JP3528433B2 - Vapor compression refrigeration cycle - Google Patents

Vapor compression refrigeration cycle

Info

Publication number
JP3528433B2
JP3528433B2 JP15727296A JP15727296A JP3528433B2 JP 3528433 B2 JP3528433 B2 JP 3528433B2 JP 15727296 A JP15727296 A JP 15727296A JP 15727296 A JP15727296 A JP 15727296A JP 3528433 B2 JP3528433 B2 JP 3528433B2
Authority
JP
Japan
Prior art keywords
pressure
evaporator
radiator
refrigeration cycle
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15727296A
Other languages
Japanese (ja)
Other versions
JPH109719A (en
Inventor
幸克 尾崎
久介 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP15727296A priority Critical patent/JP3528433B2/en
Publication of JPH109719A publication Critical patent/JPH109719A/en
Application granted granted Critical
Publication of JP3528433B2 publication Critical patent/JP3528433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、二酸化炭素(CO
2 )等の冷媒を超臨界域で使用する蒸気圧縮式冷凍サイ
クルに関するものである
TECHNICAL FIELD The present invention relates to carbon dioxide (CO
2 ) A vapor compression refrigeration system that uses a refrigerant such as
It's about Kuru .

【0002】[0002]

【従来の技術】近年、蒸気圧縮式冷凍サイクルに使用さ
れる冷媒の脱フロン対策の1つとして、例えば特公平7
−18602号公報に記載のように二酸化炭素(C
2 )を使用した蒸気圧縮式冷凍サイクル(以下、CO
2 サイクルと略す。)が提案されている。
2. Description of the Related Art In recent years, for example, Japanese Patent Publication No.
As described in JP-A-18602, carbon dioxide (C
Vapor compression refrigeration cycle using O 2 (hereinafter CO
Abbreviated as 2 cycles. ) Is proposed.

【0003】このCO2 サイクルの作動は、原理的に
は、フロンを使用した従来の蒸気圧縮式冷凍サイクルの
作動と同じである。すなわち、図6(CO2 モリエル線
図)のA−B−C−D−Aで示されるように、圧縮機で
気相状態のCO2 を圧縮し(A−B)、この高温高圧の
気相状態のCO2 を放熱器(ガスクーラ)にて冷却する
(B−C)。そして、減圧器により減圧して(C−
D)、気液2相状態となったCO2 を蒸発させて(D−
A)、蒸発潜熱を空気等の外部流体から奪って外部流体
を冷却する。なお、CO2 は、圧力が飽和液圧力(線分
CDと飽和液線SLとの交点の圧力)を下まわるときか
ら、気液2相状態に相変化する。
The operation of this CO 2 cycle is, in principle, the same as the operation of a conventional vapor compression refrigeration cycle using freon. That is, as shown by A-B-C-D- A in FIG. 6 (CO 2 Mollier chart), compressing the CO 2 in the vapor phase by a compressor (A-B), the gas of the high temperature and high pressure CO 2 in phase is cooled by a radiator (gas cooler) (BC). Then, the pressure is reduced by a pressure reducer (C-
D), by evaporating CO 2 in the gas-liquid two-phase state (D-
A), the latent heat of vaporization is removed from the external fluid such as air to cool the external fluid. Note that CO 2 undergoes a phase change to a gas-liquid two-phase state from when the pressure falls below the saturated liquid pressure (the pressure at the intersection of the line segment CD and the saturated liquid line SL).

【0004】しかし、CO2 の臨界温度は約31℃と従
来のフロンの臨界温度(例えば、R12では112℃)
と比べて低いので、夏場等では放熱器側でのCO2 温度
がCO2 の臨界点温度より高くなってしまう。つまり、
放熱器出口側においてもCO 2 は凝縮しない(線分BC
が飽和液線と交差しない)。また、放熱器出口側(C
点)の状態は、圧縮機の吐出圧力と放熱器出口側でのC
2 温度とによって決定され、放熱器出口側でのCO2
温度は、放熱器の放熱能力と外気温度とによって決定す
る。そして、外気温度は制御することができないので、
放熱器出口側でのCO2 温度は、実質的に制御すること
ができない。
However, CO2The critical temperature is about 31 ℃
Critical temperature of conventional CFCs (for example, 112 ° C for R12)
Since it is lower than that of CO on the radiator side in summer etc.2temperature
Is CO2Will be higher than the critical point temperature. That is,
CO on the radiator outlet side 2Does not condense (line segment BC
Does not intersect the saturated liquid line). In addition, the radiator outlet side (C
The state of point) is the discharge pressure of the compressor and C at the radiator outlet side.
O2CO at the radiator exit side, which is determined by the temperature2
The temperature is determined by the heat dissipation capacity of the radiator and the ambient temperature.
It And since the outside air temperature cannot be controlled,
CO at the radiator outlet2The temperature should be substantially controlled
I can't.

【0005】したがって、放熱器出口側(C点)の状態
は、圧縮機の吐出圧力(放熱器出口側圧力)を制御する
ことによって制御可能となる。つまり、夏場等の外気温
度が高い場合に、十分な冷却能力(エンタルピ差)を確
保するためには、図1のE−F−G−H−Eで示される
ように、放熱器出口側圧力を高くする必要がある。
Therefore, the state on the radiator outlet side (point C) can be controlled by controlling the discharge pressure of the compressor (radiator outlet side pressure). That is, in order to secure a sufficient cooling capacity (enthalpy difference) when the outside air temperature is high in summer, etc., as shown by E-F-G-H-E in FIG. Need to be higher.

【0006】[0006]

【発明が解決しようとする課題】ところで、放熱器出口
側圧力を制御するために、上記公報では、必要とする冷
凍能力に応じて減圧器の開度を手動操作にて制御する旨
の記載がある。しかし、この手段では、放熱器出口側圧
力を制御することにより冷凍能力を制御することが可能
であるか否を確認試験する程度であれば問題がないが、
実際の使用状況においては、必要とする冷凍能力は時事
刻々と変化するので、手動操作にて減圧器の開度を制御
するといった手段では、十分な冷凍能力を発揮するCO
2 サイクルを提供することができない。
By the way, in order to control the pressure on the outlet side of the radiator, the above publication describes that the opening of the pressure reducer is manually controlled according to the required refrigerating capacity. is there. However, with this means, there is no problem as long as it is a confirmation test whether it is possible to control the refrigerating capacity by controlling the pressure on the radiator outlet side,
In an actual usage situation, the required refrigerating capacity changes from time to time. Therefore, by controlling the opening of the pressure reducer by manual operation, the CO
Unable to provide 2 cycles.

【0007】本発明は、上記点に鑑み、必要とする冷凍
能力に応じて放熱器出口側圧力を制御できる蒸気圧縮式
冷凍サイクルを提供することを目的とする。
In view of the above points, the present invention is a vapor compression type in which the radiator outlet side pressure can be controlled according to the required refrigerating capacity.
It is intended to provide a refrigeration cycle .

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を達
成するために、以下の技術的手段を用いる。請求項1〜
に記載の発明では、放熱器(2)内の圧力が冷媒の臨
界圧力を越える蒸気圧縮式冷凍サイクルにおいて、放熱
器(2)から流出した冷媒を減圧する減圧装置(3)
に、放熱器(2)に連通する流入口(32)、および蒸
発器(4)に連通する流出口(33)が形成されたハウ
ジング(31)を備え、ハウジング(31)内に、流入
口(32)側の空間(32a)と流出口(33)側の空
間(33a)とを連通させる弁口(34)が形成され、
弁口(34)の開度を調節する弁体(35)がハウジン
グ(31)内に備えられ、弁体(35)は、流入口(3
2)側の空間(32a)と流出口(33)側の空間(3
3a)との圧力差が、所定の圧力差(ΔP)となるよう
に蒸発器(4)内の圧力に応じて弁口(34)の開度を
制御する。
The present invention uses the following technical means in order to achieve the above object. Claim 1
In the invention described in 3 , the pressure inside the radiator (2) is controlled by the refrigerant.
Heat dissipation in vapor compression refrigeration cycle exceeding field pressure
Pressure reducing device (3) for reducing the pressure of the refrigerant flowing out of the vessel (2)
The inlet (32) communicating with the radiator (2), and steam
A howe formed with an outlet (33) communicating with the generator (4)
With housing (31), flow into housing (31)
The space (32a) on the mouth (32) side and the sky on the outflow port (33) side
A valve port (34) for communicating with the space (33a) is formed,
The valve body (35) for adjusting the opening of the valve opening (34) is a housing.
The valve body (35) is provided in the inlet (3).
2) side space (32a) and outlet (33) side space (3
The opening of the valve port (34) is controlled according to the pressure in the evaporator (4) so that the pressure difference with 3a) becomes a predetermined pressure difference (ΔP).

【0009】これにより、後述するように、蒸発器
(4)の熱負荷が上昇したときは、弁口(34)の開度
を小さくし、一方、蒸発器(4)の熱負荷が低下したと
きは、弁口(34)の開度を大きくするようにされる。
このため、蒸発器(4)の熱負荷が上昇したときは、放
熱器(2)の出口側圧力が上昇し、一方、蒸発器(4)
の熱負荷が低下したときは、放熱器(2)の出口側圧力
が低下する。したがって、放熱器(4)内の圧力が冷媒
の臨界圧力を越える蒸気圧縮式冷凍サイクルの放熱器
(2)出口側圧力を制御することができる。
As a result, as will be described later, when the heat load on the evaporator (4) rises, the opening of the valve port (34) is reduced, while the heat load on the evaporator (4) is reduced. At this time, the opening degree of the valve opening (34) is increased.
Therefore, when the heat load of the evaporator (4) increases, the outlet side pressure of the radiator (2) increases, while the evaporator (4)
When the heat load of 1 is reduced, the outlet side pressure of the radiator (2) is reduced. Therefore, the outlet side pressure of the radiator (2) of the vapor compression refrigeration cycle in which the pressure inside the radiator (4) exceeds the critical pressure of the refrigerant can be controlled.

【0010】なお、ここで、「蒸発器(4)内の圧力」
とは、厳密な意味での蒸発器(4)内の圧力を示す意味
ではなく、モリエル線図上に示される蒸気圧縮式冷凍サ
イクル線図のうち、蒸発器(4)内の圧力を示す部分全
体を示す。つまり、「蒸発器(4)内の圧力」とは、冷
凍サイクル用減圧装置(3)の出口側から圧縮機の吸入
口側までの間の圧力を示す。
Here, the "pressure in the evaporator (4)"
Does not mean the pressure in the evaporator (4) in a strict sense, but is a portion showing the pressure in the evaporator (4) in the vapor compression refrigeration cycle diagram shown on the Mollier diagram. Show the whole. That is, the "pressure in the evaporator (4)" refers to the pressure between the outlet side of the pressure reducing device (3) for the refrigeration cycle and the suction side of the compressor.

【0011】請求項2に記載の発明では、弁体(35)
は、流出口(33)側の空間に配置されるとともに、弾
性力を発生する弾性部材(36)によって流入口(3
2)側の空間に向けて押圧されていることを特徴とす
る。これにより、後述するように、冷凍サイクル用減圧
装置(3)にて減圧される圧力、すなわち圧力差(Δ
P)は、弾性部材(36)の弾性力を調整することによ
って調整することができる。したがって、圧力センサや
比例制御電磁弁等を用いて弁口(34)の開度を調節す
る電気的制御手段に比べて、冷凍サイクル用減圧装置3
の構造が簡単になり、減圧装置3の製造原価上昇を防止
することができる。
In the invention described in claim 2, the valve body (35)
Is disposed in the space on the side of the outflow port (33) and is provided by an elastic member (36) that generates an elastic force.
It is characterized in that it is pressed toward the space on the side 2). Thereby, as will be described later, the pressure reduced by the pressure reducing device (3) for the refrigeration cycle, that is, the pressure difference (Δ
P) can be adjusted by adjusting the elastic force of the elastic member (36). Therefore, as compared with an electric control unit that adjusts the opening degree of the valve port (34) using a pressure sensor, a proportional control solenoid valve, or the like, the refrigeration cycle decompression device 3
The structure can be simplified, and an increase in the manufacturing cost of the decompression device 3 can be prevented.

【0012】請求項3に記載の発明では、冷媒として二
酸化炭素を使用し、かつ、所定の圧力差(ΔP)は、
5.5〜7MPaであることを特徴とするなお、上記
各手段の括弧内の符号は、後述する実施形態記載の具体
的手段との対応関係を示すものである。
In the invention described in claim 3, carbon dioxide is used as the refrigerant, and the predetermined pressure difference (ΔP) is
It is characterized in that it is 5.5 to 7 MPa . The reference numerals in parentheses of the above-mentioned means indicate the correspondence with the specific means described in the embodiments to be described later.

【0013】[0013]

【発明の実施の形態】以下、本発明を図に示す実施の形
態について説明する。 (第1実施形態)図1は本実施形態に係る冷凍サイクル
用減圧装置(以下、減圧装置と略す。)3を用いたCO
2 サイクルを車両用空調装置に適用したものであり、1
は、図示されていないエンジンから駆動力を得て気相状
態のCO2 を圧縮する圧縮機である。2は圧縮機1で圧
縮されたCO2 を外気等との間で熱交換して冷却する放
熱器(ガスクーラ)であり、3は放熱器2から流出した
高圧(約12MPa)のCO2 を減圧する減圧装置であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention shown in the drawings will be described. (First Embodiment) FIG. 1 is a CO using a decompression device for a refrigeration cycle (hereinafter referred to as a decompression device) 3 according to the present embodiment.
Two cycles are applied to a vehicle air conditioner.
Is a compressor that compresses CO 2 in a gas phase by obtaining driving force from an engine (not shown). Reference numeral 2 is a radiator (gas cooler) that cools CO 2 compressed by the compressor 1 by exchanging heat with the outside air, and 3 is decompressed high-pressure (about 12 MPa) CO 2 flowing out from the radiator 2. It is a pressure reducing device.

【0014】なお、減圧装置3は、減圧手段をなすとと
もに、後述するように放熱器2の出口側圧力を制御する
機能も兼ねており、この減圧装置3にて減圧されたCO
2 は、気液2相状態となって後述する蒸発器4に流入す
る。4は、車室内に吹き出す空気の冷却手段をなす蒸発
器(吸熱器)で、気液2相状態のCO2 は蒸発器4内で
気化(蒸発)する際に、車室内空気から蒸発潜熱を奪っ
て車室内空気を冷却する。5は、気相状態のCO2 と液
相状態のCO2 とを分離するとともに、液相状態のCO
2 を一時的に蓄えるアキュームレータである。なお、
6、7は、放熱器2および蒸発器4の熱交換を促進する
クーリングファンである。
The decompression device 3 serves as a decompression device and also has a function of controlling the outlet side pressure of the radiator 2 as described later, and the CO decompressed by the decompression device 3 is also provided.
2 enters a vaporizer 4 described later in a gas-liquid two-phase state. Reference numeral 4 denotes an evaporator (heat absorber) that serves as a cooling means for the air blown into the vehicle interior. When CO 2 in a gas-liquid two-phase state is vaporized (evaporated) in the evaporator 4, latent heat of vaporization from the vehicle interior air is removed. Take it away and cool the cabin air. 5 separates CO 2 in the vapor phase from CO 2 in the liquid phase, and
It is an accumulator that temporarily stores 2 . In addition,
Cooling fans 6 and 7 promote heat exchange between the radiator 2 and the evaporator 4.

【0015】そして、圧縮機1、放熱器2、減圧装置
3、蒸発器4およびアキュームレータ5は、それぞれ配
管によって接続されて閉回路を形成している。なお、放
熱器2は、放熱器2内CO2 と外気との温度差をできる
だけ大きくするために車両前方に配置されている。次
に、減圧装置3について詳述する(図2参照)。
The compressor 1, the radiator 2, the decompression device 3, the evaporator 4 and the accumulator 5 are connected by pipes to form a closed circuit. The radiator 2 is arranged in front of the vehicle in order to maximize the temperature difference between the CO 2 inside the radiator 2 and the outside air. Next, the decompression device 3 will be described in detail (see FIG. 2).

【0016】31は、放熱器2に連通する流入口32、
および蒸発器4に連通する流出口33が形成されたステ
ンレスや真鍮等の金属製のハウジングであり、このハウ
ジング31内には、流入口32側の空間32aと流出口
33側の空間33aとを連通させる弁口34が形成され
ている。また、空間33a内には、弁口34の開度を調
節する弁体35が配設されており、この弁体35は、金
属製のコイルバネ(弾性部材)36によって流入口32
側の空間32aに向けて押圧されている。
Reference numeral 31 denotes an inlet 32 communicating with the radiator 2.
And a housing made of metal such as stainless steel or brass in which an outlet 33 communicating with the evaporator 4 is formed. In the housing 31, a space 32a on the inlet 32 side and a space 33a on the outlet 33 side are formed. A valve port 34 for communication is formed. Further, a valve body 35 for adjusting the opening degree of the valve opening 34 is arranged in the space 33a, and the valve body 35 is provided with a coil spring (elastic member) 36 made of a metal.
It is pressed toward the side space 32a.

【0017】なお、ハウジング31は、ハウジング31
のうち流出口33が形成されている部位(蓋部)31a
と、流入口32が形成されている部位(底部)31b
と、円筒状の本体部31cとの3つの部位から構成され
ており、底部31bと本体部31cは一体形成され、蓋
部31aは、弁体35およびコイルバネ36をハウジン
グ31内に収納した後、溶接やねじ結合等の結合手段に
よってハウジング31に結合されている。
The housing 31 is the housing 31.
Part (lid part) 31a in which the outlet 33 is formed
And a portion (bottom) 31b where the inlet 32 is formed
And a cylindrical main body portion 31c, the bottom portion 31b and the main body portion 31c are integrally formed, and the lid portion 31a stores the valve body 35 and the coil spring 36 in the housing 31. It is connected to the housing 31 by a connecting means such as welding or screw connection.

【0018】また、37は、ハウジング31内での弁体
35の移動を案内(ガイド)するガイドスカートであ
り、このガイドスカート37の円筒外側面37aがハウ
ジング31の内壁31dに接触することにより、弁体3
5の移動が案内されている。さらに、ガイドスカート3
7のうち弁体35の近傍には、CO2 の流路をなす複数
個の穴37bが形成されている。
Reference numeral 37 is a guide skirt that guides the movement of the valve body 35 in the housing 31, and the cylindrical outer surface 37a of the guide skirt 37 comes into contact with the inner wall 31d of the housing 31. Disc 3
The movement of 5 is guided. In addition, the guide skirt 3
7, a plurality of holes 37b forming a flow path for CO 2 are formed in the vicinity of the valve element 35.

【0019】次に、減圧装置3の作動を述べる。図2か
ら明らかなように、弁体35のうち流入口32側には、
放熱器2の出口側圧力による作用力F1 が作用するの
で、弁体35は流出口33側に押圧される。一方、流出
口33側には、蒸発器2の入口側圧力およびコイルバネ
36の弾性力による作用力F2 が作用するので、弁体3
5は流入口32側に押圧される。
Next, the operation of the decompression device 3 will be described. As is apparent from FIG. 2, on the side of the inlet 32 of the valve element 35,
Since the acting force F 1 due to the outlet side pressure of the radiator 2 acts, the valve element 35 is pressed toward the outflow port 33 side. On the other hand, the inlet side pressure of the evaporator 2 and the acting force F 2 due to the elastic force of the coil spring 36 act on the outlet 33 side, so that the valve body 3
5 is pushed toward the inlet 32 side.

【0020】つまり、作用力F2 が作用力F1 より大き
い場合には、弁体35は、弁口34の開度が小さくなる
ように移動し、作用力F1 が作用力F2 より大きい場合
には、弁体35は、弁口34の開度が大きくなるように
移動する(図2の(b)参照)。したがって、弁体35
は、作用力F1 と作用力F2 とが均衡する位置(また
は、弁口34に接触する位置)で停止するので、弁口3
4の開度は、コイルバネ36が弁体35に及ぼす弾性力
によって決定する。すなわち、両空間32a、33a間
の圧力差ΔPは、コイルバネ36が弁体35に及ぼす弾
性力に対応する。
That is, when the acting force F 2 is larger than the acting force F 1 , the valve body 35 moves so that the opening of the valve opening 34 becomes smaller, and the acting force F 1 is larger than the acting force F 2. In this case, the valve element 35 moves so that the opening degree of the valve opening 34 increases (see (b) of FIG. 2). Therefore, the valve body 35
Stops at a position where the acting force F 1 and the acting force F 2 are in balance (or a position where the acting force F 2 contacts the valve opening 34), the valve opening 3
The opening degree of 4 is determined by the elastic force exerted on the valve body 35 by the coil spring 36. That is, the pressure difference ΔP between the spaces 32 a and 33 a corresponds to the elastic force exerted by the coil spring 36 on the valve body 35.

【0021】そして、弁体35の移動量(リフト量)は
僅かなので、コイルバネ36が弁体35に及ぼす弾性力
の変化は、ほぼ無視することができるため、両空間32
a、33a間の圧力差ΔPは、ほぼ一定となる。なお、
本実施形態では、弁口34の開度とは、弁口34と弁体
35との距離tを示している。
Since the movement amount (lift amount) of the valve body 35 is small, the change in the elastic force exerted on the valve body 35 by the coil spring 36 can be almost ignored.
The pressure difference ΔP between a and 33a is substantially constant. In addition,
In the present embodiment, the opening degree of the valve opening 34 indicates the distance t between the valve opening 34 and the valve body 35.

【0022】次に、本実施形態に係るCO2 サイクルの
作動を説明する。図3は、本実施形態に係るCO2 サイ
クルの作動を示すモリエル線図であり、図3中、一点鎖
線の線図Aは冷凍能力(熱負荷)が小さい場合を示し、
実線の線図Bは熱負荷が大きい場合を示している。例え
ば、夏場などの室内気温が高い場合には、蒸発器4が冷
却する空気の温度も高くなるので、蒸発器4内の温度が
上昇するとともに、蒸発器4内の圧力、すなわちCO2
の蒸発圧力が上昇する。
Next, the operation of the CO 2 cycle according to this embodiment will be described. FIG. 3 is a Mollier diagram showing the operation of the CO 2 cycle according to the present embodiment. In FIG. 3, the dashed-dotted line diagram A shows the case where the refrigerating capacity (heat load) is small,
The solid line diagram B shows the case where the heat load is large. For example, when the indoor air temperature is high, such as in the summer, the temperature of the air cooled by the evaporator 4 also rises, so the temperature inside the evaporator 4 rises and the pressure inside the evaporator 4, that is, CO 2
Evaporating pressure increases.

【0023】このため、作用力F2 が大きくなり、前述
のように、弁口34の開度が小さくなるので、放熱器2
の出口側圧力が上昇する(線図Bの状態)。したがっ
て、図3に示すように、蒸発器4の出口と入口との比エ
ンタルピ差が大きくなる(h1>h2 )ので、冷凍能力
が増大する。一方逆に、春や秋等の室内気温が低い場合
には、蒸発器4が冷却する空気の温度も低くなるので、
蒸発器4内の温度が低下するとともに、蒸発器4内の圧
力、すなわちCO2 の蒸発圧力が低下する。
As a result, the acting force F 2 becomes large and the opening of the valve port 34 becomes small as described above.
The outlet side pressure rises (state of diagram B). Therefore, as shown in FIG. 3, the specific enthalpy difference between the outlet and the inlet of the evaporator 4 becomes large (h 1 > h 2 ), so that the refrigerating capacity is increased. On the other hand, on the contrary, when the room temperature is low such as in spring or autumn, the temperature of the air cooled by the evaporator 4 is also low,
As the temperature inside the evaporator 4 decreases, the pressure inside the evaporator 4, that is, the evaporation pressure of CO 2 also decreases.

【0024】このため、作用力F2 が小さくなり、前述
のように、弁口34の開度が大きくなるので、放熱器2
の出口側圧力が低下する(線図Aの状態)。したがっ
て、図3に示すように、蒸発器4の出口と入口との比エ
ンタルピ差が小さくなるので、冷凍能力が低下する。次
に、圧力差ΔPについて述べる。
For this reason, the acting force F 2 becomes small, and the opening of the valve port 34 becomes large as described above.
The pressure on the outlet side of is decreased (state of diagram A). Therefore, as shown in FIG. 3, the difference in specific enthalpy between the outlet and the inlet of the evaporator 4 becomes small, so that the refrigerating capacity decreases. Next, the pressure difference ΔP will be described.

【0025】蒸発器4内の温度が氷点下(0℃以下)と
なると、蒸発器4に霜が発生して蒸発器4の冷凍能力の
低下を招くので、蒸発器4内の温度は、氷点より高くす
ることが望ましい。しかし、いたずらに蒸発器4内の温
度を上昇させると、車室内に吹き出す空気を十分に冷却
することができないという問題が発生する。そこで、発
明者等は、種々の試験検討を行ったところ、蒸発器4内
の温度で最大約17℃、蒸発器4内の圧力(CO2 の蒸
発圧力)換算で約3.5〜5.5MPa(以下、低圧サ
イド圧力と呼ぶ。)が妥当であるとの結論を得た。そし
て、次に、上記低圧サイド圧力に基づいて放熱器2の出
口側圧力(以下、高圧サイド圧力と呼ぶ。)を決定すべ
く発明者等は、以下のような検討を試みた。
When the temperature in the evaporator 4 becomes below freezing (0 ° C. or lower), frost is generated in the evaporator 4 and the refrigerating capacity of the evaporator 4 is deteriorated. Therefore, the temperature in the evaporator 4 is lower than the freezing point. It is desirable to raise it. However, if the temperature inside the evaporator 4 is unnecessarily raised, there arises a problem that the air blown into the vehicle compartment cannot be sufficiently cooled. Therefore, the inventors conducted various tests, and found that the temperature inside the evaporator 4 was about 17 ° C. at maximum and the pressure inside the evaporator 4 (CO 2 evaporation pressure) was about 3.5 to 5. It was concluded that 5 MPa (hereinafter referred to as low pressure side pressure) is appropriate. Then, the inventors tried the following examinations in order to determine the outlet side pressure of the radiator 2 (hereinafter referred to as the high pressure side pressure) based on the low pressure side pressure.

【0026】すなわち、図4のグラフは、低圧サイド圧
力を一定(3.5MPa)として、高圧サイド圧力に対
するCO2 サイクルの成績係数(COP)を算出した結
果である。そして、この結果からも明らかなように、高
圧サイド圧力が9MPa以下および12.5MPa以上
では、COPが極端に悪化するので、高圧サイド圧力は
9〜12.5MPaに保つこと望ましい。つまり、圧力
差ΔPは、5.5〜7MPaとすることが望ましい。
That is, the graph of FIG. 4 shows the results of calculating the coefficient of performance (COP) of the CO 2 cycle with respect to the high pressure side pressure, with the low pressure side pressure being constant (3.5 MPa). As is clear from this result, the COP is extremely deteriorated when the high-pressure side pressure is 9 MPa or lower and 12.5 MPa or higher, so it is desirable to keep the high-pressure side pressure at 9 to 12.5 MPa. That is, it is desirable that the pressure difference ΔP be 5.5 to 7 MPa.

【0027】なお、成績係数(COP)とは、周知のご
とく、蒸発器4の出口と入口とのエンタルピ差(冷凍能
力)を圧縮機1の圧縮仕事で除したものであり、圧縮機
1の効率は65%とした。ここで、例えば圧力差ΔPを
6.0MPaとし、低圧サイド圧力を3.5MPa(蒸
発器4内温度で約0℃)とした場合、高圧サイド圧力は
9.5MPaとなる。したがって、蒸発器4の出口と入
口との比エンタルピ差は約111kJ/kgとなり、圧
縮機1の吸入口でCO2 密度は約96.3kg/m3
なる(図6参照)。
The coefficient of performance (COP) is, as is well known, a value obtained by dividing the enthalpy difference (refrigerating capacity) between the outlet and the inlet of the evaporator 4 by the compression work of the compressor 1. The efficiency was 65%. Here, when the pressure difference ΔP is 6.0 MPa and the low pressure side pressure is 3.5 MPa (about 0 ° C. at the temperature inside the evaporator 4), the high pressure side pressure is 9.5 MPa. Therefore, the specific enthalpy difference between the outlet and the inlet of the evaporator 4 is about 111 kJ / kg, and the CO 2 density at the inlet of the compressor 1 is about 96.3 kg / m 3 (see FIG. 6).

【0028】また、熱負荷が大きくなり、低圧サイド圧
力が5MPaまで上昇すると、高圧サイド圧力は11M
Pa(蒸発器4内温度で約13℃)まで上昇する。した
がって、蒸発器4の出口と入口との比エンタルピ差は約
121.5kJ/kgとなり、圧縮機1の吸入口でCO
2 密度は約151.5kg/m3 となる(図6参照)。
したがって、低圧サイド圧力が3.5MPaから5MP
aまで上昇することにより、蒸発器4の冷凍能力は、約
1.7倍となる。
When the heat load increases and the low pressure side pressure rises to 5 MPa, the high pressure side pressure becomes 11 M
The temperature rises to Pa (about 13 ° C. at the temperature inside the evaporator 4). Therefore, the specific enthalpy difference between the outlet and the inlet of the evaporator 4 is about 121.5 kJ / kg, and the CO at the inlet of the compressor 1
2 The density is about 151.5 kg / m 3 (see FIG. 6).
Therefore, the low pressure side pressure is 3.5MPa to 5MP
By increasing the temperature to a, the refrigerating capacity of the evaporator 4 becomes about 1.7 times.

【0029】以上に述べたように、本実施形態によれ
ば、高圧サイド圧力と低圧サイド圧力との圧力差ΔPが
所定値となるように、弁口34の開度を調節するといっ
た簡便な手段で、CO2 サイクルを制御することができ
る。また、圧力差ΔPは、減圧装置3内のコイルバネ3
6によって設定制御することができるので、圧力センサ
や比例制御電磁弁等を用いて弁口34の開度を調節する
電気的制御手段に比べて、減圧装置3の構造が簡単にな
り、減圧装置3の製造原価上昇を防止することができ
る。
As described above, according to the present embodiment, a simple means for adjusting the opening of the valve port 34 so that the pressure difference ΔP between the high pressure side pressure and the low pressure side pressure becomes a predetermined value. Thus, the CO 2 cycle can be controlled. Further, the pressure difference ΔP is determined by the coil spring 3 in the pressure reducing device 3.
Since the setting can be controlled by the pressure reducing device 6, the structure of the pressure reducing device 3 is simpler than that of the electric control means that adjusts the opening degree of the valve opening 34 by using a pressure sensor, a proportional control solenoid valve, or the like, and the pressure reducing device is reduced. It is possible to prevent the manufacturing cost increase of item 3 above.

【0030】(第2実施形態)本実施形態は、弁体35
に作用するコイルバネ36の弾性力を調整可能としたも
のである。以下に、図5を用いて説明する。40は、コ
イルバネ36の一端側に配設されて、コイルバネ36の
弾性力を針状の弁体35に対して、圧力的に流出口33
側から作用させる第1押さえ板であり、41はコイルバ
ネ36の他端側に配置されて、コイルバネ36の弾性力
を調整する第2押さえ板である。この第2押さえ板41
には、雌ねじ部41aが形成されており、この雌ねじ部
41aには、第2押さえ板41をコイルバネ36の軸方
向に移動させる調整シャフト42に形成された雄ねじ部
42aがねじ結合している。
(Second Embodiment) In this embodiment, the valve element 35 is used.
The elastic force of the coil spring 36 acting on is adjustable. Below, it demonstrates using FIG. 40 is disposed on one end side of the coil spring 36, and the elastic force of the coil spring 36 is applied to the needle-shaped valve body 35 by pressure so as to flow out from the outlet 33.
The first pressing plate 41 acts from the side, and 41 is a second pressing plate that is arranged on the other end side of the coil spring 36 and adjusts the elastic force of the coil spring 36. This second pressing plate 41
A female screw portion 41a is formed on the male screw portion 41a, and a male screw portion 42a formed on an adjusting shaft 42 for moving the second pressing plate 41 in the axial direction of the coil spring 36 is screwed to the female screw portion 41a.

【0031】したがって、調整シャフト42の回転に連
動して第2押さえ板41がコイルバネ36の軸方向に移
動するので、弁体35に作用する弾性力を調節すること
ができる。なお、43は第2押さえ板41が調整シャフ
ト42と共周りすることを防止するキーであり、44は
調整シャフト42とハウジング31との隙間を密閉する
シール部材をなすニトリルゴム製のOリングである。
Therefore, since the second pressing plate 41 moves in the axial direction of the coil spring 36 in association with the rotation of the adjusting shaft 42, the elastic force acting on the valve body 35 can be adjusted. Reference numeral 43 is a key that prevents the second pressing plate 41 from rotating together with the adjustment shaft 42, and 44 is an O-ring made of nitrile rubber that forms a seal member that seals the gap between the adjustment shaft 42 and the housing 31. is there.

【0032】因みに、CO2 サイクルはフロンを用いた
通常の蒸気圧縮式冷凍サイクルに比べて、高圧サイド圧
力が大きい(約8倍)ので、可動部分にOリング等のシ
ール部材を配設する場合は、上述のように、減圧後であ
る流出口33側に配設することが望ましい。ところで、
上述の実施形態では、コイルバネ36を用いて機械的に
圧力差ΔPを制御していたが、圧力センサにて蒸発器4
内の圧力を検出し、この検出値に基づいて比例制御電磁
弁等のように弁開度を調節できる電気的アクチュエータ
を用いても本発明を実施することができる。
Incidentally, the CO 2 cycle has a high pressure side pressure (about 8 times) higher than that of a normal vapor compression refrigeration cycle using CFCs. Therefore, when a seal member such as an O ring is provided in the movable part. As described above, it is desirable that the is disposed on the outlet 33 side, which is after decompression. by the way,
Although the pressure difference ΔP is mechanically controlled by using the coil spring 36 in the above-described embodiment, the evaporator 4 is controlled by the pressure sensor.
The present invention can also be implemented by using an electric actuator capable of detecting the internal pressure and adjusting the valve opening degree based on the detected value, such as a proportional control solenoid valve.

【0033】また、圧力と温度とは、モリエル線図の等
温線で示されるような関係を有しているので、上記圧力
センサに替えて温度センサを用いてもよい。なお、この
場合、圧力センサは、蒸発器4の出口側もしくは入口
側、または蒸発器4内のいずれの場所での圧力を検出し
てもよい。但し、蒸発器4内での圧力損失が大きい場合
に、蒸発器4の出口側で圧力を検出するときは、その圧
力損失分を補償する必要がある。同様に、温度センサを
用いる場合には、蒸発器4の入口側から出口側までの間
の温度変化を考慮する必要がある。
Further, since the pressure and the temperature have a relationship as shown by the isotherm of the Mollier diagram, a temperature sensor may be used instead of the pressure sensor. In this case, the pressure sensor may detect the pressure at the outlet side or the inlet side of the evaporator 4 or anywhere in the evaporator 4. However, when the pressure loss in the evaporator 4 is large and the pressure is detected at the outlet side of the evaporator 4, it is necessary to compensate for the pressure loss. Similarly, when using the temperature sensor, it is necessary to consider the temperature change from the inlet side to the outlet side of the evaporator 4.

【0034】また、上述の実施形態では、弁体35にC
2 サイクル内を循環するCO2 の圧力を直接作用させ
ていたが、細管等により蒸発器4内または蒸発器4の出
口側もしくは入口側の圧力を取り出し、ダイヤフラム等
を介して弁体35を作動させてもよい。また、本発明に
係る減圧装置3は、CO2 を使用した蒸気圧縮式冷凍サ
イクルに使用が限定されるものではなく、例えば、エチ
レン、エタン、酸化窒素等の超臨界域で使用する冷媒を
用いた蒸気圧縮式冷凍サイクルにも適用することができ
る。
Further, in the above-described embodiment, the valve body 35 has a C
Although the pressure of CO 2 circulating in the O 2 cycle was directly applied, the pressure inside the evaporator 4 or at the outlet side or the inlet side of the evaporator 4 is taken out by a thin tube or the like, and the valve body 35 is opened via a diaphragm or the like. It may be activated. Further, the decompression device 3 according to the present invention is not limited to use in a vapor compression refrigeration cycle using CO 2, and uses, for example, a refrigerant used in a supercritical region such as ethylene, ethane, and nitric oxide. It can also be applied to a conventional vapor compression refrigeration cycle.

【0035】さらに、アキュームレータ5を廃止して
も、蒸気圧縮式冷凍サイクルを実施することができる。
この場合、蒸発器4内に残存する冷媒が吸引されて、ア
キュームレータ5を有するCO2 サイクルと同様な作動
を得ることができる。
Further, even if the accumulator 5 is eliminated, the vapor compression refrigeration cycle can be carried out.
In this case, the refrigerant remaining in the evaporator 4 is sucked, and the same operation as in the CO 2 cycle having the accumulator 5 can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施形態に係るCO2 サイクルの模式図で
ある。
FIG. 1 is a schematic diagram of a CO 2 cycle according to a first embodiment.

【図2】第1実施形態に係る減圧装置の断面図である。FIG. 2 is a cross-sectional view of the pressure reducing device according to the first embodiment.

【図3】第1実施形態に係るCO2 サイクルを説明する
ためのモリエル線図である。
FIG. 3 is a Mollier diagram for explaining the CO 2 cycle according to the first embodiment.

【図4】高圧サイド圧力と成績係数(COP)との関係
を示すグラフである。
FIG. 4 is a graph showing the relationship between high pressure side pressure and coefficient of performance (COP).

【図5】第2実施形態に係る減圧装置の断面図である。FIG. 5 is a cross-sectional view of a pressure reducing device according to a second embodiment.

【図6】CO2 サイクルを説明するためのモリエル線図
である。
FIG. 6 is a Mollier diagram for explaining the CO 2 cycle.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…放熱器、3…減圧装置、4…蒸発器、
5…アキュームレータ、31…ハウジング、32…流入
口、33…流出口、34…弁口、35…弁体、36…コ
イルバネ(弾性部材)。
1 ... Compressor, 2 ... Radiator, 3 ... Pressure reducing device, 4 ... Evaporator,
5 ... Accumulator, 31 ... Housing, 32 ... Inflow port, 33 ... Outflow port, 34 ... Valve opening, 35 ... Valve body, 36 ... Coil spring (elastic member).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 実開 昭59−25756(JP,U) 実公 昭47−14305(JP,Y1) 特表 平3−503206(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 41/06 ─────────────────────────────────────────────────── ───Continued from the front page (56) Bibliography Sho 59-25756 (JP, U) Shokoku 47-14305 (JP, Y1) Tokuhei 3-503206 (JP, A) (58) Survey Field (Int.Cl. 7 , DB name) F25B 41/06

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷媒を圧縮する圧縮機(1)と、 前記圧縮機(1)で圧縮された前記冷媒を冷却する放熱
器(2)と、 前記放熱器(2)から流出した冷媒を減圧する減圧装置
(3)と、 前記減圧装置(3)で減圧した冷媒を蒸発させる蒸発器
(4)とを有し、 前記放熱器(2)内の圧力が冷媒の臨界圧力を越える蒸
気圧縮式冷凍サイクルであって、 前記減圧装置(3)
は、前記放熱器(2)に連通する流入口(32)、およ
び前記蒸発器(4)に連通する流出口(33)が形成さ
れたハウジング(31)を有し、 前記ハウジング(31)内に、前記流入口(32)側の
空間(32a)と前記流出口(33)側の空間(33
a)とを連通させる弁口(34)が形成され、 前記弁口(34)の開度を調節する弁体(35)が前記
ハウジング(31)内に備えられ、 前記弁体(35)は、前記両空間(32a、33a)の
圧力差が、所定の圧力差(ΔP)となるように前記蒸発
器(4)内の圧力に応じて前記弁口(34)の開度を制
御することを特徴とする蒸気圧縮式冷凍サイクル
1. A compressor for compressing a refrigerant (1), the heat radiation for cooling the refrigerant compressed by the compressor (1)
And a pressure reducing device for reducing the pressure of the refrigerant flowing out from the radiator (2).
(3) and an evaporator for evaporating the refrigerant decompressed by the decompression device (3)
(4) and the pressure inside the radiator (2) exceeds the critical pressure of the refrigerant.
A gas compression refrigeration cycle, comprising the pressure reducing device (3).
Is an inlet (32) communicating with the radiator (2), and
And an outlet (33) communicating with the evaporator (4) is formed.
Has a housing (31) that is located inside the housing (31) on the side of the inlet (32).
The space (32a) and the space (33) on the side of the outlet (33)
A valve opening (34) for communicating with a ) is formed, and the valve body (35) for adjusting the opening of the valve opening (34) is
The valve body (35) is provided in the housing (31), and the valve body (35) has a pressure inside the evaporator (4) so that a pressure difference between the spaces (32a, 33a) becomes a predetermined pressure difference (ΔP). A vapor compression refrigeration cycle characterized in that the opening of the valve opening (34) is controlled in accordance with the above.
【請求項2】 前記弁体(35)は、前記流出口(3
3)側の空間に配置されるとともに、弾性力を発生する
弾性部材(36)によって前記流入口(32)側の空間
に向けて押圧されていることを特徴とする請求項1に記
載の蒸気圧縮式冷凍サイクル
2. The valve body (35) has the outlet (3).
3) side while being positioned in the space, to claim 1, characterized in that it is pressed toward the space of the inlet (32) side by the elastic member (36) for generating an elastic force serial
The vapor compression refrigeration cycle described above .
【請求項3】 前記冷媒は二酸化炭素であり、 前記所定の圧力差(ΔP)は、5.5〜7MPaである
ことを特徴とする請求項1または2に記載の蒸気圧縮式
冷凍サイクル
3. The vapor compression type according to claim 1, wherein the refrigerant is carbon dioxide, and the predetermined pressure difference (ΔP) is 5.5 to 7 MPa.
Refrigeration cycle .
JP15727296A 1996-06-18 1996-06-18 Vapor compression refrigeration cycle Expired - Fee Related JP3528433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15727296A JP3528433B2 (en) 1996-06-18 1996-06-18 Vapor compression refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15727296A JP3528433B2 (en) 1996-06-18 1996-06-18 Vapor compression refrigeration cycle

Publications (2)

Publication Number Publication Date
JPH109719A JPH109719A (en) 1998-01-16
JP3528433B2 true JP3528433B2 (en) 2004-05-17

Family

ID=15646036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15727296A Expired - Fee Related JP3528433B2 (en) 1996-06-18 1996-06-18 Vapor compression refrigeration cycle

Country Status (1)

Country Link
JP (1) JP3528433B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106288548A (en) * 2015-06-23 2017-01-04 株式会社鹭宫制作所 Throttling arrangement and possess the refrigerating circulation system of this throttling arrangement
US10161541B2 (en) 2015-02-27 2018-12-25 Saginomiya Seisakusho, Inc. Throttle device and refrigeration cycle system with same
US10222107B2 (en) 2015-06-03 2019-03-05 Saginomiya Seisakusho, Inc. Throttle device and refrigeration cycle system with same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2561729B1 (en) * 1984-03-26 1986-08-22 Europ Propulsion SOLID ROTOR ACTIVE MAGNETIC BEARING FOR CRITICAL FREQUENCY DAMPING
JP4694365B2 (en) * 2005-12-26 2011-06-08 サンデン株式会社 Pressure reducer module with oil separator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10161541B2 (en) 2015-02-27 2018-12-25 Saginomiya Seisakusho, Inc. Throttle device and refrigeration cycle system with same
US10222107B2 (en) 2015-06-03 2019-03-05 Saginomiya Seisakusho, Inc. Throttle device and refrigeration cycle system with same
CN106288548A (en) * 2015-06-23 2017-01-04 株式会社鹭宫制作所 Throttling arrangement and possess the refrigerating circulation system of this throttling arrangement
JP2017009197A (en) * 2015-06-23 2017-01-12 株式会社鷺宮製作所 Throttling apparatus, and refrigeration cycle system having the apparatus

Also Published As

Publication number Publication date
JPH109719A (en) 1998-01-16

Similar Documents

Publication Publication Date Title
JP3858297B2 (en) Pressure control valve and vapor compression refrigeration cycle
US6076366A (en) Refrigerating cycle system with hot-gas bypass passage
JP4285060B2 (en) Vapor compression refrigerator
JPH10115470A (en) Steam compression type regrigeration cycle
JP2000035250A (en) Supercritical freezing cycle
US20060150650A1 (en) Expansion valve for refrigerating cycle
JP3467989B2 (en) Vapor compression refrigeration cycle
KR20080018795A (en) Expansion device
US7536872B2 (en) High pressure control valve
JP4179231B2 (en) Pressure control valve and vapor compression refrigeration cycle
JP4207235B2 (en) Vapor compression refrigeration cycle
JPH11304269A (en) Refrigerating cycle
JP3528433B2 (en) Vapor compression refrigeration cycle
JP2001147048A (en) Superheat extent controller for refrigeration circuit
JP4196450B2 (en) Supercritical refrigeration cycle
US20100024453A1 (en) Refrigeration cycle device
JP2006234207A (en) Refrigerating cycle pressure reducing device
JP2008164239A (en) Pressure regulation valve
JP4104813B2 (en) Cooling cycle
JP4015171B2 (en) Refrigerant condenser
JP6565737B2 (en) Refrigeration cycle equipment
JP2007183086A (en) Supercritical refrigeration cycle
JPH11148576A (en) Pressure control valve
JP2000337735A (en) Pressure reducer for air cooling cycle
JP2005201484A (en) Refrigerating cycle

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees