JP2006234207A - Refrigerating cycle pressure reducing device - Google Patents

Refrigerating cycle pressure reducing device Download PDF

Info

Publication number
JP2006234207A
JP2006234207A JP2005046065A JP2005046065A JP2006234207A JP 2006234207 A JP2006234207 A JP 2006234207A JP 2005046065 A JP2005046065 A JP 2005046065A JP 2005046065 A JP2005046065 A JP 2005046065A JP 2006234207 A JP2006234207 A JP 2006234207A
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
radiator
refrigeration cycle
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005046065A
Other languages
Japanese (ja)
Inventor
Shinji Kakehashi
伸治 梯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005046065A priority Critical patent/JP2006234207A/en
Priority to FR0601476A priority patent/FR2893399A1/en
Priority to DE102006007756A priority patent/DE102006007756A1/en
Publication of JP2006234207A publication Critical patent/JP2006234207A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/20Excess-flow valves
    • F16K17/22Excess-flow valves actuated by the difference of pressure between two places in the flow line
    • F16K17/24Excess-flow valves actuated by the difference of pressure between two places in the flow line acting directly on the cutting-off member
    • F16K17/28Excess-flow valves actuated by the difference of pressure between two places in the flow line acting directly on the cutting-off member operating in one direction only
    • F16K17/30Excess-flow valves actuated by the difference of pressure between two places in the flow line acting directly on the cutting-off member operating in one direction only spring-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • F16K17/06Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded with special arrangements for adjusting the opening pressure
    • F16K17/065Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded with special arrangements for adjusting the opening pressure with differential piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2505Fixed-differential control valves

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating cycle pressure reducing device operated with suitable cycle efficiency even in the case that pressure at a high-pressure side reaches critical pressure or lower as well as the case that the pressure at the high-pressure side reaches the critical pressure or higher. <P>SOLUTION: The refrigerating cycle pressure reducing device with an accumulator 150 is applicable to a refrigerating cycle where the pressure of a refrigerant in a radiator 120 is the critical pressure or higher. It reduces the pressure of the refrigerant flowing out of the radiator 120 and delivers the pressure-reduced refrigerant to an evaporator 140. It comprises a valve element 134 opened in response to a refrigerant pressure difference ΔP between the side of the radiator 120 and the side of the evaporator 140 and a fixed restriction part 136 whose flow path resistance is set to be a predetermined value for making the side of the radiator 120 consistently communicate with the side of the evaporator 140. When the pressure of the refrigerant in the radiator 120 is at least the critical pressure or lower, the valve element 134 is kept in a closed state and the pressure is reduced by the fixed restriction part 136. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷媒の高圧側圧力が臨界圧力以上に成り得る蒸気圧縮式冷凍サイクルの放熱器出口側圧力を制御する減圧装置に関するもので、冷媒として二酸化炭素(CO)とするものに用いて好適である。 The present invention relates to a decompression device that controls a radiator outlet side pressure of a vapor compression refrigeration cycle in which a high-pressure side pressure of a refrigerant can be equal to or higher than a critical pressure, and is used for a carbon dioxide (CO 2 ) as a refrigerant. Is preferred.

従来、冷媒を二酸化炭素として、冷媒冷却用の放熱器内の圧力が臨界圧力を超えて使用される冷凍サイクル用の減圧装置として、例えば特許文献1に示されるものが知られている。即ち、この減圧装置は、放熱器から流出した冷媒を減圧すると共に、減圧された冷媒を蒸発器に向けて流出するものであり、ハウジング内に形成された弁体は、放熱器内の圧力と蒸発器内の圧力との圧力差が所定の圧力差ΔP(例えば5.5〜7MPa)となるように、蒸発器内の圧力に応じて開度を可変させて、熱負荷に応じた冷凍サイクルの運転を可能としている。   Conventionally, as a decompression device for a refrigeration cycle in which the refrigerant is carbon dioxide and the pressure in the radiator for cooling the refrigerant exceeds the critical pressure, for example, one disclosed in Patent Document 1 is known. That is, this decompression device decompresses the refrigerant flowing out of the radiator and also flows out the decompressed refrigerant toward the evaporator, and the valve body formed in the housing is connected to the pressure in the radiator. The refrigeration cycle according to the heat load by varying the opening according to the pressure in the evaporator so that the pressure difference with the pressure in the evaporator becomes a predetermined pressure difference ΔP (for example, 5.5 to 7 MPa). It is possible to drive.

ここで、所定の圧力差ΔPは、放熱器内の圧力に対応するサイクルの成績係数COP(圧縮機での仕事に対する蒸発器での冷凍能力の比)が最大値近傍となる放熱器内の圧力(9〜12.5MPa)と、蒸発器において凝縮水による霜が発生しない圧力(3.5〜5.5MPa)とを用いて、両者の差(5.5〜7MPa)として決定している。
特開平10−9719号公報
Here, the predetermined pressure difference ΔP is the pressure in the radiator where the coefficient of performance COP (ratio of the refrigerating capacity in the evaporator to the work in the compressor) corresponding to the pressure in the radiator is near the maximum value. (9 to 12.5 MPa) and a pressure (3.5 to 5.5 MPa) at which frost due to condensed water is not generated in the evaporator, the difference between the two (5.5 to 7 MPa) is determined.
Japanese Patent Laid-Open No. 10-9719

しかしながら、放熱器内の圧力が臨界圧力以下となる領域も含んで冷凍サイクルを運転させる場合に、放熱器と蒸発器との間を、常に所定の圧力差ΔPとなるように制御すると、サイクル効率(上記成績係数)が悪化する。   However, when the refrigeration cycle is operated including a region where the pressure in the radiator is equal to or lower than the critical pressure, the cycle efficiency is controlled by controlling the radiator and the evaporator so as to always have a predetermined pressure difference ΔP. (The above-mentioned coefficient of performance) gets worse.

例えば、外気温度が低い場合(例えば10℃)では、蒸発器内の圧力を3.8MPaとした時(二酸化炭素冷媒が3℃となる圧力であり、凝縮水による霜の発生を防止可能)、放熱器内の圧力は、臨界圧力(7.4MPa)を超えない圧力(例えば7MPa)での冷凍サイクルの運転が可能となるにも関わらず、あえて放熱器内の圧力を高く維持してしまう(3.8+5.5=9.3MPa)ので、圧縮機での仕事分がいたずらに増加して、サイクル効率が悪化してしまう訳である。   For example, when the outside air temperature is low (for example, 10 ° C.), when the pressure in the evaporator is 3.8 MPa (the pressure at which the carbon dioxide refrigerant is 3 ° C., it is possible to prevent the generation of frost due to condensed water). Although the pressure in the radiator is able to operate the refrigeration cycle at a pressure not exceeding the critical pressure (7.4 MPa) (for example, 7 MPa), the pressure in the radiator is intentionally maintained high ( 3.8 + 5.5 = 9.3 MPa), the work in the compressor increases unnecessarily, and the cycle efficiency deteriorates.

本発明の目的は、上記問題に鑑み、高圧側圧力が臨界圧力以上の場合に加えて、臨界圧力以下となる場合でも、好適なサイクル効率での運転を可能とする冷凍サイクル用減圧装置を提供することにある。   In view of the above problems, an object of the present invention is to provide a decompression device for a refrigeration cycle that enables operation at a suitable cycle efficiency even when the high-pressure side pressure is equal to or higher than the critical pressure, even when the pressure is equal to or lower than the critical pressure. There is to do.

本発明は、上記目的を達成するために、以下の技術的手段を用いる。   In order to achieve the above object, the present invention uses the following technical means.

請求項1に記載の発明では、主構成要素として、圧縮機(110)、放熱器(120)、蒸発器(140)、アキュムレータ(150)が順次環状に接続されて冷媒が循環し、放熱器(120)における冷媒の圧力が臨界圧力以上に成り得る冷凍サイクル(100)に適用されるものであって、放熱器(120)と蒸発器(140)との間に配設され、放熱器(120)から流出した冷媒を減圧すると共に、減圧された冷媒を蒸発器(140)に向けて流出する冷凍サイクル用減圧装置において、放熱器(120)側と蒸発器(140)側との間の冷媒の圧力差(ΔP)に応じて開弁する弁体部(134)と、放熱器(120)側と蒸発器(140)側との間を常時連通させ、その流路抵抗が所定値に設定された固定絞り部(136)とを有し、放熱器(120)における冷媒の圧力が少なくとも臨界圧力以下で冷凍サイクル(100)が運転されている場合に、弁体部(134)は閉弁状態に維持され、固定絞り部(136)にて減圧されるようにしたことを特徴としている。   In the first aspect of the invention, the compressor (110), the radiator (120), the evaporator (140), and the accumulator (150) are sequentially connected in an annular shape as main components, and the refrigerant circulates. (120) is applied to the refrigeration cycle (100) in which the refrigerant pressure can be equal to or higher than the critical pressure, and is disposed between the radiator (120) and the evaporator (140). 120) In the decompression device for the refrigeration cycle that decompresses the refrigerant that has flowed out from 120) and flows the decompressed refrigerant toward the evaporator (140), between the radiator (120) side and the evaporator (140) side. The valve body (134) that opens according to the pressure difference (ΔP) of the refrigerant is always in communication between the radiator (120) side and the evaporator (140) side, and the flow resistance becomes a predetermined value. With a fixed aperture (136) When the refrigerant pressure in the radiator (120) is at least below the critical pressure and the refrigeration cycle (100) is operated, the valve body (134) is maintained in the closed state, and the fixed throttle (136) The feature is that the pressure is reduced.

これにより、放熱器(120)における冷媒の圧力が臨界圧力以下においては、減圧装置(130)は固定絞り部(136)のみが機能するので、この固定絞り部(136)とアキュムレータ(150)による自己制御作用(詳細は、以下の「発明を実施するための最良の形態」中で説明)によって、効率良く冷凍サイクル(100)を運転させることができる。   Thereby, when the pressure of the refrigerant in the radiator (120) is lower than the critical pressure, the decompression device (130) functions only by the fixed throttle (136), so that the fixed throttle (136) and the accumulator (150) are used. The refrigeration cycle (100) can be efficiently operated by the self-control action (details are described in “Best Mode for Carrying Out the Invention” below).

また、放熱器(120)における冷媒の圧力が臨界圧力以上では、弁体部(134)が開弁されて、蒸発器(140)における熱負荷(冷凍能力)の変動を圧力差(ΔP)で代用して、弁体部(134)における弁開度の調整が行われることになり、放熱器(120)における過度な圧力上昇を抑えつつ、必要とされる冷媒流量を確保して、効率的な冷凍サイクル(100)の運転が可能となる。   Further, when the refrigerant pressure in the radiator (120) is equal to or higher than the critical pressure, the valve body (134) is opened, and the fluctuation of the heat load (refrigeration capacity) in the evaporator (140) is expressed by the pressure difference (ΔP). Instead, the valve opening in the valve body part (134) is adjusted, and the required refrigerant flow rate is secured while suppressing an excessive pressure rise in the radiator (120). Refrigeration cycle (100) can be operated.

請求項2に記載の発明では、固定絞り部(136)の流路抵抗は、冷凍サイクル(100)運転時の放熱器(120)出口側における冷媒の乾き度を0.25以下とするように設定されたことを特徴としている。   In the invention according to claim 2, the flow resistance of the fixed throttle portion (136) is such that the dryness of the refrigerant on the outlet side of the radiator (120) during the refrigeration cycle (100) operation is 0.25 or less. It is characterized by being set.

これにより、固定絞り部(136)を流通する冷媒流量の変動量が大きく変化する領域とすることができるので、アキュムレータサイクルにおける循環冷媒流量の自己制御作用を発揮させやすくなる。   Thereby, since it can be set as the area | region where the fluctuation | variation amount of the refrigerant | coolant flow volume which distribute | circulates a fixed throttle part (136) changes largely, it becomes easy to exhibit the self-control effect | action of the circulating refrigerant | coolant flow volume in an accumulator cycle.

請求項3に記載の発明では、冷凍サイクル(100)は、放熱器(120)出口側の冷媒と、蒸発器(140)出口側の冷媒との間で熱交換する内部熱交換器(160)を有することを特徴としている。   In the invention according to claim 3, the refrigeration cycle (100) includes an internal heat exchanger (160) for exchanging heat between the refrigerant on the outlet side of the radiator (120) and the refrigerant on the outlet side of the evaporator (140). It is characterized by having.

これにより、放熱器(120)から流出される冷媒を蒸発器(140)からの冷媒によって冷却することが可能となるので、蒸発器(140)で取り得るエンタルピ差を大きくすることができ、蒸発器(140)における冷凍能力を向上させることができる。   As a result, the refrigerant flowing out of the radiator (120) can be cooled by the refrigerant from the evaporator (140), so that the enthalpy difference that can be taken by the evaporator (140) can be increased, and the evaporation The refrigerating capacity in the vessel (140) can be improved.

請求項4に記載の発明では、冷媒は、二酸化炭素であり、弁体部(134)は、圧力差(ΔP)が少なくとも3.6MPa以上で開弁することを特徴としている。   The invention according to claim 4 is characterized in that the refrigerant is carbon dioxide, and the valve body (134) is opened at a pressure difference (ΔP) of at least 3.6 MPa.

二酸化炭素においては、温度が3℃となる圧力は3.8MPaであり、また、臨界圧力は7.4MPaと一義的に決まる。よって、蒸発器(140)の表面に発生した凝縮水から霜を発生させない最小圧力として3.8MPaとした時に、圧力差(ΔP)を3.6MPa以上とすることで、放熱器(120)内の圧力が臨界圧力(3.8+3.6=7.4MPa)以上で弁体部(134)が開弁作動する減圧装置(130)とすることができる。   In carbon dioxide, the pressure at which the temperature becomes 3 ° C. is 3.8 MPa, and the critical pressure is uniquely determined as 7.4 MPa. Therefore, when the minimum pressure at which frost is not generated from the condensed water generated on the surface of the evaporator (140) is set to 3.8 MPa, the pressure difference (ΔP) is set to 3.6 MPa or more, so that the inside of the radiator (120) The pressure reducing device (130) in which the valve body part (134) opens and operates when the pressure is equal to or higher than the critical pressure (3.8 + 3.6 = 7.4 MPa).

尚、請求項5に記載の発明のように、固定絞り部(136)の流路抵抗は、φ0.3mm〜φ0.7mmのオリフィス相当に設定して好適である。   As in the fifth aspect of the invention, it is preferable that the flow path resistance of the fixed throttle portion (136) is set to be equivalent to an orifice of φ0.3 mm to φ0.7 mm.

尚、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means of embodiment description mentioned later.

(第1実施形態)
以下、本発明に係る第1実施形態について図1〜図7を用いて説明する。尚、図1は冷凍サイクル100の全体構成を示す模式図、図2は冷凍サイクル用減圧装置130を示す断面図、図3はオリフィス内径に対するサイクルの成績係数COPを示すグラフ、図4は冷凍サイクル用減圧装置130の圧力差に対する弁体部134の変位量を示すグラフ、図5は冷凍サイクル用減圧装置130の圧力差に対する冷媒流量を示すグラフ、図6は冷凍サイクル用減圧装置130の入口部132における冷媒の乾き度に対する閉弁時(固定絞りとして機能している場合)の冷媒流量を示すグラフ、図7はモリエル線図上の冷凍サイクル100の作動状態を示すグラフである。
(First embodiment)
A first embodiment according to the present invention will be described below with reference to FIGS. 1 is a schematic diagram showing the entire configuration of the refrigeration cycle 100, FIG. 2 is a cross-sectional view showing a refrigeration cycle decompression device 130, FIG. 3 is a graph showing a coefficient of performance COP of the cycle with respect to the orifice inner diameter, and FIG. 5 is a graph showing the amount of displacement of the valve body part 134 with respect to the pressure difference of the decompression device 130, FIG. 5 is a graph showing the refrigerant flow rate with respect to the pressure difference of the refrigeration cycle decompression device 130, and FIG. FIG. 7 is a graph showing the operating state of the refrigeration cycle 100 on the Mollier diagram. FIG. 7 is a graph showing the refrigerant flow rate when the valve is closed (when functioning as a fixed throttle) with respect to the dryness of the refrigerant.

第1実施形態の冷凍サイクル用減圧装置(以下、減圧装置)130は、車両用空調装置に組み込まれる冷凍サイクル100に適用されたものである。冷凍サイクル100は、図1に示すように、圧縮機110、放熱器120、上記減圧装置130、蒸発器140、アキュムレータ150が順次環状に接続されて形成されている。ここでは、冷媒として二酸化炭素を用いており、放熱器120における冷媒圧力(以下、高圧側圧力)は、冷凍サイクル100の作動条件によって、臨界圧力以下の領域から臨界圧力以上の領域までを取り得るようになっている。   The refrigeration cycle decompression device (hereinafter, decompression device) 130 of the first embodiment is applied to the refrigeration cycle 100 incorporated in a vehicle air conditioner. As shown in FIG. 1, the refrigeration cycle 100 is formed by sequentially connecting a compressor 110, a radiator 120, the pressure reducing device 130, an evaporator 140, and an accumulator 150 in an annular shape. Here, carbon dioxide is used as the refrigerant, and the refrigerant pressure in the radiator 120 (hereinafter, high-pressure side pressure) can range from a region below the critical pressure to a region above the critical pressure depending on the operating conditions of the refrigeration cycle 100. It is like that.

圧縮機110は、図示しない車両エンジンからの駆動力を受けて作動し、アキュムレータ150からの気相冷媒を高温高圧に圧縮する流体機械である。放熱器120は、車両エンジンルーム前方に配設されて、圧縮機110で圧縮された冷媒と車両グリルから流入する外気との間で熱交換して冷媒を冷却する熱交換器(ガスクーラ)である。減圧装置130は、放熱器120から流出した高圧の冷媒を減圧すると共に、減圧されて気液2相状態となった冷媒を蒸発器140に向けて流出する減圧手段である。尚、減圧装置130の詳細については後述する。   The compressor 110 is a fluid machine that operates by receiving a driving force from a vehicle engine (not shown) and compresses the gas-phase refrigerant from the accumulator 150 to a high temperature and a high pressure. The radiator 120 is a heat exchanger (gas cooler) that is disposed in front of the vehicle engine room and cools the refrigerant by exchanging heat between the refrigerant compressed by the compressor 110 and the outside air flowing in from the vehicle grill. . The decompression device 130 is decompression means that decompresses the high-pressure refrigerant that has flowed out of the radiator 120 and also flows out the refrigerant that has been decompressed into a gas-liquid two-phase state toward the evaporator 140. Details of the decompression device 130 will be described later.

蒸発器140は、車室内に吹き出す空調空気との熱交換により減圧装置130から流出された冷媒を蒸発させる熱交換器であり、冷媒が蒸発する際の蒸発潜熱によって空調空気は冷却されることになる。尚、減圧装置130によって減圧された後の蒸発器140における冷媒圧力を以下、低圧側圧力と呼ぶことにする。アキュムレータ150は、蒸発器140から流出される冷媒を気液2相に分離すると共に、液相冷媒を一時的に蓄え、また、気相冷媒を圧縮機110に流出する容器である。   The evaporator 140 is a heat exchanger that evaporates the refrigerant that has flowed out of the decompression device 130 by heat exchange with the conditioned air that is blown into the passenger compartment, and the conditioned air is cooled by the latent heat of evaporation when the refrigerant evaporates. Become. Hereinafter, the refrigerant pressure in the evaporator 140 after being decompressed by the decompression device 130 will be referred to as a low pressure side pressure. The accumulator 150 is a container that separates the refrigerant flowing out of the evaporator 140 into a gas-liquid two-phase, temporarily stores the liquid-phase refrigerant, and discharges the gas-phase refrigerant to the compressor 110.

次に、減圧装置130について図2を用いて詳細に説明する。減圧装置130は、ケース131内に弁体部134、スプリング135、固定オリフィス(本発明における固定絞り部に対応)136等が設けられて形成されている。   Next, the decompression device 130 will be described in detail with reference to FIG. The decompression device 130 is formed by providing a valve body part 134, a spring 135, a fixed orifice (corresponding to the fixed throttle part in the present invention) 136 and the like in a case 131.

ケース131は、ステンレスや真鍮等の金属製で、有底の円筒状を成す容器体であり、一方の底部側に放熱器120に連通する入口部132が円形状に開口形成され、また他方の底部側に蒸発器140に連通する出口部133が開口形成されている。そして、内側における入口部132の円周部は、弁体部134が当接される弁座132aとして形成されている。   The case 131 is a container body made of a metal such as stainless steel or brass and having a bottomed cylindrical shape. An inlet portion 132 communicating with the radiator 120 is formed in a circular shape on one bottom side, and the other side is formed. An outlet portion 133 communicating with the evaporator 140 is formed on the bottom side. The inner circumferential portion of the inlet portion 132 is formed as a valve seat 132a with which the valve body portion 134 abuts.

弁体部134は、円盤状部材をベースとして、中心部が入口部132側に向けて円錐状に突出するように形成されており、弁座132aと対向配置されて入口部132の開度を調整するようになっている。尚、弁体部134の円盤状の外周部には、出口部133側に延びるガイド部134aが形成されており、このガイド部134aは、ケース131の内壁に接触することにより、弁体部134の移動を案内するようになっている。また、弁体部134とガイド部134aとの間には貫通穴134bが円周方向に複数穿設され、この貫通穴134bによって、ケース131内において弁体部134を挟む入口部132側空間と出口部133側空間とが連通されるようになっている。   The valve body part 134 is formed so that the center part protrudes in a conical shape toward the inlet part 132 side with a disk-shaped member as a base, and is arranged to face the valve seat 132a to increase the opening degree of the inlet part 132. It comes to adjust. In addition, a guide part 134 a extending toward the outlet part 133 is formed on the disc-shaped outer peripheral part of the valve body part 134, and this guide part 134 a comes into contact with the inner wall of the case 131, so that the valve body part 134 is formed. It is supposed to guide the movement of. A plurality of through holes 134b are formed in the circumferential direction between the valve body part 134 and the guide part 134a, and the inlet part 132 side space sandwiching the valve body part 134 in the case 131 by the through holes 134b. The outlet portion 133 side space is in communication.

スプリング135は、金属製の弾性部材であり、ケース131内において出口部133の設けられた底部と、上記弁体部134との間に配設され、その弾性力により弁体部134を入口部132側へ押圧している。   The spring 135 is a metal elastic member, and is disposed between the bottom portion where the outlet portion 133 is provided in the case 131 and the valve body portion 134, and the valve body portion 134 is moved into the inlet portion by the elastic force. Pressing to the 132 side.

固定オリフィス136は、流路抵抗が所定値に設定された絞りであり、弁体部134の中心部を貫通するように設けられ、入口部132(放熱器120側)と出口部133(蒸発器140側)とを常時連通させるようにしている。固定オリフィス136の内径と冷凍サイクル100の成績係数COPとの間には、外気温度に応じて図3に示すような関係(所定内径でCOPの極大値を取る)があり、外気温度の変化に対しても良好な成績係数COPを得るために、固定オリフィス136の直径は、φ0.3〜0.7mmに設定するのが良い。   The fixed orifice 136 is a throttle whose flow resistance is set to a predetermined value, and is provided so as to pass through the central part of the valve body part 134, and has an inlet part 132 (radiator 120 side) and an outlet part 133 (evaporator). 140 side) is always in communication. Between the inner diameter of the fixed orifice 136 and the coefficient of performance COP of the refrigeration cycle 100, there is a relationship as shown in FIG. 3 according to the outside air temperature (the COP has a maximum value at a predetermined inner diameter). On the other hand, in order to obtain a good coefficient of performance COP, the diameter of the fixed orifice 136 is preferably set to φ0.3 to 0.7 mm.

尚、ケース131は、一方の底部が円筒本体部と一体形成され、他方の底部が蓋部として別体形成されており、弁体部134、スプリング135がケース131内部に収容された後に、蓋部が溶接やねじ締結等の接合手段によって本体部に接合されている。   The case 131 has one bottom part integrally formed with the cylindrical main body part, and the other bottom part formed separately as a lid part. After the valve body part 134 and the spring 135 are accommodated in the case 131, the lid is closed. The part is joined to the main body part by joining means such as welding or screw fastening.

ここで、入口部132にかかる冷媒の高圧側圧力をP1、出口部133にかかる冷媒の低圧側圧力をP2、スプリング135の弾性による作用力をFとすると、高圧側圧力P1と低圧側圧力P2との圧力差ΔP(=P1−P2)が、スプリング135の作用力Fと抗することになる。本実施形態ではスプリング135の弾性特性の設定により、図4に示すように、圧力差ΔPが3.6MPaに達するまでは、作用力Fが圧力差ΔPに打ち勝って、弁体部134を閉弁状態に維持し(弁体部134の変位量=0)、圧力差ΔPが3.6MPa以上となった時に、この圧力差ΔPが作用力Fに打ち勝って、弁体部134を開弁させ、以下、圧力差ΔPが大きくなるに従って、弁体部134の変位量(入口部132における弁開度)が大きくなるようにしている。   Here, when the high pressure side pressure of the refrigerant applied to the inlet portion 132 is P1, the low pressure side pressure of the refrigerant applied to the outlet portion 133 is P2, and the acting force due to the elasticity of the spring 135 is F, the high pressure side pressure P1 and the low pressure side pressure P2 The pressure difference ΔP (= P1−P2) with the resistance against the acting force F of the spring 135. In the present embodiment, by setting the elastic characteristic of the spring 135, the acting force F overcomes the pressure difference ΔP until the pressure difference ΔP reaches 3.6 MPa as shown in FIG. When the pressure difference ΔP is equal to or greater than 3.6 MPa, the pressure difference ΔP overcomes the acting force F to open the valve body portion 134. Hereinafter, as the pressure difference ΔP increases, the displacement amount of the valve body portion 134 (the valve opening degree at the inlet portion 132) increases.

これに伴い、図5に示すように、弁体部134が開弁するまで(圧力差ΔPが3.6MPaに達するまで)は、冷媒は固定オリフィス136を流通し、その流路抵抗に応じた冷媒流量(重量流量)が得られ、また、弁体部134が開弁した後(圧力差ΔPが3.6MPa以上)は、弁体部134の変位量に応じた(固定オリフィス136も冷媒は流通する)冷媒流量が得られるようにしている。   Accordingly, as shown in FIG. 5, until the valve body part 134 is opened (until the pressure difference ΔP reaches 3.6 MPa), the refrigerant flows through the fixed orifice 136 and corresponds to the flow path resistance. After the refrigerant flow rate (weight flow rate) is obtained and the valve body part 134 is opened (the pressure difference ΔP is 3.6 MPa or more), the refrigerant according to the displacement amount of the valve body part 134 (the fixed orifice 136 is also a refrigerant). (Flowing) refrigerant flow rate is obtained.

また、固定オリフィス136の流路抵抗(例えばオリフィスの内径あるいはオリフィスの流路長さ)の設定により、図6に示すように、放熱器120にから減圧器130(固定オリフィス136)に至る冷媒の乾き度が0.25以下となるようにしている。   Further, by setting the flow resistance of the fixed orifice 136 (for example, the inner diameter of the orifice or the flow path length of the orifice), as shown in FIG. 6, the refrigerant flowing from the radiator 120 to the decompressor 130 (fixed orifice 136) can be obtained. The dryness is set to 0.25 or less.

次に、上記構成に基づく冷凍サイクル100および減圧装置130の作動について図7を加えて説明する。冷房要求に応じて圧縮機110が作動されると、冷媒は冷凍サイクル100内を循環し、上述したように空調空気は蒸発器140における冷媒の蒸発潜熱により冷却される。   Next, the operation of the refrigeration cycle 100 and the decompression device 130 based on the above configuration will be described with reference to FIG. When the compressor 110 is operated according to the cooling request, the refrigerant circulates in the refrigeration cycle 100, and the conditioned air is cooled by the latent heat of vaporization of the refrigerant in the evaporator 140 as described above.

ここで、上記空調空気の冷却に伴って蒸発器140の表面には、空気中の水分が凝縮して凝縮水となって付着するが、冷却作用によってこの凝縮水から霜が発生しないようにするために、低圧側冷媒の温度を下げるようにしつつも(冷凍能力を確保しつつも)、0℃以下(凍結温度以下)とならないようにする。例えば、霜の発生を防止するための冷媒の安全温度として3℃に設定すると、冷媒が二酸化炭素の場合、低圧側圧力は3.8MPaとなる。この低圧側圧力(3.8MPa)は、例えば蒸発器140の下流側空気温度を温度センサ等で把握して、圧縮機110の冷媒吐出量を制御することで、一定に保たれる。   Here, with the cooling of the conditioned air, moisture in the air condenses and adheres as condensed water on the surface of the evaporator 140, but frost is not generated from the condensed water by the cooling action. Therefore, while lowering the temperature of the low-pressure side refrigerant (while ensuring the refrigerating capacity), it is prevented from becoming below 0 ° C. (below the freezing temperature). For example, if the safe temperature of the refrigerant for preventing the generation of frost is set to 3 ° C., the low pressure side pressure is 3.8 MPa when the refrigerant is carbon dioxide. This low-pressure side pressure (3.8 MPa) is kept constant by, for example, grasping the downstream side air temperature of the evaporator 140 with a temperature sensor or the like and controlling the refrigerant discharge amount of the compressor 110.

本実施形態の減圧装置130は、図7に示すように、圧力差ΔPが3.6MPaとなって高圧側圧力が7.4MPa(即ち、臨界圧力)に達するまでは、弁体部134は閉弁状態が維持されるので、固定オリフィス136のみが機能する。また、この固定オリフィス136の流路抵抗を放熱器120出口側における冷媒の乾き度が0.25以下となるように設定しているので、固定オリフィス136とアキュムレータ150による自己制御作用が有効に働いて、効率良く冷凍サイクル100を運転させることができる。   As shown in FIG. 7, in the decompression device 130 of the present embodiment, the valve body portion 134 is closed until the pressure difference ΔP reaches 3.6 MPa and the high-pressure side pressure reaches 7.4 MPa (that is, the critical pressure). Only the fixed orifice 136 functions because the valve state is maintained. Further, since the flow resistance of the fixed orifice 136 is set so that the dryness of the refrigerant at the outlet side of the radiator 120 is 0.25 or less, the self-control action by the fixed orifice 136 and the accumulator 150 works effectively. Thus, the refrigeration cycle 100 can be operated efficiently.

即ち、冷凍サイクル100の運転において、放熱器120流通後の冷媒が、例えば気液2相状態で減圧装置130に流入し減圧されると、気相冷媒を含む分(乾き度大)、冷媒流量が減少し、蒸発器140での加熱度(スーパーヒート)が増す。その結果、アキュムレータ150内の液冷媒が放熱器120側へ移動し、放熱器120の出口側の液冷媒割合が増加する(過冷却度大あるいは乾き度小へ移行)。   That is, in the operation of the refrigeration cycle 100, when the refrigerant after circulation of the radiator 120 flows into the decompression device 130 in a gas-liquid two-phase state and is depressurized, for example, the refrigerant flow rate (the degree of dryness) includes Decreases and the degree of heating (superheat) in the evaporator 140 increases. As a result, the liquid refrigerant in the accumulator 150 moves to the radiator 120 side, and the liquid refrigerant ratio on the outlet side of the radiator 120 increases (shifts to a high degree of supercooling or a low degree of dryness).

逆に、放熱器120流通後の冷媒が、液相状態で減圧装置130に流入し減圧されると(過冷却域)、気相冷媒を含む場合に比べて冷媒流量が増加し、蒸発器140での加熱度(スーパーヒート)は減少する。その結果、アキュムレータ150内に蓄えられる液冷媒が増加し、放熱器120内の液冷媒が減少するため、放熱器120の出口側の液冷媒割合が減少する(過冷却度小あるいは乾き度大へ移行)。   On the contrary, when the refrigerant after circulation of the radiator 120 flows into the decompression device 130 in the liquid phase state and is decompressed (supercooling region), the refrigerant flow rate increases compared to the case where the gas phase refrigerant is included, and the evaporator 140 The degree of heating at (superheat) decreases. As a result, the amount of liquid refrigerant stored in the accumulator 150 increases and the amount of liquid refrigerant in the radiator 120 decreases, so that the ratio of liquid refrigerant on the outlet side of the radiator 120 decreases (low degree of supercooling or high degree of dryness). Migration).

この繰り返しにより、放熱器120流通後の冷媒は、最適な過冷却度(図7中のサブクール一定線、即ち、最大成績係数ライン)近傍でバランスされて減圧されるようになり、冷凍サイクル100として効率の良い運転が行われることになる。   By repeating this, the refrigerant after circulation of the radiator 120 is balanced and depressurized in the vicinity of the optimum degree of supercooling (subcool constant line in FIG. 7, that is, the maximum coefficient of performance line). Efficient operation will be performed.

一方、減圧装置130における圧力差ΔPが3.6MPa以上となって高圧側圧力が7.4MPa(即ち、臨界圧力)以上となると、弁体部134は開弁されるので、蒸発器140における熱負荷(冷凍能力)の変動を圧力差ΔPで代用して、弁体部134における弁開度の調整が行われることになり、放熱器120における過度な圧力上昇を抑えつつ、必要とされる冷媒流量を確保して、効率的な冷凍サイクル100の運転が可能となる。   On the other hand, when the pressure difference ΔP in the decompression device 130 is 3.6 MPa or more and the high-pressure side pressure is 7.4 MPa (that is, the critical pressure) or more, the valve body part 134 is opened. The change in the load (refrigeration capacity) is substituted with the pressure difference ΔP, and the valve opening degree in the valve body part 134 is adjusted, and the necessary refrigerant while suppressing an excessive pressure increase in the radiator 120. An efficient operation of the refrigeration cycle 100 becomes possible by securing the flow rate.

総じて、本実施形態の減圧装置130によって、高圧側圧力が臨界圧力以上の場合に加えて、臨界圧力以下となる場合でも、効率的な冷凍サイクル100の運転が可能となる。   In general, the decompression device 130 of the present embodiment enables efficient operation of the refrigeration cycle 100 even when the high-pressure side pressure is equal to or higher than the critical pressure and even when the pressure is equal to or lower than the critical pressure.

(第2実施形態)
本発明の第2実施形態を図8に示す。第2実施形態は、上記第1実施形態に対して、減圧装置130の固定絞り部の設定位置を変更すると共に、冷凍サイクル100内に内部熱交換器160を設けたものである。
(Second Embodiment)
A second embodiment of the present invention is shown in FIG. The second embodiment is different from the first embodiment in that the setting position of the fixed throttle portion of the decompression device 130 is changed and an internal heat exchanger 160 is provided in the refrigeration cycle 100.

ここでは、減圧装置130における固定絞り部を固定オリフィス136aとして、入口部132と並ぶようにケース131に形成するようにしている。そして、放熱器120と固定オリフィス136aとが連通するように接続している。   Here, the fixed throttle portion in the decompression device 130 is formed as a fixed orifice 136 a in the case 131 so as to be aligned with the inlet portion 132. The radiator 120 and the fixed orifice 136a are connected so as to communicate with each other.

また、内部熱交換器160は、2つの内部流路を持つものとして設定し、一方の内部流路に放熱器120から流出される冷媒が流通するようにして、他方の内部流路にアキュムレータ150(蒸発器140)から流出される冷媒が流通するようにしている。   The internal heat exchanger 160 is set to have two internal flow paths so that the refrigerant flowing out of the radiator 120 flows through one internal flow path, and the accumulator 150 is connected to the other internal flow path. The refrigerant flowing out from (evaporator 140) is allowed to flow.

上記構成によれば、圧力差ΔPが3.6MPa以下で放熱器120からの冷媒は、固定オリフィス136aで減圧され、減圧された冷媒は貫通穴134b、出口部133を経て蒸発器140に至り、上記第1実施形態と同様の効果を得ることができる。   According to the above configuration, when the pressure difference ΔP is 3.6 MPa or less, the refrigerant from the radiator 120 is depressurized by the fixed orifice 136a, and the depressurized refrigerant reaches the evaporator 140 through the through hole 134b and the outlet 133. The same effect as in the first embodiment can be obtained.

また、内部熱交換器160によって、放熱器120から流出される冷媒を蒸発器140側からの冷媒によって冷却することが可能となるので、蒸発器140で取り得るエンタルピ差を大きくすることができ、蒸発器140における冷凍能力を向上させることができる。   In addition, since the refrigerant flowing out of the radiator 120 can be cooled by the refrigerant from the evaporator 140 side by the internal heat exchanger 160, the enthalpy difference that can be taken by the evaporator 140 can be increased, The refrigerating capacity in the evaporator 140 can be improved.

(第3実施形態)
本発明の第3実施形態を図9に示す。第3実施形態は、上記第2実施形態に対して、減圧装置130の固定絞り部を変更したものである。
(Third embodiment)
A third embodiment of the present invention is shown in FIG. In the third embodiment, the fixed throttle portion of the decompression device 130 is changed with respect to the second embodiment.

ここでは、固定絞り部を例えばキャピラリーチューブのような固定絞り136bとして設け、弁体部134が開弁した時の入口部132と出口部133とを結ぶ流路に対して並列となるように、固定絞り136bを接続している。   Here, the fixed throttle portion is provided as a fixed throttle 136b such as a capillary tube, for example, and is parallel to the flow path connecting the inlet portion 132 and the outlet portion 133 when the valve body portion 134 is opened. A fixed aperture 136b is connected.

これにより、既存の固定絞り136bを用いて、減圧装置130を構成でき、上記第1、第2実施形態と同様の効果を得ることができる。   Thereby, the decompression device 130 can be configured using the existing fixed aperture 136b, and the same effects as those of the first and second embodiments can be obtained.

(その他の実施形態)
上記第1〜第3実施形態では、低圧側圧力を3.8MPa(冷媒温度3℃)とすることで弁体部134が開弁する圧力差ΔPを3.6MPaとしたが、これに限らず、圧力差ΔPは設定する低圧側圧力と臨界圧力との差以上となるように決定すれば良い。
(Other embodiments)
In the first to third embodiments, the pressure difference ΔP at which the valve body part 134 opens by setting the low-pressure side pressure to 3.8 MPa (refrigerant temperature 3 ° C.) is 3.6 MPa. The pressure difference ΔP may be determined so as to be equal to or greater than the difference between the low pressure side pressure to be set and the critical pressure.

また、冷媒として二酸化炭素を用いたが、超臨界域での使用が可能となるものであれば、例えば、エチレン、エタン、酸化窒素等としても良い。   Moreover, although carbon dioxide was used as the refrigerant, it may be, for example, ethylene, ethane, nitrogen oxide, or the like as long as it can be used in the supercritical region.

第1実施形態における冷凍サイクルの全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the refrigerating cycle in 1st Embodiment. 図1における冷凍サイクル用減圧装置を示す断面である。It is a cross section which shows the decompression device for refrigeration cycles in FIG. オリフィス内径に対するサイクルの成績係数COPを示すグラフである。It is a graph which shows the coefficient of performance COP of the cycle with respect to an orifice inner diameter. 冷凍サイクル用減圧装置の圧力差に対する弁体部の変位量を示すグラフである。It is a graph which shows the displacement amount of the valve body part with respect to the pressure difference of the decompression device for refrigeration cycles. 冷凍サイクル用減圧装置の圧力差に対する冷媒流量を示すグラフである。It is a graph which shows the refrigerant | coolant flow volume with respect to the pressure difference of the decompression device for refrigeration cycles. 冷凍サイクル用減圧装置の入口部における冷媒の乾き度に対する閉弁時(固定絞りとして機能している場合)の冷媒流量を示すグラフである。It is a graph which shows the refrigerant | coolant flow rate at the time of valve closing with respect to the dryness of the refrigerant | coolant in the inlet part of the decompression device for refrigeration cycles (when functioning as a fixed throttle). モリエル線図上の冷凍サイクルの作動状態を示すグラフである。It is a graph which shows the operating state of the refrigerating cycle on a Mollier diagram. 第2実施形態における冷凍サイクルの全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the refrigerating cycle in 2nd Embodiment. 第3実施形態における冷凍サイクルの全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the refrigerating cycle in 3rd Embodiment.

符号の説明Explanation of symbols

100 冷凍サイクル
110 圧縮機
120 放熱器
130 冷凍サイクル用減圧装置
134 弁体部
136 固定オリフィス(固定絞り部)
140 蒸発器
150 アキュムレータ
160 内部熱交換器
DESCRIPTION OF SYMBOLS 100 Refrigeration cycle 110 Compressor 120 Radiator 130 Refrigeration cycle decompression device 134 Valve body part 136 Fixed orifice (fixed throttle part)
140 Evaporator 150 Accumulator 160 Internal heat exchanger

Claims (5)

主構成要素として、圧縮機(110)、放熱器(120)、蒸発器(140)、アキュムレータ(150)が順次環状に接続されて冷媒が循環し、前記放熱器(120)における冷媒の圧力が臨界圧力以上に成り得る冷凍サイクル(100)に適用されるものであって、
前記放熱器(120)と前記蒸発器(140)との間に配設され、前記放熱器(120)から流出した冷媒を減圧すると共に、減圧された前記冷媒を前記蒸発器(140)に向けて流出する冷凍サイクル用減圧装置において、
前記放熱器(120)側と前記蒸発器(140)側との間の冷媒の圧力差(ΔP)に応じて開弁する弁体部(134)と、
前記放熱器(120)側と前記蒸発器(140)側との間を常時連通させ、その流路抵抗が所定値に設定された固定絞り部(136)とを有し、
前記放熱器(120)における冷媒の圧力が少なくとも前記臨界圧力以下で前記冷凍サイクル(100)が運転されている場合に、前記弁体部(134)は閉弁状態に維持され、前記固定絞り部(136)にて減圧されるようにしたことを特徴とする冷凍サイクル用減圧装置。
As main components, a compressor (110), a radiator (120), an evaporator (140), and an accumulator (150) are sequentially connected in an annular manner to circulate the refrigerant, and the pressure of the refrigerant in the radiator (120) is increased. Applied to a refrigeration cycle (100) that can be above the critical pressure,
It is arrange | positioned between the said heat radiator (120) and the said evaporator (140), and decompresses the refrigerant | coolant which flowed out from the said heat radiator (120), and directs the pressure-reduced refrigerant | coolant to the said evaporator (140). In the refrigeration cycle decompression device flowing out,
A valve body (134) that opens according to the pressure difference (ΔP) of the refrigerant between the radiator (120) side and the evaporator (140) side;
A fixed restricting portion (136) in which the radiator (120) side and the evaporator (140) side are always in communication and the flow resistance is set to a predetermined value;
When the refrigerant pressure in the radiator (120) is at least equal to or lower than the critical pressure and the refrigeration cycle (100) is operated, the valve body part (134) is maintained in a closed state, and the fixed throttle part A decompression device for a refrigeration cycle, wherein the decompression is performed at (136).
前記固定絞り部(136)の前記流路抵抗は、前記冷凍サイクル(100)運転時の前記放熱器(120)出口側における冷媒の乾き度を0.25以下とするように設定されたことを特徴とする請求項1に記載の冷凍サイクル用減圧装置。   The flow path resistance of the fixed throttle portion (136) is set so that the dryness of the refrigerant on the outlet side of the radiator (120) during the refrigeration cycle (100) operation is 0.25 or less. The decompression device for a refrigeration cycle according to claim 1, characterized in that: 前記冷凍サイクル(100)は、前記放熱器(120)出口側の冷媒と、前記蒸発器(140)出口側の冷媒との間で熱交換する内部熱交換器(160)を有することを特徴とする請求項1または請求項2に記載の冷凍サイクル用減圧装置。   The refrigeration cycle (100) includes an internal heat exchanger (160) for exchanging heat between the refrigerant on the outlet side of the radiator (120) and the refrigerant on the outlet side of the evaporator (140). The decompression device for a refrigeration cycle according to claim 1 or 2. 前記冷媒は、二酸化炭素であり、
前記弁体部(134)は、前記圧力差(ΔP)が少なくとも3.6MPa以上で開弁することを特徴とする請求項1〜請求項3のいずれか1つに記載の冷凍サイクル用減圧装置。
The refrigerant is carbon dioxide;
The decompression device for a refrigeration cycle according to any one of claims 1 to 3, wherein the valve body (134) opens when the pressure difference (ΔP) is at least 3.6 MPa. .
前記固定絞り部(136)の前記流路抵抗は、φ0.3mm〜φ0.7mmのオリフィス相当に設定されたことを特徴とする請求項1〜請求項4のいずれか1つに記載の冷凍サイクル用減圧装置。   The refrigeration cycle according to any one of claims 1 to 4, wherein the flow path resistance of the fixed throttle portion (136) is set to correspond to an orifice of φ0.3 mm to φ0.7 mm. Pressure reducing device.
JP2005046065A 2005-02-22 2005-02-22 Refrigerating cycle pressure reducing device Pending JP2006234207A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005046065A JP2006234207A (en) 2005-02-22 2005-02-22 Refrigerating cycle pressure reducing device
FR0601476A FR2893399A1 (en) 2005-02-22 2006-02-20 DECOMPRESSION DEVICE FOR REFRIGERANT CYCLE
DE102006007756A DE102006007756A1 (en) 2005-02-22 2006-02-20 A decompression valve for motor vehicle air conditioning systems has an expansion valve jet which operates at a normal pressure differential but is depressed to provide larger jets above a critical differential

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005046065A JP2006234207A (en) 2005-02-22 2005-02-22 Refrigerating cycle pressure reducing device

Publications (1)

Publication Number Publication Date
JP2006234207A true JP2006234207A (en) 2006-09-07

Family

ID=36776419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005046065A Pending JP2006234207A (en) 2005-02-22 2005-02-22 Refrigerating cycle pressure reducing device

Country Status (3)

Country Link
JP (1) JP2006234207A (en)
DE (1) DE102006007756A1 (en)
FR (1) FR2893399A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267766A (en) * 2007-04-25 2008-11-06 Sanden Corp Vapor compression refrigeration cycle
JP2009002614A (en) * 2007-06-22 2009-01-08 Denso Corp Heat pump device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060465A2 (en) * 2007-07-18 2009-05-14 Vijay Appa Kasar Energy saving expansion device for refrigeration & other industries
JP6272247B2 (en) * 2015-02-02 2018-01-31 株式会社鷺宮製作所 Throttle device and refrigeration cycle
JP6231509B2 (en) * 2015-02-02 2017-11-15 株式会社鷺宮製作所 Throttle device and refrigeration cycle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294033A (en) * 1994-04-25 1995-11-10 Zexel Corp Cooling cycle controller
JPH09264622A (en) * 1996-01-25 1997-10-07 Denso Corp Pressure control valve and vapor-compression refrigeration cycle
JP2002520572A (en) * 1998-07-20 2002-07-09 フォード ヴェルケ アクツィエンゲゼルシャフト Air conditioning system operable with CO2
JP2004142701A (en) * 2002-10-28 2004-05-20 Zexel Valeo Climate Control Corp Refrigeration cycle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294033A (en) * 1994-04-25 1995-11-10 Zexel Corp Cooling cycle controller
JPH09264622A (en) * 1996-01-25 1997-10-07 Denso Corp Pressure control valve and vapor-compression refrigeration cycle
JP2002520572A (en) * 1998-07-20 2002-07-09 フォード ヴェルケ アクツィエンゲゼルシャフト Air conditioning system operable with CO2
JP2004142701A (en) * 2002-10-28 2004-05-20 Zexel Valeo Climate Control Corp Refrigeration cycle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267766A (en) * 2007-04-25 2008-11-06 Sanden Corp Vapor compression refrigeration cycle
JP2009002614A (en) * 2007-06-22 2009-01-08 Denso Corp Heat pump device

Also Published As

Publication number Publication date
DE102006007756A1 (en) 2006-08-24
FR2893399A1 (en) 2007-05-18

Similar Documents

Publication Publication Date Title
EP1059495B1 (en) Supercritical vapor compression cycle
JP5539996B2 (en) Liquid and vapor separation in a transcritical refrigerant cycle.
JP3931899B2 (en) Ejector cycle
US6076366A (en) Refrigerating cycle system with hot-gas bypass passage
JP4285060B2 (en) Vapor compression refrigerator
JP4408413B2 (en) Refrigeration apparatus and air conditioner using the same
JP2007240041A (en) Expansion valve
JP2007315687A (en) Refrigerating cycle
US7536872B2 (en) High pressure control valve
JP5544469B2 (en) Combined valve and vehicle air conditioner
JP2006234207A (en) Refrigerating cycle pressure reducing device
JP2006336943A (en) Refrigeration system, and cold insulation box
JPH11304269A (en) Refrigerating cycle
JP2005351529A (en) Pressure control valve and vapor compression refrigerating cycle
JP2007078349A (en) Ejector cycle
JP2002228282A (en) Refrigerating device
JP2008164239A (en) Pressure regulation valve
JPWO2018096580A1 (en) Refrigeration cycle device
JP2010032157A (en) Refrigeration cycle device
JP4676166B2 (en) Safety valve device for refrigeration cycle
JP2009008369A (en) Refrigerating cycle
JP3528433B2 (en) Vapor compression refrigeration cycle
JP6714864B2 (en) Refrigeration cycle equipment
JP2006138628A (en) Refrigerant condenser
JP2005201484A (en) Refrigerating cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706