JP5780872B2 - Temperature expansion valve - Google Patents

Temperature expansion valve Download PDF

Info

Publication number
JP5780872B2
JP5780872B2 JP2011169026A JP2011169026A JP5780872B2 JP 5780872 B2 JP5780872 B2 JP 5780872B2 JP 2011169026 A JP2011169026 A JP 2011169026A JP 2011169026 A JP2011169026 A JP 2011169026A JP 5780872 B2 JP5780872 B2 JP 5780872B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
expansion valve
refrigeration
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011169026A
Other languages
Japanese (ja)
Other versions
JP2013032875A (en
Inventor
到 関谷
到 関谷
治 澤田
治 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2011169026A priority Critical patent/JP5780872B2/en
Priority to CN2012102722592A priority patent/CN102914103A/en
Publication of JP2013032875A publication Critical patent/JP2013032875A/en
Application granted granted Critical
Publication of JP5780872B2 publication Critical patent/JP5780872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Temperature-Responsive Valves (AREA)

Description

本発明は、冷凍サイクルにおいて蒸発器の出口側配管に配設した感温筒により蒸発温度を感知し、この感知温度に応じて変化する受圧室の内圧と、蒸発器から均圧室に導入される蒸発圧力との差圧により、装置冷媒を流す弁ポートの弁開度を自動調整して、冷凍サイクルの過熱度制御を行う温度膨張弁に関する。   In the refrigeration cycle, the present invention senses the evaporating temperature by a temperature sensing cylinder disposed on the outlet side pipe of the evaporator, and introduces the internal pressure of the pressure receiving chamber that changes in accordance with the sensed temperature and the pressure equalizing chamber from the evaporator. The present invention relates to a temperature expansion valve that automatically adjusts the valve opening degree of a valve port through which an apparatus refrigerant flows, and controls the degree of superheat of a refrigeration cycle based on a differential pressure with respect to the evaporation pressure.

従来、温度膨張弁の感温筒、キャピラリチューブ及び受圧室部(以下、これらを単に感温筒とも言う)の内部には冷凍サイクルを流れる装置冷媒をチャージ(充填)することが一般的であるが、低温特性の向上のために種々のチャージ方式が実用化されている。特に、冷凍サイクルを流れる装置冷媒の飽和蒸気圧曲線と交差する特性を持つようにしたものは、クロスチャージ方式といわれ、高温域では過熱度を大きくし、低温域では過熱度を小さくするとか、全温度範囲内で均一な過熱度を保つような特長をもたせるのに採用されている(非特許文献1参照)。   Conventionally, it is common to charge (fill) an apparatus refrigerant flowing in a refrigeration cycle inside a temperature sensing tube, a capillary tube and a pressure receiving chamber (hereinafter also simply referred to as a temperature sensing tube) of a temperature expansion valve. However, various charging methods have been put into practical use for improving the low temperature characteristics. In particular, the one that has a characteristic that intersects with the saturated vapor pressure curve of the device refrigerant flowing through the refrigeration cycle is called a cross-charge method, increasing the superheat degree in the high temperature range and decreasing the superheat level in the low temperature range, It is employed to provide a feature that maintains a uniform degree of superheat within the entire temperature range (see Non-Patent Document 1).

なお、実際の過熱度と設定過熱度(目標値)との差が過熱度偏差であるが、この過熱度偏差が一定でないと、制御蒸発温度範囲においてシステムの効率が悪化することがある。また、液バックが生じて圧縮機が破損することがある。   The difference between the actual superheat degree and the set superheat degree (target value) is the superheat degree deviation. If this superheat degree deviation is not constant, the efficiency of the system may deteriorate in the controlled evaporation temperature range. Moreover, a liquid back | bag may arise and a compressor may be damaged.

「第6版 冷凍空調便覧 II巻 機器編」、社団法人 日本冷凍空調学会、平成18年3月31日、第94頁〜第98頁、4・1・3 温度自動膨張弁"6th Edition Refrigeration and Air Conditioning Handbook Volume II, Equipment", Japan Society of Refrigeration and Air Conditioning, March 31, 2006, pp. 94-98, 4 ・ 1.3 Temperature automatic expansion valve

非特許文献1には、感温筒の各種のチャージ方式が開示されているが、装置冷媒に対して、感温筒にチャージする冷媒(あるいはガス)あるいは吸収材の性質や、混合の仕方などを工夫しないと、適正な温度膨張弁が得られない。   Non-Patent Document 1 discloses various charging methods for the temperature sensing cylinder. However, the characteristics of the refrigerant (or gas) or absorbent that charges the temperature sensing cylinder with respect to the apparatus refrigerant, the way of mixing, etc. If this is not devised, an appropriate temperature expansion valve cannot be obtained.

本発明は、冷凍サイクルの装置冷媒としてR410Aを用いた空気調和機、冷凍、冷蔵装置に使用される温度膨張弁において、感温筒への封入方式を改良し、制御を行う蒸発温度域において過熱度偏差を一定にすることを課題とする。また、温度膨張弁の本体の温度が感温筒温度に比べて低下した場合でも、過熱度偏差を小さくすることを課題とする。   The present invention is a temperature expansion valve used in an air conditioner, a refrigeration and a refrigeration apparatus using R410A as an apparatus refrigerant for a refrigeration cycle. The problem is to make the degree deviation constant. Moreover, even when the temperature of the main body of a temperature expansion valve falls compared with the temperature sensitive cylinder temperature, it makes it a subject to make a superheat degree deviation small.

請求項の温度膨張弁は、冷凍サイクルの装置冷媒としてR410Aを用いた空気調和機、冷凍、冷蔵装置に使用される温度膨張弁であって、感温筒に装置冷媒と異なる冷媒と非凝縮性ガスとを充填する混合ガスクロスチャージ方式を用い、前記装置冷媒と異なる冷媒としてR125を用い、前記非凝縮性ガスとして窒素を用い、R125と窒素の体積比率を過熱ガス状態にて80:20から95:5としたことを特徴とする。 The temperature expansion valve according to claim 1 is a temperature expansion valve used for an air conditioner, a refrigeration, and a refrigeration apparatus using R410A as an apparatus refrigerant for a refrigeration cycle, and a non-condensation is made between a refrigerant different from the apparatus refrigerant in a temperature sensing cylinder. The mixed gas cross-charge method is used to fill the gas, R125 is used as a refrigerant different from the apparatus refrigerant, nitrogen is used as the non-condensable gas, and the volume ratio of R125 and nitrogen is 80:20 in the superheated gas state. To 95: 5.

請求項の温度膨張弁は、冷凍サイクルの装置冷媒としてR410Aを用いた空気調和機、冷凍、冷蔵装置に使用される温度膨張弁であって、感温筒に装置冷媒と異なる冷媒と非凝縮性ガスとを充填する混合ガスクロスチャージ方式を用い、前記装置冷媒と異なる冷媒としてR125を用い、前記非凝縮性ガスとして窒素を用い、R125と窒素の体積比率を過熱ガス状態にて80:20から95:5とし、感温筒内に吸収材を用いたことを特徴とする。 The temperature expansion valve according to claim 2 is a temperature expansion valve used in an air conditioner, a refrigeration, and a refrigeration apparatus using R410A as an apparatus refrigerant for a refrigeration cycle, and a non-condensation is made between a refrigerant different from the apparatus refrigerant in a temperature sensing cylinder. The mixed gas cross-charge method is used to fill the gas, R125 is used as a refrigerant different from the apparatus refrigerant, nitrogen is used as the non-condensable gas, and the volume ratio of R125 and nitrogen is 80:20 in the superheated gas state. To 95: 5, and an absorbent material is used in the temperature sensitive cylinder.

請求項の温度膨張弁は、冷凍サイクルの装置冷媒としてR410Aを用いた空気調和機、冷凍、冷蔵装置に使用される温度膨張弁であって、感温筒に装置冷媒と異なる冷媒と非凝縮性ガスとを充填する混合ガスクロスチャージ方式を用い、前記装置冷媒と異なる冷媒としてR125を用い、前記非凝縮性ガスとして窒素を用い、R125と窒素の体積比率を過熱ガス状態にて80:20から95:5とし、感温筒内に吸収材を用い、前記吸収材としてケイ酸カルシウムを主成分とする材質を用いたことを特徴とする。 The temperature expansion valve according to claim 3 is a temperature expansion valve used in an air conditioner, a refrigeration, and a refrigeration apparatus using R410A as an apparatus refrigerant for a refrigeration cycle, and a non-condensed refrigerant and a refrigerant different from the apparatus refrigerant in a temperature sensing cylinder. The mixed gas cross-charge method is used to fill the gas, R125 is used as a refrigerant different from the apparatus refrigerant, nitrogen is used as the non-condensable gas, and the volume ratio of R125 and nitrogen is 80:20 in the superheated gas state. 95: 5, an absorbent material is used in the temperature-sensitive cylinder, and a material mainly composed of calcium silicate is used as the absorbent material.

請求項の温度膨張弁は、冷凍サイクルの装置冷媒としてR410Aを用いた空気調和機、冷凍、冷蔵装置に使用される温度膨張弁であって、感温筒に装置冷媒と異なる冷媒と非凝縮性ガスとを充填する混合ガスクロスチャージ方式を用い、前記装置冷媒と異なる冷媒としてR125を用い、前記非凝縮性ガスとして窒素を用い、R125と窒素の体積比率を過熱ガス状態にて80:20から95:5とし、感温筒内に吸収材を用い、前記吸収材として二酸化ケイ素を主成分とする珪藻土を用いたことを特徴とする。 The temperature expansion valve according to claim 4 is a temperature expansion valve used for an air conditioner, a refrigeration and a refrigeration apparatus using R410A as an apparatus refrigerant of a refrigeration cycle, and a temperature-sensitive cylinder is not condensed with a refrigerant different from the apparatus refrigerant. The mixed gas cross-charge method is used to fill the gas, R125 is used as a refrigerant different from the apparatus refrigerant, nitrogen is used as the non-condensable gas, and the volume ratio of R125 and nitrogen is 80:20 in the superheated gas state. 95: 5, an absorbent material is used in the temperature-sensitive cylinder, and diatomaceous earth mainly composed of silicon dioxide is used as the absorbent material.

請求項1乃至4の温度膨張弁によれば、装置冷媒と異なるR125に非凝縮性ガスを混合して充填することで、感温筒の温度に対し、温度膨張弁の本体の温度が低下した場合でも、温度膨張弁の弁開度が感温筒の温度に追従しやすくなるため、過熱度が温度膨張弁の本体の温度に影響され難くなり、過熱度偏差を一定にすることができる。 According to the temperature expansion valve of Claim 1 thru | or 4, the temperature of the main body of a temperature expansion valve fell with respect to the temperature of a temperature sensing cylinder by mixing and filling non-condensable gas in R125 different from an apparatus refrigerant | coolant. Even in this case, since the valve opening degree of the temperature expansion valve easily follows the temperature of the temperature sensing cylinder, the degree of superheat becomes less affected by the temperature of the main body of the temperature expansion valve, and the degree of superheat degree can be made constant.

本発明の実施形態の温度膨張弁を適用した冷凍サイクルの要部を示す図である。It is a figure which shows the principal part of the refrigerating cycle to which the temperature expansion valve of embodiment of this invention is applied.

次に、本発明の温度膨張弁の実施形態を説明する。図1は実施形態の温度膨張弁を適用した冷凍サイクルの要部を示す図である。図1において、10は実施形態の温度膨張弁、20は圧縮機、30は凝縮器、40は蒸発器であり、これらは配管で環状に接続することにより冷凍サイクルを構成している。温度膨張弁10は、弁本体部1、ダイヤフラム装置2、感温筒3及びキャピラリチューブ4を有している。弁本体部1の一次側継手管1aは凝縮器30側の一次配管aに接続され、二次側継手管1bは蒸発器40側の二次配管bに接続されて、均圧管1cは蒸発器40の出口側配管cに接続されている。   Next, an embodiment of the temperature expansion valve of the present invention will be described. FIG. 1 is a diagram illustrating a main part of a refrigeration cycle to which the temperature expansion valve of the embodiment is applied. In FIG. 1, 10 is the temperature expansion valve of the embodiment, 20 is a compressor, 30 is a condenser, and 40 is an evaporator, and these are connected in a ring shape by piping to constitute a refrigeration cycle. The temperature expansion valve 10 includes a valve main body 1, a diaphragm device 2, a temperature sensitive cylinder 3, and a capillary tube 4. The primary side joint pipe 1a of the valve body 1 is connected to the primary pipe a on the condenser 30 side, the secondary side joint pipe 1b is connected to the secondary pipe b on the evaporator 40 side, and the pressure equalizing pipe 1c is an evaporator. It is connected to 40 outlet side pipes c.

圧縮機20は冷凍サイクルを流れる装置冷媒を圧縮し、圧縮された装置冷媒は凝縮器30で凝縮液化され、一次側継手管1aを通して弁本体部1に流入される。弁本体部1は流入される装置冷媒を減圧(膨張)して二次側継手管1bから蒸発器40に流入させる。そして、蒸発器40は装置冷媒を蒸発気化し、圧縮機20に循環させる。蒸発器40の出口側配管cには感温筒3が取り付けられている。この感温筒3には後述のガス(及び液)が封入されており、この感温筒3はキャピラリチューブ4によりダイヤフラム装置2に連結されている。   The compressor 20 compresses the apparatus refrigerant flowing through the refrigeration cycle, and the compressed apparatus refrigerant is condensed and liquefied by the condenser 30 and flows into the valve body 1 through the primary side joint pipe 1a. The valve main body 1 depressurizes (expands) the inflowing apparatus refrigerant and causes it to flow into the evaporator 40 from the secondary side joint pipe 1b. The evaporator 40 evaporates the apparatus refrigerant and circulates it in the compressor 20. A temperature sensing cylinder 3 is attached to the outlet side pipe c of the evaporator 40. The temperature sensing cylinder 3 is filled with a gas (and a liquid) which will be described later. The temperature sensing cylinder 3 is connected to the diaphragm device 2 by a capillary tube 4.

温度膨張弁10の機械的な構成としては、広く知られている一般的なものを採用することができる。例えば、ダイヤフラム装置2は、キャピラリチューブ4によって感温筒3に接続された受圧室と、均圧管1cによって蒸発器40の出口側配管cに導通された均圧室とを、ダイヤフラムにより区画するよう構成されている。弁本体部1は、ダイヤフラムに連結された弁体により、一次配管1aと二次配管1bとの間に形成された弁ポートの弁開度を調整するよう構成されている。そして、感温筒3による感知温度に応じて変化する受圧室の内圧と、蒸発器から均圧室に導入される蒸発圧力との差圧により、装置冷媒を流す弁ポートの弁開度を制御し、冷凍サイクルの過熱度制御を行う。   As a mechanical configuration of the temperature expansion valve 10, a widely known general configuration can be adopted. For example, the diaphragm device 2 partitions the pressure receiving chamber connected to the temperature sensing cylinder 3 by the capillary tube 4 and the pressure equalizing chamber connected to the outlet side piping c of the evaporator 40 by the pressure equalizing tube 1c by the diaphragm. It is configured. The valve body 1 is configured to adjust the valve opening degree of a valve port formed between the primary pipe 1a and the secondary pipe 1b by a valve body connected to a diaphragm. Then, the valve opening degree of the valve port through which the apparatus refrigerant flows is controlled by the differential pressure between the internal pressure of the pressure receiving chamber that changes according to the temperature sensed by the temperature sensing cylinder 3 and the evaporation pressure introduced from the evaporator into the pressure equalizing chamber. Then, superheat control of the refrigeration cycle is performed.

冷凍サイクルの配管を流れる装置冷媒はR410Aである。感温筒3内には、冷凍サイクルの装置冷媒であるR410A、または、R410Aと異なる冷媒と、非凝縮性ガスあるいは吸収材とが、混合されて充填されている。すなわち、この感温筒3は、混合ガスクロスチャージ方式で充填されたものである。次に、この混合ガスクロスチャージ方式による、上記R410Aと異なる冷媒と、非凝縮性ガス、吸収材の各実施例について説明する。   The apparatus refrigerant flowing through the piping of the refrigeration cycle is R410A. The temperature sensing cylinder 3 is filled with a mixture of R410A, which is an apparatus refrigerant for the refrigeration cycle, or a refrigerant different from R410A and a non-condensable gas or an absorbent. That is, the temperature sensitive cylinder 3 is filled with a mixed gas cross charge method. Next, examples of the refrigerant, non-condensable gas, and absorbent material different from the R410A according to the mixed gas cross charge method will be described.

第1参考例は、感温筒3に装置冷媒を充填する例であり、R410Aと非凝縮性ガスを感温筒3に混合ガスクロスチャージ方式により充填する。 The first reference example is an example in which the temperature sensitive cylinder 3 is filled with the apparatus refrigerant, and R410A and non-condensable gas are filled into the temperature sensitive cylinder 3 by a mixed gas cross-charge method.

実施例〜第実施例は、感温筒3に装置冷媒と異なる冷媒を充填する例である。第実施例は、R410Aと異なる冷媒がR125であり、非凝縮性ガスが窒素ガスであり、R125と窒素ガスを感温筒3に混合ガスクロスチャージ方式により充填する。 In the first to fifth embodiments, the temperature sensitive cylinder 3 is filled with a refrigerant different from the apparatus refrigerant. In the first embodiment, the refrigerant different from R410A is R125, the non-condensable gas is nitrogen gas, and R125 and nitrogen gas are filled into the temperature sensing cylinder 3 by the mixed gas cross-charge method.

実施例は、R410Aと異なる冷媒がR125であり、非凝縮性ガスが窒素ガスであり、R125と窒素ガスを感温筒3に混合ガスクロスチャージ方式により充填する。この、R125と窒素ガスとの体積比率を過熱ガス状態にて80:20から95:5までの範囲とする。 In the second embodiment, the refrigerant different from R410A is R125, the non-condensable gas is nitrogen gas, and R125 and nitrogen gas are charged into the temperature sensing cylinder 3 by the mixed gas cross-charge method. The volume ratio of R125 and nitrogen gas is in the range from 80:20 to 95: 5 in the superheated gas state.

実施例は、R410Aと異なる冷媒がR125であり、非凝縮性ガスが窒素ガスであり、R125と窒素ガスを感温筒3に混合ガスクロスチャージ方式により充填する。この、R125と窒素ガスとの体積比率を過熱ガス状態にて80:20から95:5までの範囲とする。さらに、感温筒3内に吸収材を用いる。 In the third embodiment, the refrigerant different from R410A is R125, the non-condensable gas is nitrogen gas, and R125 and nitrogen gas are charged into the temperature sensing cylinder 3 by the mixed gas cross-charge method. The volume ratio of R125 and nitrogen gas is in the range from 80:20 to 95: 5 in the superheated gas state. Further, an absorbent material is used in the temperature sensitive cylinder 3.

実施例は、R410Aと異なる冷媒がR125であり、非凝縮性ガスが窒素ガスであり、R125と窒素ガスを感温筒3に混合ガスクロスチャージ方式により充填する。この、R125と窒素ガスとの体積比率を過熱ガス状態にて80:20から95:5までの範囲とする。さらに、感温筒3内に吸収材としてケイ酸カルシウムを主成分とする材質を用いる。 In the fourth embodiment, the refrigerant different from R410A is R125, the non-condensable gas is nitrogen gas, and R125 and nitrogen gas are charged into the temperature sensing cylinder 3 by the mixed gas cross-charge method. The volume ratio of R125 and nitrogen gas is in the range from 80:20 to 95: 5 in the superheated gas state. Further, a material mainly composed of calcium silicate is used as an absorbent in the temperature sensitive cylinder 3.

実施例は、R410Aと異なる冷媒がR125であり、非凝縮性ガスが窒素ガスであり、R125と窒素ガスを感温筒3に混合ガスクロスチャージ方式により充填する。この、R125と窒素ガスとの体積比率を過熱ガス状態にて80:20から95:5までの範囲とする。さらに、感温筒3内に吸収材として二酸化ケイ素を主成分とする珪藻土を用いる。 In the fifth embodiment, the refrigerant different from R410A is R125, the non-condensable gas is nitrogen gas, and R125 and nitrogen gas are charged into the temperature sensing cylinder 3 by the mixed gas cross-charge method. The volume ratio of R125 and nitrogen gas is in the range from 80:20 to 95: 5 in the superheated gas state. Further, diatomaceous earth containing silicon dioxide as a main component is used as an absorbent in the temperature sensitive cylinder 3.

参考例として非凝縮性ガスは窒素ガスに限らず、アルゴン、または二酸化炭素、またはヘリウムでもよい。 As a reference example, the non-condensable gas is not limited to nitrogen gas, but may be argon, carbon dioxide, or helium.

以上の感温筒の構成により、温度膨張弁10が制御を行う蒸発温度範囲において、ほぼ一定の過熱度を得ることができる。例えば、−20℃〜10℃の蒸発温度範囲においては、過熱度偏差を1℃以下にすることができる。   With the configuration of the temperature sensing tube described above, a substantially constant degree of superheat can be obtained in the evaporation temperature range controlled by the temperature expansion valve 10. For example, in the evaporation temperature range of −20 ° C. to 10 ° C., the superheat degree deviation can be set to 1 ° C. or less.

R125に非凝縮性ガスを混合して充填することで、感温筒3の温度に対し、温度膨張弁10の本体の温度が低下した場合でも、温度膨張弁10の弁開度が感温筒3の温度(蒸発器出口の温度)に追従しやすくなるため、過熱度が温度膨張弁10の本体の温度に影響され難くなり、過熱度偏差を一定にすることができる。   Even when the temperature of the main body of the temperature expansion valve 10 is decreased with respect to the temperature of the temperature sensing cylinder 3 by mixing and filling the non-condensable gas with R125, the valve opening degree of the temperature expansion valve 10 is the temperature sensing cylinder. 3 (temperature at the outlet of the evaporator) can be easily followed, so that the degree of superheat is hardly affected by the temperature of the main body of the temperature expansion valve 10, and the degree of superheat degree can be made constant.

R125と窒素との体積比率を過熱ガス状態にて80:20から95:5までの範囲で混合することで、感温筒3の温度に対し、温度膨張弁10の本体の温度が低下した場合でも、温度膨張弁10の弁開度が感温筒3の温度(蒸発器出口の温度)に追従しやすくなるため、過熱度が温度膨張弁10の本体の温度に影響され難くなり、過熱度偏差を一定にすることができる。   When the temperature of the main body of the temperature expansion valve 10 is decreased with respect to the temperature of the temperature sensing cylinder 3 by mixing the volume ratio of R125 and nitrogen in the range of 80:20 to 95: 5 in the superheated gas state. However, since the valve opening degree of the temperature expansion valve 10 easily follows the temperature of the temperature sensing cylinder 3 (temperature at the outlet of the evaporator), the degree of superheat becomes less affected by the temperature of the main body of the temperature expansion valve 10, and the degree of superheat. The deviation can be made constant.

1 弁本体部
2 ダイヤフラム装置
3 感温筒
4 キャピラリチューブ
10 温度膨張弁
20 圧縮機
30 凝縮器
40 蒸発器
DESCRIPTION OF SYMBOLS 1 Valve main-body part 2 Diaphragm apparatus 3 Temperature sensing cylinder 4 Capillary tube 10 Temperature expansion valve 20 Compressor 30 Condenser 40 Evaporator

Claims (4)

冷凍サイクルの装置冷媒としてR410Aを用いた空気調和機、冷凍、冷蔵装置に使用される温度膨張弁であって、感温筒に装置冷媒と異なる冷媒と非凝縮性ガスとを充填する混合ガスクロスチャージ方式を用い、前記装置冷媒と異なる冷媒としてR125を用い、前記非凝縮性ガスとして窒素を用い、R125と窒素の体積比率を過熱ガス状態にて80:20から95:5としたことを特徴とする温度膨張弁。   A temperature expansion valve used in an air conditioner, refrigeration, and refrigeration apparatus using R410A as an apparatus refrigerant for a refrigeration cycle, and a mixed gas cloth that fills a temperature sensitive cylinder with a refrigerant different from the apparatus refrigerant and a non-condensable gas The charging method is used, R125 is used as a refrigerant different from the apparatus refrigerant, nitrogen is used as the non-condensable gas, and the volume ratio of R125 and nitrogen is 80:20 to 95: 5 in the superheated gas state. A temperature expansion valve. 冷凍サイクルの装置冷媒としてR410Aを用いた空気調和機、冷凍、冷蔵装置に使用される温度膨張弁であって、感温筒に装置冷媒と異なる冷媒と非凝縮性ガスとを充填する混合ガスクロスチャージ方式を用い、前記装置冷媒と異なる冷媒としてR125を用い、前記非凝縮性ガスとして窒素を用い、R125と窒素の体積比率を過熱ガス状態にて80:20から95:5とし、感温筒内に吸収材を用いたことを特徴とする温度膨張弁。   A temperature expansion valve used in an air conditioner, refrigeration, and refrigeration apparatus using R410A as an apparatus refrigerant for a refrigeration cycle, and a mixed gas cloth that fills a temperature sensitive cylinder with a refrigerant different from the apparatus refrigerant and a non-condensable gas Using a charging method, using R125 as a refrigerant different from the apparatus refrigerant, using nitrogen as the non-condensable gas, and changing the volume ratio of R125 and nitrogen from 80:20 to 95: 5 in a superheated gas state, A temperature expansion valve characterized by using an absorbent material inside. 冷凍サイクルの装置冷媒としてR410Aを用いた空気調和機、冷凍、冷蔵装置に使用される温度膨張弁であって、感温筒に装置冷媒と異なる冷媒と非凝縮性ガスとを充填する混合ガスクロスチャージ方式を用い、前記装置冷媒と異なる冷媒としてR125を用い、前記非凝縮性ガスとして窒素を用い、R125と窒素の体積比率を過熱ガス状態にて80:20から95:5とし、感温筒内に吸収材を用い、前記吸収材としてケイ酸カルシウムを主成分とする材質を用いたことを特徴とする温度膨張弁。   A temperature expansion valve used in an air conditioner, refrigeration, and refrigeration apparatus using R410A as an apparatus refrigerant for a refrigeration cycle, and a mixed gas cloth that fills a temperature sensitive cylinder with a refrigerant different from the apparatus refrigerant and a non-condensable gas Using a charging method, using R125 as a refrigerant different from the apparatus refrigerant, using nitrogen as the non-condensable gas, and changing the volume ratio of R125 and nitrogen from 80:20 to 95: 5 in a superheated gas state, A temperature expansion valve characterized in that an absorbent material is used therein and a material mainly composed of calcium silicate is used as the absorbent material. 冷凍サイクルの装置冷媒としてR410Aを用いた空気調和機、冷凍、冷蔵装置に使用される温度膨張弁であって、感温筒に装置冷媒と異なる冷媒と非凝縮性ガスとを充填する混合ガスクロスチャージ方式を用い、前記装置冷媒と異なる冷媒としてR125を用い、前記非凝縮性ガスとして窒素を用い、R125と窒素の体積比率を過熱ガス状態にて80:20から95:5とし、感温筒内に吸収材を用い、前記吸収材として二酸化ケイ素を主成分とする珪藻土を用いたことを特徴とする温度膨張弁。   A temperature expansion valve used in an air conditioner, refrigeration, and refrigeration apparatus using R410A as an apparatus refrigerant for a refrigeration cycle, and a mixed gas cloth that fills a temperature sensitive cylinder with a refrigerant different from the apparatus refrigerant and a non-condensable gas Using a charging method, using R125 as a refrigerant different from the apparatus refrigerant, using nitrogen as the non-condensable gas, and changing the volume ratio of R125 and nitrogen from 80:20 to 95: 5 in a superheated gas state, A temperature expansion valve characterized in that an absorbent material is used therein and diatomaceous earth containing silicon dioxide as a main component is used as the absorbent material.
JP2011169026A 2011-08-02 2011-08-02 Temperature expansion valve Active JP5780872B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011169026A JP5780872B2 (en) 2011-08-02 2011-08-02 Temperature expansion valve
CN2012102722592A CN102914103A (en) 2011-08-02 2012-08-01 Temperature expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011169026A JP5780872B2 (en) 2011-08-02 2011-08-02 Temperature expansion valve

Publications (2)

Publication Number Publication Date
JP2013032875A JP2013032875A (en) 2013-02-14
JP5780872B2 true JP5780872B2 (en) 2015-09-16

Family

ID=47612584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011169026A Active JP5780872B2 (en) 2011-08-02 2011-08-02 Temperature expansion valve

Country Status (2)

Country Link
JP (1) JP5780872B2 (en)
CN (1) CN102914103A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6841066B2 (en) * 2017-02-03 2021-03-10 ダイキン工業株式会社 A method of using a mixture of fluorinated hydrocarbons as a refrigerant, and a refrigerating device using the mixture as a refrigerant.
WO2020066004A1 (en) * 2018-09-28 2020-04-02 三菱電機株式会社 Refrigeration cycle device
JP2021004551A (en) * 2019-06-25 2021-01-14 セイコーエプソン株式会社 Diaphragm-type compressor, cooling unit, projector, recording device and three-dimensional molding manufacturing method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277575A (en) * 1985-09-30 1987-04-09 株式会社東芝 Expansion valve
JPH01179871A (en) * 1988-01-08 1989-07-17 Fuji Koki Seisakusho:Kk Temperature expansion valve
JPH0762572B2 (en) * 1990-12-21 1995-07-05 株式会社鷺宮製作所 Temperature expansion valve
JP4140422B2 (en) * 2003-03-31 2008-08-27 三菱電機株式会社 Refrigerating apparatus update method and refrigeration apparatus
US7513684B2 (en) * 2005-02-17 2009-04-07 Parker-Hannifin Corporation Calcium silicate hydrate material for use as ballast in thermostatic expansion valve
JP2007010289A (en) * 2005-07-04 2007-01-18 Tgk Co Ltd Refrigerating cycle
JP2008249157A (en) * 2007-03-29 2008-10-16 Saginomiya Seisakusho Inc Reversible thermostatic expansion valve
JP2010032159A (en) * 2008-07-30 2010-02-12 Denso Corp Refrigerating cycle device
CN101430152A (en) * 2008-11-26 2009-05-13 浙江盾安人工环境设备股份有限公司 Thermometer bulb filling method for R410A air conditioner thermal expansion valve
CN101413742B (en) * 2008-11-27 2010-10-13 浙江盾安人工环境设备股份有限公司 R410A heat pump type air conditioner heating power expansion valve bulb charging method
JP2011027374A (en) * 2009-07-29 2011-02-10 Fuji Koki Corp Expansion valve

Also Published As

Publication number Publication date
JP2013032875A (en) 2013-02-14
CN102914103A (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP3211405B2 (en) Refrigerant composition detector
Roh et al. Effects of intermediate pressure on the heating performance of a heat pump system using R410A vapor-injection technique
CN106556188B (en) A kind of control method of air-conditioning system cold medium flux
CN106196495A (en) Control device, control method and the multi-gang air-conditioner of a kind of multi-gang air-conditioner
JP5780872B2 (en) Temperature expansion valve
JP5808410B2 (en) Refrigeration cycle equipment
JP2013011391A (en) Refrigerating cycle device, and hot water generation apparatus including the same
JPH0712411A (en) Refrigerating cycle and control method of ratio of composition of refrigerant for same
JP5728324B2 (en) Temperature expansion valve
JP5921776B1 (en) Refrigeration cycle equipment
JP6902390B2 (en) Refrigeration cycle equipment
JP2948105B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
JPH0835725A (en) Refrigerating air conditioner using non-azeotrope refrigerant
JP2014129900A (en) Refrigeration device
JP3749092B2 (en) Refrigerant sealing method and air conditioner
JP2011027374A (en) Expansion valve
Jung et al. Performance characteristics of a bypass two-circuit refrigeration cycle designed for refrigerators
Nasir et al. Design and performance evaluation of an ice block making machine
JP6972370B2 (en) Refrigeration cycle device
JP5963669B2 (en) Refrigeration equipment
JPH06117736A (en) Detecting device for sealed refrigerant quantity
CN112303966B (en) Temperature type expansion valve and refrigeration cycle system
JP2004360936A (en) Refrigerating cycle
KR20120055065A (en) Industrial heat pump system using carbon dioxide and method of capacity estimation
JPH06123528A (en) Method and apparatus for detecting amount of charged refrigerant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150714

R150 Certificate of patent or registration of utility model

Ref document number: 5780872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150