JP2010032159A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2010032159A
JP2010032159A JP2008196320A JP2008196320A JP2010032159A JP 2010032159 A JP2010032159 A JP 2010032159A JP 2008196320 A JP2008196320 A JP 2008196320A JP 2008196320 A JP2008196320 A JP 2008196320A JP 2010032159 A JP2010032159 A JP 2010032159A
Authority
JP
Japan
Prior art keywords
refrigerant
vapor pressure
saturated vapor
component
pressure curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008196320A
Other languages
Japanese (ja)
Inventor
Hideya Matsui
秀也 松井
Haruyuki Nishijima
春幸 西嶋
Etsuhisa Yamada
悦久 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008196320A priority Critical patent/JP2010032159A/en
Priority to DE102009032869A priority patent/DE102009032869A1/en
Priority to US12/460,315 priority patent/US20100024453A1/en
Priority to CN2009101655122A priority patent/CN101639297B/en
Publication of JP2010032159A publication Critical patent/JP2010032159A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0681Expansion valves combined with a sensor the sensor is heated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Abstract

<P>PROBLEM TO BE SOLVED: To attain stable operation from a low temperature area to a high temperature area. <P>SOLUTION: A refrigerating cycle device 10 circulates a mixed refrigerant in which a plurality of component refrigerants are mixed. An expansion valve 40 is equipped with a power element 42. An enclosed refrigerant enclosed in the power element 42 includes one component refrigerant of the plurality of component refrigerants. Inclination of a saturated vapor pressure curve SV1 of the component refrigerant is larger than that of a saturated vapor pressure curve SV0 of the mixed refrigerant. As a result, the enclosed refrigerant also shows inclination larger than that of the mixed refrigerant. This characteristic can avoid an excessive opening of the expansion valve in the low-temperature area and can provide a suitable opening for load in the high temperature area, which can provide the stable operation from the low temperature area to the high temperature area. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus.

従来、特許文献1に記載の冷凍サイクル装置が知られている。冷凍サイクル装置は、圧縮機と、凝縮器と、膨張弁と、蒸発器とを備え、これらを環状に接続して構成されている。さらに冷凍サイクル装置は、凝縮器と膨張弁との間の高圧冷媒と、蒸発器と圧縮機との間の低圧冷媒とを熱交換させる内部熱交換器を備えている。冷凍サイクル装置を循環する循環冷媒は、単一冷媒、または混合冷媒である。膨張弁として感温式膨張弁が広く使用されている。   Conventionally, a refrigeration cycle apparatus described in Patent Document 1 is known. The refrigeration cycle apparatus includes a compressor, a condenser, an expansion valve, and an evaporator, and is configured by connecting them in a ring shape. The refrigeration cycle apparatus further includes an internal heat exchanger that exchanges heat between the high-pressure refrigerant between the condenser and the expansion valve and the low-pressure refrigerant between the evaporator and the compressor. The circulating refrigerant circulating through the refrigeration cycle apparatus is a single refrigerant or a mixed refrigerant. A temperature-sensitive expansion valve is widely used as an expansion valve.

特許文献2は、混合冷媒を用いる冷凍サイクル装置と感温式膨張弁を開示している。さらに、特許文献2は、循環冷媒と同一の冷媒、または循環冷媒と類似の圧力−温度特性を示す冷媒を膨張弁の感温部に封入することも開示している。この感温部に封入された冷媒は封入冷媒と呼ばれる。   Patent Document 2 discloses a refrigeration cycle apparatus using a mixed refrigerant and a temperature-sensitive expansion valve. Further, Patent Document 2 also discloses that the same refrigerant as the circulating refrigerant or a refrigerant exhibiting pressure-temperature characteristics similar to the circulating refrigerant is enclosed in the temperature sensing part of the expansion valve. The refrigerant enclosed in the temperature sensing part is called an enclosed refrigerant.

一方、感温式膨張弁として種々の形態が知られている。例えば、特許文献2は、冷凍サイクル装置を構成する配管と接続するためのジョイント部を備えたジョイント型膨張弁を開示している。特許文献3は、高圧通路と低圧通路とを形成したハウジングを備えるボックス型膨張弁を開示している。特許文献4は、感温部と弁部とをユニット化したカセット構造を開示している。さらに、特許文献2は、膨張弁と蒸発器との間の圧力を導入する内均式膨張弁を開示している。特許文献4は、蒸発器と圧縮機との間の圧力を導入する外均式膨張弁を開示している。
特開2007−71461号公報 特開平2−203175号公報 特許第4039069号 実公平7−40139号公報
On the other hand, various forms are known as a temperature-sensitive expansion valve. For example, patent document 2 is disclosing the joint type expansion valve provided with the joint part for connecting with piping which comprises a refrigeration cycle apparatus. Patent document 3 is disclosing the box-type expansion valve provided with the housing which formed the high pressure channel | path and the low pressure channel | path. Patent Document 4 discloses a cassette structure in which a temperature sensing part and a valve part are unitized. Furthermore, Patent Document 2 discloses an inner-equal expansion valve that introduces pressure between the expansion valve and the evaporator. Patent Document 4 discloses an outer-equal expansion valve that introduces pressure between the evaporator and the compressor.
JP 2007-71461 A JP-A-2-203175 Patent No. 4039069 No. 7-40139

従来の感温式膨張弁は、蒸発器の出口における冷媒状態を制御する。例えば、感温式膨張弁は、蒸発器の出口における循環冷媒の過熱度を所定の値に制御する。   A conventional temperature-sensitive expansion valve controls the refrigerant state at the outlet of the evaporator. For example, the temperature-sensitive expansion valve controls the degree of superheat of the circulating refrigerant at the outlet of the evaporator to a predetermined value.

ところが、循環冷媒に混合冷媒を使用する場合、低温領域または高温領域において循環冷媒の飽和蒸気圧力曲線と、封入冷媒の飽和蒸気圧力曲線に依存する開弁特性との圧力差が望ましくない減少または増加を示すことがあった。このような挙動は、封入冷媒と循環冷媒とが異なる場合に顕著にあらわれる。このため、低温領域または高温領域において所期の制御特性が得られないという問題点があった。   However, when mixed refrigerant is used as the circulating refrigerant, the pressure difference between the saturated vapor pressure curve of the circulating refrigerant and the valve opening characteristic depending on the saturated vapor pressure curve of the enclosed refrigerant is undesirably reduced or increased in the low temperature region or the high temperature region. Was sometimes shown. Such behavior is prominent when the enclosed refrigerant and the circulating refrigerant are different. For this reason, there is a problem that desired control characteristics cannot be obtained in a low temperature region or a high temperature region.

例えば、循環冷媒の飽和蒸気圧力曲線と開弁特性との圧力差が、低温になるほど大きくなる場合、過大な圧力差が得られるため、膨張弁が必要以上に開く。膨張弁が過大開度となると液戻り現象を生じる。この結果、過熱度制御が破綻し、冷凍能力が減少するという問題点があった。   For example, when the pressure difference between the saturated vapor pressure curve of the circulating refrigerant and the valve opening characteristic becomes larger as the temperature becomes lower, an excessive pressure difference is obtained, so that the expansion valve opens more than necessary. When the expansion valve is over-opened, a liquid return phenomenon occurs. As a result, there is a problem that the superheat control is broken and the refrigerating capacity is reduced.

一方で、高温領域では、熱的な負荷が大きいため循環冷媒の流量を多くすることが望ましい。ところが、循環冷媒の飽和蒸気圧力曲線と開弁特性との圧力差が、高温になるほど減少する場合、圧力差が過小となる。この結果、膨張弁に必要な開度が得られないという問題点があった。   On the other hand, since the thermal load is large in the high temperature region, it is desirable to increase the flow rate of the circulating refrigerant. However, when the pressure difference between the saturated vapor pressure curve of the circulating refrigerant and the valve opening characteristic decreases as the temperature increases, the pressure difference becomes excessive. As a result, there was a problem that the opening required for the expansion valve could not be obtained.

本発明は、上記の問題点に鑑み、改良された冷凍サイクル装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an improved refrigeration cycle apparatus.

本発明は、循環冷媒として混合冷媒を用いた冷凍サイクル装置において、低温領域または高温領域においても安定して運転できる冷凍サイクル装置を提供することを目的とする。   An object of the present invention is to provide a refrigeration cycle apparatus that uses a mixed refrigerant as a circulating refrigerant and can be stably operated even in a low temperature region or a high temperature region.

本発明は、循環冷媒として混合冷媒を用いた冷凍サイクル装置において、低温領域から高温領域にわたって安定して運転できる冷凍サイクル装置を提供することを他の目的とする。   Another object of the present invention is to provide a refrigeration cycle apparatus that can stably operate from a low temperature region to a high temperature region in a refrigeration cycle apparatus that uses a mixed refrigerant as a circulating refrigerant.

本発明は上記目的を達成するために、以下の技術的手段を採用する。請求項1に記載の発明では、圧縮機(20)、凝縮器(30)、膨張弁(40)、および蒸発器(50)を備え、複数の成分冷媒が混合された混合冷媒を循環させる冷凍サイクル装置において、膨張弁(40)は、開度が変化することにより蒸発器(50)に供給する冷媒量を調節する弁部(41)と、内部に封入された封入冷媒の圧力に応じて弁部(41)の開度を調節するパワーエレメント(42)とを備え、封入冷媒が示す飽和蒸気圧曲線(SV1)の傾きは、混合冷媒が示す飽和蒸気圧曲線(SV0)の傾きより大きいという技術的手段を採用する。この発明によると、膨張弁の開度を負荷に応じた開度とすることができる。低温領域において、封入冷媒が示す飽和蒸気圧曲線(SV1)の傾きが、混合冷媒が示す飽和蒸気圧曲線(SV0)の傾きより大きい場合、弁開度が過大になることが回避される。高温領域において、封入冷媒が示す飽和蒸気圧曲線(SV1)の傾きが、混合冷媒が示す飽和蒸気圧曲線(SV0)の傾きより大きい場合、弁開度が過小になることが回避される。   In order to achieve the above object, the present invention employs the following technical means. In the invention described in claim 1, the refrigeration includes a compressor (20), a condenser (30), an expansion valve (40), and an evaporator (50), and circulates a mixed refrigerant in which a plurality of component refrigerants are mixed. In the cycle device, the expansion valve (40) has a valve part (41) that adjusts the amount of refrigerant supplied to the evaporator (50) by changing the opening degree, and the pressure of the enclosed refrigerant enclosed therein. A power element (42) for adjusting the opening of the valve portion (41), and the slope of the saturated vapor pressure curve (SV1) indicated by the enclosed refrigerant is larger than the slope of the saturated vapor pressure curve (SV0) indicated by the mixed refrigerant. Adopt technical means. According to this invention, the opening degree of the expansion valve can be set to an opening degree corresponding to the load. In the low temperature region, when the slope of the saturated vapor pressure curve (SV1) indicated by the filled refrigerant is larger than the slope of the saturated vapor pressure curve (SV0) indicated by the mixed refrigerant, it is avoided that the valve opening is excessive. In the high temperature region, when the slope of the saturated vapor pressure curve (SV1) indicated by the enclosed refrigerant is larger than the slope of the saturated vapor pressure curve (SV0) indicated by the mixed refrigerant, it is avoided that the valve opening becomes too small.

請求項2に記載の発明では、封入冷媒は、複数の成分冷媒のうち、飽和蒸気圧曲線の傾きが混合冷媒の飽和蒸気圧曲線(SV0)の傾きより大きいひとつの成分冷媒を含むという技術的手段を採用する。この発明によると、混合冷媒に含まれる成分冷媒を用いて膨張弁の制御特性を規定できる。   In the second aspect of the invention, the enclosed refrigerant includes one component refrigerant among the plurality of component refrigerants, wherein the gradient of the saturated vapor pressure curve is larger than the gradient of the saturated vapor pressure curve (SV0) of the mixed refrigerant. Adopt means. According to this invention, the control characteristic of the expansion valve can be defined using the component refrigerant contained in the mixed refrigerant.

請求項3に記載の発明では、封入冷媒は、複数の成分冷媒のうち、飽和蒸気圧曲線の傾きが最も大きいひとつの成分冷媒を含むという技術的手段を採用する。   The invention according to claim 3 employs a technical means in which the encapsulated refrigerant includes one component refrigerant having the largest slope of the saturated vapor pressure curve among the plurality of component refrigerants.

請求項4に記載の発明では、封入冷媒は、複数の成分冷媒のうち、飽和蒸気圧曲線の傾きが最も小さい成分冷媒を除くひとつまたは複数の成分冷媒を含むという技術的手段を採用する。   The invention according to claim 4 employs a technical means in which the enclosed refrigerant includes one or a plurality of component refrigerants excluding the component refrigerant having the smallest slope of the saturated vapor pressure curve among the plurality of component refrigerants.

請求項5に記載の発明では、封入冷媒は、ひとつだけの成分冷媒を含むという技術的手段を採用する。この発明によると、簡単な工程によって、冷媒を膨張弁に封入できるという利点が得られる。   In the invention according to claim 5, the technical means that the enclosed refrigerant contains only one component refrigerant is adopted. According to the present invention, there is an advantage that the refrigerant can be sealed in the expansion valve by a simple process.

請求項6に記載の発明によると、封入冷媒が示す飽和蒸気圧曲線(SV1)の傾きは、低温領域から高温領域にわたって、混合冷媒が示す飽和蒸気圧曲線(SV0)の傾きより大きいという技術的手段を採用する。この発明によると、低温領域では膨張弁の開度が過大になることを回避し、高温領域では負荷に適合した開度が提供される。この結果、低温領域から高温領域にわたって安定運転が可能となる。   According to the invention of claim 6, the slope of the saturated vapor pressure curve (SV1) indicated by the enclosed refrigerant is larger than the slope of the saturated vapor pressure curve (SV0) indicated by the mixed refrigerant from the low temperature region to the high temperature region. Adopt means. According to the present invention, the opening degree of the expansion valve is prevented from becoming excessive in the low temperature region, and the opening degree suitable for the load is provided in the high temperature region. As a result, stable operation is possible from the low temperature region to the high temperature region.

請求項7に記載の発明によると、封入冷媒が示す飽和蒸気圧曲線(SV1)と、混合冷媒が示す飽和蒸気圧曲線(SV0)との飽和蒸気圧の差(SD)は、蒸発温度が上がるに従って徐々に増加するという技術的手段を採用する。   According to the seventh aspect of the present invention, the difference in the saturated vapor pressure (SD) between the saturated vapor pressure curve (SV1) indicated by the enclosed refrigerant and the saturated vapor pressure curve (SV0) indicated by the mixed refrigerant increases the evaporation temperature. Adopt technical means of gradually increasing according to

なお、特許請求の範囲および上記各手段に記載の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。   In addition, the code | symbol in the parenthesis as described in a claim and said each means is an example which shows a corresponding relationship with the specific means as described in embodiment mentioned later.

(第1実施形態)
以下、本発明を冷凍機の冷凍サイクル装置10に適用した第1実施形態を説明する。図1において、冷凍サイクル装置10は、圧縮機20、凝縮器30、膨張弁40、蒸発器50を備える。これらの部品は、複数の配管によって順次接続されて閉回路を形成している。凝縮器30と膨張弁40との間の高圧冷媒と、蒸発器50と圧縮機20との間の低圧冷媒とを熱交換する内部熱交換器60が設けられている。
(First embodiment)
Hereinafter, a first embodiment in which the present invention is applied to a refrigeration cycle apparatus 10 for a refrigerator will be described. In FIG. 1, the refrigeration cycle apparatus 10 includes a compressor 20, a condenser 30, an expansion valve 40, and an evaporator 50. These parts are sequentially connected by a plurality of pipes to form a closed circuit. An internal heat exchanger 60 that exchanges heat between the high-pressure refrigerant between the condenser 30 and the expansion valve 40 and the low-pressure refrigerant between the evaporator 50 and the compressor 20 is provided.

冷凍サイクル装置10は、冷凍機として使用される。圧縮機20は、循環冷媒を高温高圧に圧縮する。圧縮機20は、内燃機関により駆動されるか、あるいは電動機によって駆動される。圧縮機20は、固定容量型または可変容量型とすることができる。凝縮器30は高圧側熱交換器である。凝縮器30は、圧縮機110の吐出側に接続され、外気との熱交換によって冷媒を凝縮液化する。膨張弁40は、減圧器である。膨張弁40は、凝縮器30から流出した液相冷媒を等エンタルピ的に減圧し、膨張させる。膨張弁40は、蒸発器50の出口における冷媒状態が、所定の状態となるように絞り開度を制御する。膨張弁40は、上記冷媒状態を温度によって感知する感温式膨張弁である。蒸発器50は低圧側熱交換器であって、冷却器あるいは吸熱器とも呼ばれる。蒸発器50は、冷媒が内部で蒸発することにより、冷却対象である冷凍庫内の空気を冷却する。   The refrigeration cycle apparatus 10 is used as a refrigerator. The compressor 20 compresses the circulating refrigerant to a high temperature and a high pressure. The compressor 20 is driven by an internal combustion engine or is driven by an electric motor. The compressor 20 can be a fixed capacity type or a variable capacity type. The condenser 30 is a high-pressure side heat exchanger. The condenser 30 is connected to the discharge side of the compressor 110 and condenses and liquefies the refrigerant by exchanging heat with the outside air. The expansion valve 40 is a pressure reducer. The expansion valve 40 decompresses and expands the liquid-phase refrigerant that has flowed out of the condenser 30 in an enthalpy manner. The expansion valve 40 controls the throttle opening so that the refrigerant state at the outlet of the evaporator 50 becomes a predetermined state. The expansion valve 40 is a temperature-sensitive expansion valve that senses the refrigerant state based on temperature. The evaporator 50 is a low-pressure side heat exchanger and is also called a cooler or a heat absorber. The evaporator 50 cools the air in the freezer to be cooled as the refrigerant evaporates inside.

図1を参照して膨張弁40を説明する。膨張弁40は、外均式と呼ばれる構造を有している。膨張弁40は、蒸発器50に供給される冷媒量を調節する弁部41と、弁部41の開度を調節するパワーエレメント42とを有する。弁部41は、弁座、弁体、および閉弁バネによって構成されうる。感温部としてのパワーエレメント42は、蒸発器50の出口の冷媒状態を感知する手段と、冷媒状態を目標状態に一致させるように弁部41の操作量を発生する制御手段と、操作量に応じて弁部41の開度を調節する駆動手段とを実現する流体圧力式の装置である。   The expansion valve 40 will be described with reference to FIG. The expansion valve 40 has a structure called an outer equation. The expansion valve 40 includes a valve portion 41 that adjusts the amount of refrigerant supplied to the evaporator 50, and a power element 42 that adjusts the opening degree of the valve portion 41. The valve unit 41 can be configured by a valve seat, a valve body, and a valve closing spring. The power element 42 as the temperature sensing unit includes a means for sensing the refrigerant state at the outlet of the evaporator 50, a control unit for generating an operation amount of the valve unit 41 so that the refrigerant state matches the target state, and an operation amount. Accordingly, it is a fluid pressure type device that realizes a driving means for adjusting the opening degree of the valve portion 41 accordingly.

パワーエレメント42は、感圧部材としてのダイヤフラム43を備える。ダイヤフラム43は、第1室44と第2室45とを区画している。ダイヤフラム43には、弁体を駆動する弁棒46が連結されている。ダイヤフラム43は、第1室44と第2室45との差圧によって変位し、弁部41の開度を調節する。第1室44は、管47を通じて感温筒48と連通し、密閉空間を形成している。第1室44には、媒体が封入されている。媒体には、二相状態の封入冷媒と、調節用の補助ガスとが含まれる。感温筒48は、蒸発器50の出口近傍の配管に接触して設けられている。この結果、第1室44の媒体には、蒸発器50の出口の冷媒の温度が伝達される。封入冷媒は、蒸発器50の出口の冷媒温度を感知する。封入冷媒は、第1室44の圧力を蒸発器50の出口における冷媒温度に依存して変化させる。第2室45は、管49によって蒸発器50の出口付近の通路と連通される。この結果、蒸発器50における循環冷媒の蒸発圧力が第2室45に導入される。この膨張弁40によると、ダイヤフラム43は、蒸発器50の蒸発圧力と、蒸発器50の出口における循環冷媒の温度に応じた圧力との差圧に応じて変位する。   The power element 42 includes a diaphragm 43 as a pressure sensitive member. The diaphragm 43 partitions the first chamber 44 and the second chamber 45. A valve rod 46 that drives the valve body is connected to the diaphragm 43. The diaphragm 43 is displaced by the differential pressure between the first chamber 44 and the second chamber 45 and adjusts the opening of the valve portion 41. The first chamber 44 communicates with the temperature sensing cylinder 48 through the pipe 47 to form a sealed space. A medium is sealed in the first chamber 44. The medium includes a two-phase sealed refrigerant and an adjustment auxiliary gas. The temperature sensing cylinder 48 is provided in contact with a pipe near the outlet of the evaporator 50. As a result, the temperature of the refrigerant at the outlet of the evaporator 50 is transmitted to the medium in the first chamber 44. The enclosed refrigerant senses the refrigerant temperature at the outlet of the evaporator 50. The enclosed refrigerant changes the pressure in the first chamber 44 depending on the refrigerant temperature at the outlet of the evaporator 50. The second chamber 45 is communicated with a passage near the outlet of the evaporator 50 by a pipe 49. As a result, the evaporation pressure of the circulating refrigerant in the evaporator 50 is introduced into the second chamber 45. According to the expansion valve 40, the diaphragm 43 is displaced according to a differential pressure between the evaporation pressure of the evaporator 50 and the pressure corresponding to the temperature of the circulating refrigerant at the outlet of the evaporator 50.

循環冷媒は、互いに飽和蒸気圧曲線が異なる複数の成分冷媒が混合された混合冷媒である。循環冷媒は、3種以上の成分冷媒を含むことができる。混合冷媒は、第1成分冷媒と、第2成分冷媒と、第3成分冷媒とを含んでいる。これら成分冷媒の沸点は、第1成分冷媒>第2成分冷媒>第3成分冷媒である。封入冷媒は、ひとつの成分冷媒だけを含んでいる。ひとつの成分冷媒だけを封入冷媒とする構成は、パワーエレメント42への封入工程を簡単にすることを可能とする。   The circulating refrigerant is a mixed refrigerant in which a plurality of component refrigerants having different saturation vapor pressure curves are mixed. The circulating refrigerant can include three or more component refrigerants. The mixed refrigerant includes a first component refrigerant, a second component refrigerant, and a third component refrigerant. The boiling points of these component refrigerants are: first component refrigerant> second component refrigerant> third component refrigerant. The sealed refrigerant contains only one component refrigerant. The configuration in which only one component refrigerant is used as the encapsulated refrigerant makes it possible to simplify the encapsulating process in the power element 42.

図2ないし図4は、横軸が温度Tを示し、縦軸が圧力Pを示す温度−圧力グラフである。図2には、混合冷媒の飽和蒸気圧曲線SV0と、各成分冷媒の飽和蒸気圧曲線SV1、SV2、SV3が図示されている。図示のように、第1成分冷媒の飽和蒸気圧が最も高い。第3成分冷媒の飽和蒸気圧が最も低い。混合冷媒の飽和蒸気圧曲線SV0は、比較的飽和蒸気圧が低い2つの成分冷媒の飽和蒸気圧曲線の間を通っている。具体的には第2成分冷媒の飽和蒸気圧曲線SV2と、第3成分冷媒の飽和蒸気圧曲線SV3との間を通っている。   2 to 4 are temperature-pressure graphs in which the horizontal axis indicates the temperature T and the vertical axis indicates the pressure P. FIG. FIG. 2 shows a saturated vapor pressure curve SV0 of the mixed refrigerant and saturated vapor pressure curves SV1, SV2, and SV3 of the component refrigerants. As shown in the figure, the saturated vapor pressure of the first component refrigerant is the highest. The saturation vapor pressure of the third component refrigerant is the lowest. The saturated vapor pressure curve SV0 of the mixed refrigerant passes between the saturated vapor pressure curves of the two component refrigerants having a relatively low saturated vapor pressure. Specifically, it passes between the saturated vapor pressure curve SV2 of the second component refrigerant and the saturated vapor pressure curve SV3 of the third component refrigerant.

第1成分冷媒の飽和蒸気圧曲線SV1が最も大きい傾きを示す。第3成分冷媒の飽和蒸気圧曲線SV3が最も小さい傾きを示す。封入冷媒である第1成分冷媒が示す飽和蒸気圧曲線SV1の傾きは、低温領域から高温領域にわたって、混合冷媒が示す飽和蒸気圧曲線SV0の傾きより大きい。さらに、第2成分冷媒が示す飽和蒸気圧曲線SV2の傾きは、低温領域から高温領域にわたって、混合冷媒が示す飽和蒸気圧曲線SV0の傾きより大きい。第3成分冷媒の飽和蒸気圧曲線SV3は、低温領域から高温領域にわたって混合冷媒の飽和蒸気圧曲線SV0より小さい傾きを有している。   The saturated vapor pressure curve SV1 of the first component refrigerant shows the largest slope. The saturation vapor pressure curve SV3 of the third component refrigerant shows the smallest slope. The slope of the saturated vapor pressure curve SV1 indicated by the first component refrigerant as the enclosed refrigerant is larger than the slope of the saturated vapor pressure curve SV0 indicated by the mixed refrigerant from the low temperature region to the high temperature region. Further, the slope of the saturated vapor pressure curve SV2 indicated by the second component refrigerant is larger than the slope of the saturated vapor pressure curve SV0 indicated by the mixed refrigerant from the low temperature region to the high temperature region. The saturated vapor pressure curve SV3 of the third component refrigerant has a slope smaller than the saturated vapor pressure curve SV0 of the mixed refrigerant from the low temperature region to the high temperature region.

第1成分冷媒が示す飽和蒸気圧曲線SV1と、混合冷媒が示す飽和蒸気圧曲線SV0との飽和蒸気圧の差SDは、蒸発温度が上がるに従って徐々に増加する。この結果、高負荷温度における圧力差SD2は、低負荷温度における圧力差SD1より大きい。この実施形態では、−10°Cを高負荷温度とし、−40°Cを低負荷温度としている。   The difference SD of the saturated vapor pressure between the saturated vapor pressure curve SV1 indicated by the first component refrigerant and the saturated vapor pressure curve SV0 indicated by the mixed refrigerant gradually increases as the evaporation temperature increases. As a result, the pressure difference SD2 at the high load temperature is larger than the pressure difference SD1 at the low load temperature. In this embodiment, −10 ° C. is a high load temperature, and −40 ° C. is a low load temperature.

図2には、比較例としての比較冷媒の飽和蒸気圧曲線SVCが図示されている。比較冷媒は、混合冷媒の成分ではない。比較冷媒を封入冷媒とした場合には、飽和蒸気圧曲線SVCの傾きが、混合冷媒の飽和蒸気圧曲線SV0より小さい。   FIG. 2 shows a saturated vapor pressure curve SVC of a comparative refrigerant as a comparative example. The comparative refrigerant is not a component of the mixed refrigerant. When the comparative refrigerant is an enclosed refrigerant, the slope of the saturated vapor pressure curve SVC is smaller than the saturated vapor pressure curve SV0 of the mixed refrigerant.

図3には、各成分冷媒にヘリウムなどの補助ガスなどを加えた後の媒体の蒸気圧を示す特性曲線が図示されている。図3における特性曲線は、冷凍機としての基準温度である−30°Cの時に、循環冷媒が所定の状態に制御されるように、補助ガスなどによって調整されている。特性曲線SV1+は、第1成分冷媒の調整後の特性を示している。特性曲線SV2+は、第2成分冷媒の調整後の特性を示している。特性曲線SV3+は、第3成分冷媒の調整後の特性を示している。特性曲線SVC+は、比較冷媒の調整後の特性を示している。補助ガスによる調整の後も、成分冷媒が有する飽和蒸気圧曲線の傾きが維持されている。   FIG. 3 shows a characteristic curve indicating the vapor pressure of the medium after adding an auxiliary gas such as helium to each component refrigerant. The characteristic curve in FIG. 3 is adjusted by auxiliary gas or the like so that the circulating refrigerant is controlled to a predetermined state at −30 ° C. which is a reference temperature as a refrigerator. The characteristic curve SV1 + shows the characteristic after adjustment of the first component refrigerant. A characteristic curve SV2 + indicates the characteristic after adjustment of the second component refrigerant. A characteristic curve SV3 + indicates the characteristic after adjustment of the third component refrigerant. A characteristic curve SVC + indicates the characteristic after adjustment of the comparative refrigerant. Even after the adjustment with the auxiliary gas, the slope of the saturated vapor pressure curve of the component refrigerant is maintained.

図4には、膨張弁40の閉弁バネなどのバイアス力を考慮した開弁圧を示す特性曲線が図示されている。特性曲線SV1Dは、第1成分冷媒を含む媒体の開弁特性を示す。特性曲線SVCDは、比較冷媒を含む媒体の開弁特性を示す。   FIG. 4 shows a characteristic curve indicating a valve opening pressure in consideration of a bias force such as a valve closing spring of the expansion valve 40. The characteristic curve SV1D shows the valve opening characteristic of the medium containing the first component refrigerant. The characteristic curve SVCD shows the valve opening characteristic of the medium containing the comparative refrigerant.

特性曲線SVCDは、特性曲線SV1Dに比べて、傾きが小さい。このため、特性曲線SVCDは、基準温度よりも低い低温領域において、特性曲線SV1Dより高圧側を通る。しかも、この低温領域において、特性曲線SVCDは、混合冷媒の飽和蒸気圧曲線SV0から圧力軸方向に離れてゆく。特性曲線SVCDは、基準温度における圧力差PD0より大きい圧力差PD1を低温領域で発生する。この結果、低温領域において過大な圧力差を生じ、開度が過大になる。特性曲線SVCDは、基準温度よりも高い高温領域において、特性曲線SV1Dより低圧側を通る。特性曲線SVCDは、基準温度における圧力差PD0より小さい圧力差PD2を高温領域で発生する。この結果、特性曲線SVCDを採用した場合には、高温領域においては開度が不足する。   The characteristic curve SVCD has a smaller slope than the characteristic curve SV1D. For this reason, the characteristic curve SVCD passes on the higher pressure side than the characteristic curve SV1D in a low temperature region lower than the reference temperature. In addition, in this low temperature region, the characteristic curve SVCD moves away from the saturated vapor pressure curve SV0 of the mixed refrigerant in the pressure axis direction. The characteristic curve SVCD generates a pressure difference PD1 larger than the pressure difference PD0 at the reference temperature in the low temperature region. As a result, an excessive pressure difference occurs in the low temperature region, and the opening degree becomes excessive. Characteristic curve SVCD passes on the lower pressure side than characteristic curve SV1D in a high temperature region higher than the reference temperature. The characteristic curve SVCD generates a pressure difference PD2 smaller than the pressure difference PD0 at the reference temperature in the high temperature region. As a result, when the characteristic curve SVCD is employed, the opening degree is insufficient in the high temperature region.

一方、特性曲線SV1Dによると、低温領域から高温領域に向かって、圧力差が徐々に増加する。特性曲線SV1Dは、基準温度における圧力差PD0より小さい圧力差PD3を低温領域で発生する。特性曲線SV1Dは、基準温度における圧力差PD0より大きい圧力差PD4を高温領域で発生する。このため、膨張弁40の開度は、低温領域から高温領域に向かって、徐々に増加する。   On the other hand, according to the characteristic curve SV1D, the pressure difference gradually increases from the low temperature region to the high temperature region. The characteristic curve SV1D generates a pressure difference PD3 smaller than the pressure difference PD0 at the reference temperature in the low temperature region. The characteristic curve SV1D generates a pressure difference PD4 larger than the pressure difference PD0 at the reference temperature in the high temperature region. For this reason, the opening degree of the expansion valve 40 gradually increases from the low temperature region toward the high temperature region.

この実施形態では、混合冷媒として、R404Aが使用されている。混合冷媒R404Aには、第1成分冷媒としてR125が使用され、第2成分冷媒としてR143aが使用され、第3成分冷媒としてR134aが使用されている。封入冷媒は、第1成分冷媒であるR125である。比較冷媒としては、R22が使用されている。   In this embodiment, R404A is used as the mixed refrigerant. In the mixed refrigerant R404A, R125 is used as the first component refrigerant, R143a is used as the second component refrigerant, and R134a is used as the third component refrigerant. The enclosed refrigerant is R125 which is the first component refrigerant. R22 is used as a comparative refrigerant.

この冷凍サイクル装置10が運転されると、膨張弁40は、蒸発器50の出口における冷媒状態を目標状態に一致させるように弁部41の開度を調節する。冷凍機としての冷凍サイクル装置10運転範囲は、蒸発温度が低温の領域から高温の領域にわたっている。冷凍機としての低負荷状態に相当する低負荷温度である−40°C付近は、冷凍機としての蒸発温度の中でも極低温と呼びうる温度である。低負荷温度の近傍においては、冷媒流量が少なくなり、膨張弁40の開度も小さくなる。一方、冷凍機としての高負荷状態に相当する高負荷温度である−10°C付近においては、高い負荷に対応した大量の冷媒を流すことが許容される。   When the refrigeration cycle apparatus 10 is operated, the expansion valve 40 adjusts the opening degree of the valve unit 41 so that the refrigerant state at the outlet of the evaporator 50 matches the target state. The operation range of the refrigeration cycle apparatus 10 as a refrigerator extends from a low temperature region to a high temperature region. The vicinity of −40 ° C., which is a low load temperature corresponding to a low load state as a refrigerator, is a temperature that can be called an extremely low temperature among the evaporation temperatures as a refrigerator. In the vicinity of the low load temperature, the refrigerant flow rate decreases and the opening degree of the expansion valve 40 also decreases. On the other hand, in the vicinity of −10 ° C., which is a high load temperature corresponding to a high load state as a refrigerator, a large amount of refrigerant corresponding to a high load is allowed to flow.

封入冷媒として選定された成分冷媒は、蒸発温度が低温領域にあるとき、特に極低温領域にあるときに、飽和蒸気圧曲線の傾きが、循環冷媒である混合冷媒の飽和蒸気圧曲線の傾きより大きい。この特徴は、低温領域、特に極低温領域において、膨張弁40の開度が負荷に応じた開度を越える過大な開度になることを回避する。また、低温領域における大きい傾きは、温度変化に対して十分な圧力変化と開度変化とを与える。このため、低負荷温度の近傍においては、小さい開度範囲内でも、安定した制御を維持できる。この結果、低温領域、特に極低温領域においても、安定した過熱度制御が可能となる。   The component refrigerant selected as the encapsulated refrigerant has a slope of the saturated vapor pressure curve that is higher than the slope of the saturated vapor pressure curve of the mixed refrigerant that is the circulating refrigerant when the evaporation temperature is in the low temperature region, particularly in the very low temperature region. large. This feature avoids that the opening degree of the expansion valve 40 becomes an excessive opening degree exceeding the opening degree corresponding to the load in a low temperature region, particularly in a very low temperature region. Further, a large slope in the low temperature region gives sufficient pressure change and opening degree change with respect to temperature change. For this reason, in the vicinity of the low load temperature, stable control can be maintained even within a small opening range. As a result, stable superheat control is possible even in a low temperature region, particularly in a very low temperature region.

封入冷媒として選定された成分冷媒は、蒸発温度が高温領域にあるとき、封入冷媒の飽和蒸気圧曲線が、混合冷媒の飽和蒸気圧曲線SV0に類似していることが望ましい。この特徴は、高負荷温度を含む高温領域において、高負荷に適合した比較的大きい弁開度を可能としつつ、負荷に応じた開度を越える過大な開度を回避する。この結果、高温領域においても、液バック現象を回避して安定した運転が可能となる。   The component refrigerant selected as the encapsulated refrigerant desirably has a saturated vapor pressure curve similar to the saturated vapor pressure curve SV0 of the mixed refrigerant when the evaporation temperature is in a high temperature region. This feature avoids an excessive opening exceeding the opening corresponding to the load while enabling a relatively large valve opening suitable for a high load in a high temperature region including a high load temperature. As a result, even in a high temperature region, it is possible to avoid the liquid back phenomenon and perform stable operation.

(他の実施形態)
本発明は上述した実施形態にのみ限定されるものではなく、次のように変形または拡張することができる。本発明は、循環冷媒としてR404Aを採用する冷凍サイクル装置に限らず、種々の混合冷媒を循環冷媒として採用する冷凍サイクル装置に適用してもよい。本発明は、複数の冷媒を封入冷媒とする冷凍サイクル装置に適用されてもよい。また、飽和蒸気圧曲線の傾きが最も小さい成分冷媒を除く、ひとつまたは複数の成分冷媒を封入冷媒としてもよい。例えば、上記実施形態における第2成分冷媒R143aを封入冷媒としてもよい。本発明は、ジョイント型、あるいはボックス型と呼ばれる膨張弁に適用できる。また、本発明は、内均式、あるいは外均式と呼ばれる膨張弁に適用できる。さらに、本発明はカセット構造を有する膨張弁にも適用できる。さらに、本発明は、エジェクタを備える冷凍サイクル装置に適用されてもよい。
(Other embodiments)
The present invention is not limited to the above-described embodiments, and can be modified or expanded as follows. The present invention is not limited to a refrigeration cycle apparatus that employs R404A as a circulating refrigerant, but may be applied to a refrigeration cycle apparatus that employs various mixed refrigerants as a circulating refrigerant. The present invention may be applied to a refrigeration cycle apparatus using a plurality of refrigerants as enclosed refrigerants. One or a plurality of component refrigerants excluding the component refrigerant having the smallest slope of the saturated vapor pressure curve may be used as the enclosed refrigerant. For example, the second component refrigerant R143a in the above embodiment may be an enclosed refrigerant. The present invention can be applied to an expansion valve called a joint type or a box type. Further, the present invention can be applied to an expansion valve called an inner level expression or an outer level expression. Furthermore, the present invention can be applied to an expansion valve having a cassette structure. Furthermore, the present invention may be applied to a refrigeration cycle apparatus including an ejector.

本発明を適用した冷凍サイクル装置の一実施形態を示すブロック図である。It is a block diagram showing one embodiment of the refrigerating cycle device to which the present invention is applied. 一実施形態における冷媒の飽和蒸気圧曲線を示す温度−圧力グラフである。It is a temperature-pressure graph which shows the saturated vapor pressure curve of the refrigerant | coolant in one Embodiment. 一実施形態における封入媒体の蒸気圧を示す温度−圧力グラフである。It is a temperature-pressure graph which shows the vapor pressure of the enclosure medium in one Embodiment. 一実施形態における開弁圧特性を示す温度−圧力グラフである。It is a temperature-pressure graph which shows the valve opening pressure characteristic in one Embodiment.

符号の説明Explanation of symbols

10…冷凍サイクル装置
20…圧縮機
30…凝縮器
40…膨張弁
50…蒸発器
60…内部熱交換器
SV0…混合冷媒の飽和蒸気圧曲線
SV1…第1成分冷媒の飽和蒸気圧曲線
SV2…第2成分冷媒の飽和蒸気圧曲線
SV3…第3成分冷媒の飽和蒸気圧曲線
SVC…比較冷媒の飽和蒸気圧曲線
DESCRIPTION OF SYMBOLS 10 ... Refrigeration cycle apparatus 20 ... Compressor 30 ... Condenser 40 ... Expansion valve 50 ... Evaporator 60 ... Internal heat exchanger SV0 ... Saturated vapor pressure curve of mixed refrigerant SV1 ... Saturated vapor pressure curve of first component refrigerant SV2 ... First Saturated vapor pressure curve of two-component refrigerant SV3 ... Saturated vapor pressure curve of third-component refrigerant SVC ... Saturated vapor pressure curve of comparative refrigerant

Claims (7)

圧縮機(20)、凝縮器(30)、膨張弁(40)、および蒸発器(50)を備え、複数の成分冷媒が混合された混合冷媒を循環させる冷凍サイクル装置において、
前記膨張弁(40)は、
開度が変化することにより前記蒸発器(50)に供給する冷媒量を調節する弁部(41)と、
内部に封入された封入冷媒の圧力に応じて前記弁部(41)の開度を調節するパワーエレメント(42)とを備え、
前記封入冷媒が示す飽和蒸気圧曲線(SV1)の傾きは、前記混合冷媒が示す飽和蒸気圧曲線(SV0)の傾きより大きいことを特徴とする冷凍サイクル装置。
In a refrigeration cycle apparatus comprising a compressor (20), a condenser (30), an expansion valve (40), and an evaporator (50), and circulating a mixed refrigerant in which a plurality of component refrigerants are mixed.
The expansion valve (40)
A valve part (41) for adjusting the amount of refrigerant supplied to the evaporator (50) by changing the opening;
A power element (42) for adjusting the opening of the valve portion (41) according to the pressure of the enclosed refrigerant sealed inside,
The refrigeration cycle apparatus characterized in that a slope of a saturated vapor pressure curve (SV1) indicated by the enclosed refrigerant is larger than a slope of a saturated vapor pressure curve (SV0) indicated by the mixed refrigerant.
前記封入冷媒は、複数の前記成分冷媒のうち、飽和蒸気圧曲線の傾きが前記混合冷媒の飽和蒸気圧曲線(SV0)の傾きより大きいひとつの前記成分冷媒を含むことを特徴とする請求項1に記載の冷凍サイクル装置。 2. The encapsulated refrigerant includes one of the plurality of component refrigerants, the component refrigerant having a slope of a saturated vapor pressure curve larger than a slope of a saturated vapor pressure curve (SV0) of the mixed refrigerant. The refrigeration cycle apparatus described in 1. 前記封入冷媒は、複数の前記成分冷媒のうち、飽和蒸気圧曲線の傾きが最も大きいひとつの前記成分冷媒を含むことを特徴とする請求項2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 2, wherein the encapsulated refrigerant includes one of the plurality of component refrigerants that has the largest slope of a saturated vapor pressure curve. 前記封入冷媒は、複数の前記成分冷媒のうち、飽和蒸気圧曲線の傾きが最も小さい前記成分冷媒を除くひとつまたは複数の前記成分冷媒を含むことを特徴とする請求項1ないし請求項3のいずれかに記載の冷凍サイクル装置。 The said enclosed refrigerant | coolant contains the one or some said component refrigerant | coolant except the said component refrigerant | coolant with the smallest inclination of a saturated vapor pressure curve among the said some component refrigerant | coolants. The refrigeration cycle apparatus according to crab. 前記封入冷媒は、ひとつだけの前記成分冷媒を含むことを特徴とする請求項1ないし請求項4のいずれかに記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 4, wherein the enclosed refrigerant includes only one component refrigerant. 前記封入冷媒が示す飽和蒸気圧曲線(SV1)の傾きは、低温領域から高温領域にわたって、前記混合冷媒が示す飽和蒸気圧曲線(SV0)の傾きより大きいことを特徴とする請求項1ないし請求項5のいずれかに記載の冷凍サイクル装置。 The slope of the saturated vapor pressure curve (SV1) indicated by the enclosed refrigerant is larger than the slope of the saturated vapor pressure curve (SV0) indicated by the mixed refrigerant from a low temperature region to a high temperature region. The refrigeration cycle apparatus according to any one of 5. 前記封入冷媒が示す飽和蒸気圧曲線(SV1)と、前記混合冷媒が示す飽和蒸気圧曲線(SV0)との飽和蒸気圧の差(SD)は、蒸発温度が上がるに従って徐々に増加することを特徴とする請求項1ないし請求項6のいずれかに記載の冷凍サイクル装置。 The difference (SD) in saturated vapor pressure between the saturated vapor pressure curve (SV1) indicated by the enclosed refrigerant and the saturated vapor pressure curve (SV0) indicated by the mixed refrigerant gradually increases as the evaporation temperature increases. The refrigeration cycle apparatus according to any one of claims 1 to 6.
JP2008196320A 2008-07-30 2008-07-30 Refrigerating cycle device Pending JP2010032159A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008196320A JP2010032159A (en) 2008-07-30 2008-07-30 Refrigerating cycle device
DE102009032869A DE102009032869A1 (en) 2008-07-30 2009-07-14 Refrigeration cycle device
US12/460,315 US20100024453A1 (en) 2008-07-30 2009-07-16 Refrigeration cycle device
CN2009101655122A CN101639297B (en) 2008-07-30 2009-07-29 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008196320A JP2010032159A (en) 2008-07-30 2008-07-30 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2010032159A true JP2010032159A (en) 2010-02-12

Family

ID=41461885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008196320A Pending JP2010032159A (en) 2008-07-30 2008-07-30 Refrigerating cycle device

Country Status (4)

Country Link
US (1) US20100024453A1 (en)
JP (1) JP2010032159A (en)
CN (1) CN101639297B (en)
DE (1) DE102009032869A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032875A (en) * 2011-08-02 2013-02-14 Saginomiya Seisakusho Inc Temperature expansion valve

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011053256A1 (en) * 2011-09-05 2013-03-07 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Refrigeration circuit for use in a motor vehicle
EP2977244B1 (en) * 2014-07-24 2016-06-29 C.R.F. Società Consortile per Azioni Air conditioning system for motor-vehicles
DE102020115274A1 (en) 2020-06-09 2021-12-09 Stiebel Eltron Gmbh & Co. Kg Method for operating a compression refrigeration system
US11879676B2 (en) 2021-07-30 2024-01-23 Danfoss A/S Thermal expansion valve for a heat exchanger and heat exchanger with a thermal expansion valve

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151568U (en) * 1980-04-11 1981-11-13
JPS6048469A (en) * 1983-08-25 1985-03-16 ダイキン工業株式会社 Temperature automatic expansion valve
JPS616566A (en) * 1984-06-19 1986-01-13 松下電器産業株式会社 Heat pump device
JPH02203175A (en) * 1989-01-30 1990-08-13 Nippondenso Co Ltd Refrigerator
JPH0740139Y2 (en) * 1990-01-31 1995-09-13 株式会社ゼクセル Expansion valve for air conditioner
JP2000220917A (en) * 1999-01-28 2000-08-08 Tgk Co Ltd Supercooling degree control type expansion valve
JP2007071461A (en) * 2005-09-07 2007-03-22 Denso Corp Refrigerating cycle device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815797B2 (en) 1990-06-05 1996-02-21 富士通株式会社 Printer print control method
JPH0740139U (en) 1993-12-28 1995-07-18 凸版印刷株式会社 Polyethylene naphthalate film laminated metal plate
JPH10267436A (en) * 1997-01-21 1998-10-09 Mitsubishi Electric Corp Refrigerating air-conditioning device
EP1094285A1 (en) * 1999-04-02 2001-04-25 Matsushita Refrigeration Company Heat pump
JP2004198063A (en) * 2002-12-20 2004-07-15 Sanyo Electric Co Ltd Non-azeotropic refrigerant mixture, refrigerating cycle and refrigerating device
JP2007155229A (en) * 2005-12-06 2007-06-21 Sanden Corp Vapor compression type refrigerating cycle
WO2008079235A2 (en) * 2006-12-23 2008-07-03 E. I. Du Pont De Nemours And Company R422d heat transfer systems and r22 systems retrofitted with r422d
JP2010032157A (en) * 2008-07-30 2010-02-12 Denso Corp Refrigeration cycle device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151568U (en) * 1980-04-11 1981-11-13
JPS6048469A (en) * 1983-08-25 1985-03-16 ダイキン工業株式会社 Temperature automatic expansion valve
JPS616566A (en) * 1984-06-19 1986-01-13 松下電器産業株式会社 Heat pump device
JPH02203175A (en) * 1989-01-30 1990-08-13 Nippondenso Co Ltd Refrigerator
JPH0740139Y2 (en) * 1990-01-31 1995-09-13 株式会社ゼクセル Expansion valve for air conditioner
JP2000220917A (en) * 1999-01-28 2000-08-08 Tgk Co Ltd Supercooling degree control type expansion valve
JP2007071461A (en) * 2005-09-07 2007-03-22 Denso Corp Refrigerating cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032875A (en) * 2011-08-02 2013-02-14 Saginomiya Seisakusho Inc Temperature expansion valve

Also Published As

Publication number Publication date
CN101639297B (en) 2012-06-13
DE102009032869A1 (en) 2010-02-04
CN101639297A (en) 2010-02-03
US20100024453A1 (en) 2010-02-04

Similar Documents

Publication Publication Date Title
KR20050103900A (en) Refrigeration system with bypass subcooling and component size de-optimization
JP2004286442A (en) Valve assembly device, refrigeration unit and operating method of refrigeration unit
JP2006162246A (en) Refrigeration system and an improved transcritical vapour compression cycle
JP2006194518A (en) Refrigerating device
JP2007271138A (en) Refrigerating machine
JP2010032159A (en) Refrigerating cycle device
JP2006292229A (en) Co2 refrigeration cycle device and supercritical refrigeration operation method therefor
JPWO2020095381A1 (en) Fluid temperature control system and refrigeration system
JP2006336943A (en) Refrigeration system, and cold insulation box
JP2009236428A (en) Compression type refrigerating machine
JP2008139013A (en) Thermostat expansion valve for refrigerating circuit or heat pump circuit having thermal control safety function
JP2008122034A (en) Air conditioner for vehicle
JP2005351529A (en) Pressure control valve and vapor compression refrigerating cycle
JP5770157B2 (en) Refrigeration equipment
JP2008164239A (en) Pressure regulation valve
JP2006234207A (en) Refrigerating cycle pressure reducing device
JP2002310539A (en) Expansion valve
JP2007033021A (en) Temperature and differential pressure sensing valve
JP3735338B2 (en) Refrigeration apparatus for vehicle and control method thereof
JP2010032157A (en) Refrigeration cycle device
Nasir et al. Design and performance evaluation of an ice block making machine
JP4676166B2 (en) Safety valve device for refrigeration cycle
JP5963669B2 (en) Refrigeration equipment
KR101820683B1 (en) Cryogenic refrigeration system capable of capacity control by intermediate pressure control
JP4415853B2 (en) Variable temperature test equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005