrigerant required to have a proper degree of supercooling at the inlet side of the expansion valve in the refrigeration cycle without using a sensor or calculating means as in the conventional case. It is possible to provide a refrigerant enclosure amount detection device capable of detecting whether or not the amount is the amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の過冷却度検知器の冷凍サイクルへの装
着図である。
FIG. 1 is a diagram showing how a supercooling degree detector of the present invention is attached to a refrigeration cycle.

【図2】(A)は、本発明の過冷却度検知器の第1実施
例を示す要部断面図である。(B)は、本発明の過冷却
度検知器の第1実施例を示す上面図である。
FIG. 2A is a cross-sectional view of the essential parts showing the first embodiment of the supercooling degree detector of the present invention. (B) is a top view showing a first embodiment of the supercooling degree detector of the present invention.

【図3】本発明の過冷却度検知器の第2実施例を示す要
部断面図である。
FIG. 3 is a sectional view of an essential part showing a second embodiment of the supercooling degree detector of the present invention.

【図4】本発明の過冷却度検知器の第2実施例の感温部
を示す断面図である。
FIG. 4 is a sectional view showing a temperature sensing portion of a second embodiment of the supercooling degree detector of the present invention.

【図5】本発明の過冷却度検知器の表示部を示す平面図
である。
FIG. 5 is a plan view showing a display portion of the supercooling degree detector of the present invention.

【図6】冷媒流量と過冷却度との関係を示す図である。FIG. 6 is a diagram showing a relationship between a refrigerant flow rate and a supercooling degree.

【図7】本発明の第3実施例を示す概略図である。FIG. 7 is a schematic view showing a third embodiment of the present invention.

【図8】差圧計を示す図である。FIG. 8 is a diagram showing a differential pressure gauge.

【図9】本発明の第4実施例を示す図である。FIG. 9 is a diagram showing a fourth embodiment of the present invention.

【図10】モリエル線図を示す図である。FIG. 10 is a diagram showing a Mollier diagram.

【符号の説明】[Explanation of symbols]

1 冷媒封入量検知装置 2 コンプレッサ 3 コンデンサ 5 膨張弁 6 エバポレータ 7 高圧側配管 8 虫バルブ 1 Refrigerant enclosure amount detection device 2 Compressor 3 Condenser 5 Expansion valve 6 Evaporator 7 High pressure side pipe 8 Bug valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガス状の冷媒を圧縮する圧縮機と、この
圧縮機で圧縮されたガス状の冷媒を冷却して液冷媒にす
る凝縮器と、この凝縮器で液状になった冷媒を膨張させ
霧状の冷媒にする膨張弁と、この膨張弁で霧状になった
冷媒を空気と熱交換させる蒸発器とを有し、前記圧縮機
と前記凝縮器と前記膨張弁と前記蒸発器との各々の間を
冷媒が流入する配管にて連結し、前記膨張弁入口側の冷
媒が過冷却度を持つ冷凍サイクル内に封入された冷媒量
を検知する冷媒封入量検知装置において、 前記凝縮器と前記膨張弁との間の前記配管内の冷媒の温
度が伝わる感温部を有し、その内部に前記冷媒と同種類
の気液二相状態の冷媒を収容した容器と、 この容器の外周に設けられ、容器内と外部とを断熱する
断熱部材と、 この容器内の冷媒の圧力を受ける第1の受圧部と、 前記凝縮器と前記膨張弁との間の前記配管内の冷媒の圧
力を受ける第2の受圧部と、 前記第1の受圧部が受けた圧力と、前記第2の受圧部が
受けた圧力との圧力差を検出する圧力差検出手段と、 この圧力差検出手段により検出された圧力差を表示し、
もって冷媒量が適量か否かを表示する表示手段と、 を備える冷媒封入量検知装置。
1. A compressor for compressing a gaseous refrigerant, a condenser for cooling the gaseous refrigerant compressed by the compressor to a liquid refrigerant, and an expansion of the liquid refrigerant in the condenser. An expansion valve for converting the atomized refrigerant into an atomized refrigerant, and an evaporator for exchanging heat of the atomized refrigerant with the air, the compressor, the condenser, the expansion valve, and the evaporator. In the refrigerant enclosure amount detection device for detecting the amount of refrigerant enclosed in the refrigeration cycle in which the refrigerant on the inlet side of the expansion valve has a supercooling degree, the refrigerant is connected to each other by a pipe through which the refrigerant flows, A container having a temperature-sensing part for transmitting the temperature of the refrigerant in the pipe between the expansion valve and the expansion valve, and containing therein a refrigerant in a gas-liquid two-phase state of the same kind as the refrigerant, and the outer periphery of the container A heat insulating member that is installed in the container to insulate the inside and the outside of the container, and receives the pressure of the refrigerant in the container. A first pressure receiving portion, a second pressure receiving portion that receives the pressure of the refrigerant in the pipe between the condenser and the expansion valve, a pressure received by the first pressure receiving portion, and a second pressure receiving portion that receives the pressure. And a pressure difference detection means for detecting a pressure difference from the pressure received by the pressure receiving part of, and a pressure difference detected by the pressure difference detection means.
Accordingly, a refrigerant filling amount detection device comprising: a display unit that displays whether or not the amount of refrigerant is appropriate.
JP26120792A 1992-09-30 1992-09-30 Detecting device for sealed refrigerant quantity Withdrawn JPH06117736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26120792A JPH06117736A (en) 1992-09-30 1992-09-30 Detecting device for sealed refrigerant quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26120792A JPH06117736A (en) 1992-09-30 1992-09-30 Detecting device for sealed refrigerant quantity

Publications (1)

Publication Number Publication Date
JPH06117736A true JPH06117736A (en) 1994-04-28

Family

ID=17358636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26120792A Withdrawn JPH06117736A (en) 1992-09-30 1992-09-30 Detecting device for sealed refrigerant quantity

Country Status (1)

Country Link
JP (1) JPH06117736A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2742201A1 (en) * 1995-12-08 1997-06-13 Eurocopter France Vibration reducing system for helicopter using oscillating mass
FR2774155A1 (en) * 1998-01-29 1999-07-30 Valeo Climatisation System for evaluating the under cooling state of refrigerating liquid in vehicle air conditioning system
WO2002023100A1 (en) * 2000-09-11 2002-03-21 Daikin Industries, Ltd. Multiple refrigerating device
US6591631B1 (en) 1999-10-18 2003-07-15 Daiken Industries, Ltd. Refrigerating device
WO2023032126A1 (en) * 2021-09-02 2023-03-09 三菱電機株式会社 Differential pressure sensor and refrigeration cycle device equipped with differential pressure sensor
DE102022123516B4 (en) 2021-11-30 2024-02-08 GM Global Technology Operations LLC METHOD FOR DETERMINING PHASE STATE OR HYPOCOOLING STATE

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2742201A1 (en) * 1995-12-08 1997-06-13 Eurocopter France Vibration reducing system for helicopter using oscillating mass
FR2774155A1 (en) * 1998-01-29 1999-07-30 Valeo Climatisation System for evaluating the under cooling state of refrigerating liquid in vehicle air conditioning system
US6591631B1 (en) 1999-10-18 2003-07-15 Daiken Industries, Ltd. Refrigerating device
EP1223389A4 (en) * 1999-10-18 2005-05-25 Daikin Ind Ltd Refrigerating device
WO2002023100A1 (en) * 2000-09-11 2002-03-21 Daikin Industries, Ltd. Multiple refrigerating device
JP2002089978A (en) * 2000-09-11 2002-03-27 Daikin Ind Ltd Paired refrigerating device and multiple refrigerating device
EP1326057A4 (en) * 2000-09-11 2005-06-08 Daikin Ind Ltd Multiple refrigerating device
US7021069B2 (en) 2000-09-11 2006-04-04 Daikin Industries, Ltd. Multiple refrigerating device
AU2001284508B2 (en) * 2000-09-11 2006-10-05 Daikin Industries, Ltd. Multiple refrigerating device
WO2023032126A1 (en) * 2021-09-02 2023-03-09 三菱電機株式会社 Differential pressure sensor and refrigeration cycle device equipped with differential pressure sensor
DE102022123516B4 (en) 2021-11-30 2024-02-08 GM Global Technology Operations LLC METHOD FOR DETERMINING PHASE STATE OR HYPOCOOLING STATE
US11933528B2 (en) 2021-11-30 2024-03-19 Gm Global Technology Operations, Llc Methods and systems for determining phase state or subcooling state

Similar Documents

Publication Publication Date Title
US6868678B2 (en) Non-intrusive refrigerant charge indicator
US4745765A (en) Low refrigerant charge detecting device
US5214918A (en) Refrigerator and method for indicating refrigerant amount
JP3211405B2 (en) Refrigerant composition detector
US5735132A (en) Control-information detecting apparatus for a refrigeration air-conditioner using a non-azeotrope refrigerant
JP3224139B2 (en) Manufacturing method of temperature expansion valve
US6233969B1 (en) Decompression device-integrated heat exchanger for refrigerant cycle
JPH06117736A (en) Detecting device for sealed refrigerant quantity
KR960011349A (en) Heat exchanger and chiller equipped with it
JPH0665945B2 (en) Expansion valve for refrigeration equipment
US8783945B2 (en) Superheat sensor
US2497677A (en) Refrigerating system, including flow control devices
KR100882005B1 (en) Device for detecting the status of coolant charged in the heat exchange system and method for controllling the same
JP5780872B2 (en) Temperature expansion valve
JPH1183250A (en) Amount of refrigerant judging method of air conditioner
JP2915537B2 (en) How to determine the amount of refrigerant in the refrigerator
US4272970A (en) Compression refrigeration system
JP2000321103A (en) Tester for refrigerating compressor
JP3234930B2 (en) Air conditioner
JPS587318Y2 (en) pressure sensing device
JPH07218058A (en) Refrigerating/air conditioning device having function for determining proper refrigerant amount
JPH09318201A (en) Pressure type temperature detector of automatic controller and its fluid sealing method
JPH0539971A (en) Refrigerating apparatus
CN215637639U (en) Heat exchanger, air condensing units and air conditioner
JPH0719622A (en) Refrigerating plant

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130