JP2001147048A - Superheat extent controller for refrigeration circuit - Google Patents

Superheat extent controller for refrigeration circuit

Info

Publication number
JP2001147048A
JP2001147048A JP32942999A JP32942999A JP2001147048A JP 2001147048 A JP2001147048 A JP 2001147048A JP 32942999 A JP32942999 A JP 32942999A JP 32942999 A JP32942999 A JP 32942999A JP 2001147048 A JP2001147048 A JP 2001147048A
Authority
JP
Japan
Prior art keywords
superheat
refrigeration circuit
expansion valve
compressor
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32942999A
Other languages
Japanese (ja)
Inventor
Seiichi Yamamoto
清一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP32942999A priority Critical patent/JP2001147048A/en
Publication of JP2001147048A publication Critical patent/JP2001147048A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superheat extent controller for refrigerating circuit which enables an air conditioner to comfortably conduct air conditioning by increasing the capacity of the refrigeration circuit of the air conditioner, when the refrigeration by means of the circuit becomes insufficient due to rise in the outside air temperature, idling of the air conditioner, etc. SOLUTION: A vapor compression type air conditioner using a CO2 refrigerant, is constituted by connecting a compressor, a gas cooler, an expansion valve, and an evaporator in this order through pipeline, and is divided into high- and low-pressure sides. The high-pressure side of the air conditioner is composed of the compressor, gas cooler, and expansion valve and operated at the critical pressure and the low-pressure side is composed of the expansion valve and evaporator. A superheat extent controller for the refrigeration circuit of the air conditioner makes up for the insufficient capacity of the refrigeration circuit by increasing degree of superheat of the refrigerant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、閉回路において高
圧側が超臨界条件下で作動する冷媒、例えば、二酸化炭
素等を利用する冷凍機、空調ユニット、及びヒートポン
プのような蒸気圧縮サイクルの装置に関し、特に、その
種の装置の能力向上を図ることが出来る制御装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for a vapor compression cycle such as a refrigerator, an air conditioning unit, and a heat pump using a refrigerant, for example, carbon dioxide or the like, operating on a high pressure side in a closed circuit under supercritical conditions. In particular, the present invention relates to a control device capable of improving the performance of such a device.

【0002】[0002]

【従来の技術】従来の空気調和装置は、図11に示すよ
うに、夫々配管55a,55b,55c,55dによっ
て、圧縮機(コンプレッサー)51、凝縮器52、絞り
手段(膨張弁)53、及び蒸発器(エバポレータ)54
を備えている。それらの要素は、閉回路で連結され、そ
こに冷媒が循環されている。通常、これらの装置は臨界
圧力未満で運転され、冷媒にはR−12、R−134
a、R−22等が用いられている。
2. Description of the Related Art As shown in FIG. 11, a conventional air conditioner includes a compressor (compressor) 51, a condenser 52, a throttle means (expansion valve) 53, and a pipe 55a, 55b, 55c, 55d. Evaporator (evaporator) 54
It has. The components are connected in a closed circuit, in which a refrigerant is circulated. Normally, these devices are operated below the critical pressure, with refrigerants R-12, R-134
a, R-22 and the like are used.

【0003】圧縮機51から膨張弁53に至る経路は、
比較的圧力が高い領域であり、一方、蒸発器52から圧
縮機51に至る経路は比較的圧力が低い領域であり、以
下の説明においては、前者を高圧側、後者を低圧側と夫
々呼ぶ。この冷凍回路の高圧側の圧力は、10〜20k
g/cm(0.98MPa〜1.96MPa)で運転
している。なお、本明細書中の記述において、アイドリ
ング時という言葉が出でくるが、この語句は車両用空調
機に関して用いられる。
The path from the compressor 51 to the expansion valve 53 is as follows:
The path from the evaporator 52 to the compressor 51 is a region where the pressure is relatively low. On the other hand, in the following description, the former is called the high pressure side and the latter is called the low pressure side. The pressure on the high pressure side of this refrigeration circuit is 10-20 k
g / cm 2 (0.98 MPa to 1.96 MPa). In the description in this specification, the word "idling" appears, but this term is used for a vehicle air conditioner.

【0004】COを冷媒として用いたCOサイクル
の作動は、原理的には、フロンを用いた従来の蒸気圧縮
機式冷凍サイクルの作動と同じである。
The operation of a CO 2 cycle using CO 2 as a refrigerant is in principle the same as the operation of a conventional vapor compressor refrigeration cycle using Freon.

【0005】しかし、COの臨界温度は、31℃と従
来のフロンの臨界温度(例えば、R12では、112
℃)と比べて低く、夏場等では放熱器側でのCO温度
がCO の臨界温度より高くなってしまう。超臨界運転
では、これまでの凝縮器52と言われていた部分は、超
臨界ガスであり、凝縮が起こらない。そこで、凝縮器5
2は、放熱器(ガスクーラー)と呼ばれる。
However, CO2Critical temperature is 31 ° C.
Critical temperature of the next CFC (for example, 112 for R12)
℃), and in summer, etc., CO on the radiator side2temperature
Is CO 2Higher than the critical temperature. Supercritical operation
Then, the part that was said to be the condenser 52 is
It is a critical gas and does not condense. Therefore, the condenser 5
2 is called a radiator (gas cooler).

【0006】臨界温度に対応する圧力は、75.3kg
/cm(7.38MPa)であり、外気の温度にもよ
るが通常100kg/cm〜170kg/cm
(9.8〜16.7MPa)と高圧で運転される。
[0006] The pressure corresponding to the critical temperature is 75.3 kg.
/ Cm 2 (7.38 MPa) and usually 100 kg / cm 2 to 170 kg / cm depending on the temperature of the outside air.
It is operated at a high pressure of 2 (9.8 to 16.7 MPa).

【0007】従来使用されている冷媒で過熱度をとった
場合を考えると、フロンガスでは成績係数向上の他に、
コンプレッサーへの液冷媒が流れないように保護する目
的がある。しかし、一方で過熱度をとると、コンプレッ
サーの吐出冷媒温度が上昇してしまい、潤滑油の劣化を
招くなどの恐れがある。
[0007] Considering the case where the degree of superheating is taken with a conventionally used refrigerant, in the case of CFCs, in addition to the improvement of the coefficient of performance,
The purpose is to protect the liquid refrigerant from flowing to the compressor. However, on the other hand, if the degree of superheat is taken, the temperature of the refrigerant discharged from the compressor will increase, which may cause deterioration of the lubricating oil.

【0008】そこで、従来の冷媒では、吐出温度と成績
係数(COP)、コンプレッサーの保護と目的をバラン
スさせて、過熱度(SH)の大きさを決めていた。
Therefore, in the conventional refrigerant, the degree of superheat (SH) is determined by balancing the discharge temperature, the coefficient of performance (COP), the protection of the compressor and the purpose.

【0009】[0009]

【発明が解決しようとする課題】冷媒にCOを用いた
場合、従来の冷媒に比較して、圧縮機が低い回転で車両
が停止している状態であり、冷却用の風は、ファンのみ
のようなアイドリング時の冷凍能力が低いことが知られ
ている。このことは、図12に示すように本発明者ら
が、従来の冷媒R134aとCOで同じ条件にて実験
を行い現象を確認している。
When CO 2 is used as the refrigerant, the vehicle is stopped at a low rotation speed of the compressor as compared with the conventional refrigerant, and only the fan is used for cooling. It is known that the refrigeration capacity during idling is low. This is the present inventors, as shown in FIG. 12, it was confirmed the phenomenon conducted an experiment under the same conditions with a conventional refrigerant R134a and CO 2.

【0010】図12は上記した過熱度を制御した検証実
験の説明に供せられる図である。図12を参照して、過
熱度を、例えば、10Kに制御する場合を検討する。図
12に示すように、中速時に蒸発温度が0℃で運転した
いたと仮定する。アイドリングになってエンジン回転数
が低下すると、エンジン直結のコンプレッサーの回転数
も落ちるから、冷凍回路内の冷媒循環量が落ちる。
FIG. 12 is a diagram used for explaining a verification experiment in which the degree of superheat is controlled. Referring to FIG. 12, a case where the degree of superheat is controlled to, for example, 10K will be considered. As shown in FIG. 12, it is assumed that the operation was performed at an evaporating temperature of 0 ° C. at a medium speed. When the engine speed drops due to idling, the speed of the compressor directly connected to the engine also drops, so the refrigerant circulation amount in the refrigeration circuit drops.

【0011】蒸発器54に流れていた冷媒量はその結果
少なくなるため、蒸発器54内部では,冷媒がそれまで
より、早く蒸発してしまう。このため、冷凍回路の蒸発
器54の下流では、今までより冷媒が温まってしまう。
これは、過熱度が増えることに等しい。
As a result, the amount of the refrigerant flowing through the evaporator 54 decreases, so that the refrigerant evaporates inside the evaporator 54 faster than before. For this reason, the refrigerant is warmed more downstream than the evaporator 54 in the refrigeration circuit.
This equates to an increase in superheat.

【0012】膨張弁53は過熱度を制御するため、弁開
度を開閉して調節しようとする。つまり、図12のよう
に、アイドリング時には、弁開度を少し開けて冷媒を流
してやる方向に働く。いままで、絞られていたものが開
放され低圧側圧力は上昇し、過熱度は小さくなり、10
Kになる。弁が開くことで高圧圧力は下がる。
In order to control the degree of superheat, the expansion valve 53 attempts to open and close the valve opening to adjust it. That is, as shown in FIG. 12, at the time of idling, the valve operates slightly in the direction in which the valve is opened to allow the refrigerant to flow. Until now, the throttle was released, the low pressure side pressure increased, the superheat decreased, and
It becomes K. As the valve opens, the high pressure drops.

【0013】逆にエンジン回転数が上昇した場合には、
コンプレッサーの回転数も上がり、冷媒循環量も大きく
なる。その結果、蒸発器54に流れる冷媒も多くなるの
で過熱度は小さくなる。そこで、膨張弁が今度は弁開度
を絞る方向に働き、流量を少なくする。その結果、低圧
側の圧力は下がり、高圧側の圧力は上昇する。
On the other hand, when the engine speed increases,
The rotation speed of the compressor also increases, and the refrigerant circulation amount also increases. As a result, the amount of refrigerant flowing through the evaporator 54 also increases, so that the degree of superheat decreases. Then, the expansion valve works in the direction of reducing the valve opening this time, and reduces the flow rate. As a result, the pressure on the low pressure side decreases and the pressure on the high pressure side increases.

【0014】この現象は、特に、アイドリング時以外に
も、外気が高いときなどが挙げられる。アイドリング時
には、車両が停止することから、走行時の前面風が無く
なり、ファンのみの冷却になる。このため、図11に示
されるガスクーラ52における放熱能力が下がり、ガス
クーラ52の出口温度が上昇してしまう。
[0014] This phenomenon is particularly caused when the outside air is high other than at the time of idling. At the time of idling, the vehicle stops, so that there is no front wind at the time of running, and only the fan is cooled. For this reason, the heat radiation capability of the gas cooler 52 shown in FIG. 11 decreases, and the outlet temperature of the gas cooler 52 increases.

【0015】臨界点を超える範囲で運転されるCO
媒においては、高圧と温度は夫々依存して変化すること
がない。そのため、高圧圧力が同じでも、温度が変われ
ば冷媒の状態が大きく変わってしまう。
In a CO 2 refrigerant operated in a range exceeding the critical point, the high pressure and the temperature do not change independently. Therefore, even if the high pressure is the same, if the temperature changes, the state of the refrigerant greatly changes.

【0016】このことは、図13に示すように、通常は
Bのサイクル61で運転していたものが、Aのサイクル
62に変わることで表される。つまり、ガスクーラ出口
部分に相当する点Cは、通常35℃で運転されていた
が、アイドリング時には、40℃に上昇してしまい、そ
の結果サイクルは、B→Aとなってしまう。蒸発器の冷
凍能力は、エンタルピー差Δhで表されるから、サイク
ルBからAになることは、Δh分だけ減ってΔh
なることであり、冷凍能力の減少につながる。これは、
外気温度が上昇した場合にも、同様なことが言える。
This is represented by the fact that the operation normally performed in the cycle 61 of B is changed to the cycle 62 of A as shown in FIG. In other words, the point C corresponding to the gas cooler outlet is normally operated at 35 ° C., but rises to 40 ° C. during idling, and as a result, the cycle changes from B to A. Since the refrigerating capacity of the evaporator is represented by the enthalpy difference Δh, going from cycle B to A means reducing Δh 2 to Δh 1 , which leads to a decrease in the refrigerating capacity. this is,
The same is true when the outside air temperature rises.

【0017】そこで、本発明の技術的課題は、外気温度
の上昇やアイドリング時などの冷凍不足時に能力を増加
させて快適に空気調和を行うことができる冷凍回路の制
御装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a refrigeration circuit control device capable of increasing the capacity at the time of insufficient refrigeration such as an increase in the outside air temperature or idling and performing comfortable air conditioning. .

【0018】[0018]

【課題を解決するための手段】本発明によれば、CO
冷媒を用い圧縮機、ガス冷却器、膨張弁、及び蒸発器を
この順に配管によって接続し、前記圧縮機から前記膨張
弁までを高圧側、前記膨張弁から前記圧縮機までを低圧
側とし、前記高圧側が臨界圧力で運転される蒸気圧縮型
空気調和装置の冷凍回路の過熱度制御装置において、過
熱度を多く取ることによって能力不足を補うことを特徴
とする冷凍回路の過熱度制御装置が得られる。
According to the present invention, CO 2 is used.
Using a refrigerant, a compressor, a gas cooler, an expansion valve, and an evaporator are connected in this order by piping, and the section from the compressor to the expansion valve is on the high pressure side, and the section from the expansion valve to the compressor is on the low pressure side, A superheat control apparatus for a refrigeration circuit of a refrigeration circuit of a vapor compression type air conditioner in which a high pressure side is operated at a critical pressure, wherein a superheat degree is compensated for by increasing the degree of superheat. .

【0019】また、本発明によれば、前記冷凍回路の過
熱度制御装置において、前記能力不足か否かの検知を、
前記ガス冷却器の出口温度に基づいて行うことを特徴と
する冷凍回路の過熱度制御装置が得られる。
Further, according to the present invention, in the superheat degree control device for the refrigeration circuit, the detection of whether or not the capacity is insufficient is performed by:
A superheat control device for a refrigeration circuit, wherein the control is performed based on the outlet temperature of the gas cooler, is obtained.

【0020】また、本発明によれば、前記いずれかの冷
凍回路の過熱度制御装置において、前記過熱度の制御
は、前記膨張弁で行うことを特徴とする冷凍回路の過熱
度制御装置が得られる。
According to the present invention, in any one of the superheat degree control devices for a refrigeration circuit, the superheat degree is controlled by the expansion valve. Can be

【0021】また、本発明によれば、前記冷凍回路の過
熱度制御装置において、前記膨張弁は、電子制御式膨張
弁又は機械式膨張弁からなることを特徴とする冷凍回路
の過熱度制御装置が得られる。
According to the present invention, in the superheat degree control device for a refrigeration circuit, the expansion valve comprises an electronically controlled expansion valve or a mechanical expansion valve. Is obtained.

【0022】また、本発明によれば、前記いずれかの冷
凍回路の過熱度制御装置において、前記過熱度は前記蒸
発器の出口の過熱度であり、前記蒸発器の出口温度に基
づいて前記膨張弁の弁開度の制御を行うことを特徴とす
る冷凍回路の過熱度制御装置が得られる。
Further, according to the present invention, in any one of the superheat degree control devices for the refrigeration circuit, the superheat degree is a superheat degree at an outlet of the evaporator, and the expansion based on an outlet temperature of the evaporator. A superheat degree control device for a refrigeration circuit, characterized in that the valve opening degree of the valve is controlled.

【0023】また、本発明によれば、前記いずれかの冷
凍回路の過熱度制御装置において、吐出温度が、オイル
の劣化やそのほか考えられる不具合を招く温度になる
と、信号を送り過熱度を下げるように制御する吐出温度
保護手段を備えていることを特徴とする冷凍回路の過熱
度制御装置が得られる。
Further, according to the present invention, in any one of the above-described superheat degree control apparatuses for a refrigerating circuit, when the discharge temperature reaches a temperature that causes deterioration of oil or other possible problems, a signal is sent to reduce the degree of superheat. , A superheat control device for a refrigeration circuit, characterized by comprising discharge temperature protection means for controlling the temperature of the refrigeration circuit.

【0024】また、本発明によれば、前記いずれかの冷
凍回路の過熱度制御装置において、前記低圧側の圧力を
一定に保つ制御を行うことを特徴とする冷凍回路の過熱
度制御装置が得られる。
Further, according to the present invention, there is provided a superheat degree control device for a refrigeration circuit, characterized in that in any one of the superheat degree control devices for a refrigeration circuit, control is performed to keep the pressure on the low pressure side constant. Can be

【0025】また、本発明によれば、前記いずれかの冷
凍回路の過熱度制御装置において、前記圧縮機は可変容
量コンプレッサーからなることを特徴とする冷凍回路の
過熱度制御装置が得られる。
Further, according to the present invention, in any one of the superheat degree control devices for the refrigeration circuit, the compressor comprises a variable capacity compressor, and the superheat degree control device for the refrigeration circuit is obtained.

【0026】[0026]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0027】図1は本発明の第1の実施の形態による空
気調和装置の超臨界冷凍回路の構成を示すブロック図で
ある。図1を参照すると、本発明の第1の実施の形態に
よる冷凍回路10は、圧縮機51、ガス冷却器(ガスク
ーラ)52、膨張弁3、及び蒸発器54を、配管55
a、55b、55c、55dによって夫々接続された構
成を有している。
FIG. 1 is a block diagram showing a configuration of a supercritical refrigeration circuit of an air conditioner according to a first embodiment of the present invention. Referring to FIG. 1, a refrigeration circuit 10 according to a first embodiment of the present invention includes a compressor 51, a gas cooler (gas cooler) 52, an expansion valve 3, and an evaporator 54 connected to a pipe 55.
a, 55b, 55c, and 55d.

【0028】本発明の第1の実施の形態では、さらに、
制御装置としてガスクーラー52の出口の温度と圧力と
を検出する第1のセンサー2と、蒸発器54の出口の圧
力と温度とを検出する第2のセンサー4と、圧縮機51
の出口の温度を検知する第3のセンサー1とを備えてい
る。第1乃至第3のセンサー2,4,1の検出出力は、
制御回路5入力され、これらの検出出力に応じて、膨張
弁3の開度が調整される。
In the first embodiment of the present invention,
A first sensor 2 for detecting the temperature and pressure at the outlet of the gas cooler 52 as a control device; a second sensor 4 for detecting pressure and temperature at the outlet of the evaporator 54;
And a third sensor 1 for detecting the temperature of the outlet of the third sensor. The detection outputs of the first to third sensors 2, 4, 1 are:
The opening of the expansion valve 3 is adjusted according to these detection outputs as input to the control circuit 5.

【0029】ここで、本発明者は、前記したように、C
では、従来の冷媒に比べて過熱度を大きくとっても
冷凍能力、成績係数が大きくなることが実験で確認でき
ている。このことを利用して能力不足のときは、過熱度
を増やす制御をする。
Here, as described above, the present inventor
In O 2, largely take refrigerating capacity superheat as compared with the conventional refrigerant, that the coefficient of performance increases are confirmed by experiments. By utilizing this, when the capacity is insufficient, the control for increasing the degree of superheat is performed.

【0030】具体的に、本発明の第1の実施の形態によ
る制御回路5は、第1及び第2のセンサーの出力によっ
て、現在の冷媒の状態をおおよそ把握する。アイドリン
グ時などによって、ガスクーラ52の出口温度が上昇し
た場合は、圧力が充分高い場合は、問題無いが、冷凍能
力不足をあらかじめ入力してあるデータから検出して、
膨張弁3にフィードバックさせる。即ち、膨張弁3を絞
り込み、過熱度を多く付ける制御を行う。
Specifically, the control circuit 5 according to the first embodiment of the present invention roughly grasps the current state of the refrigerant based on the outputs of the first and second sensors. When the outlet temperature of the gas cooler 52 rises due to idling or the like, if the pressure is sufficiently high, there is no problem, but the refrigeration capacity shortage is detected from data input in advance,
The feedback is made to the expansion valve 3. That is, control is performed to narrow down the expansion valve 3 and increase the degree of superheat.

【0031】また、第3のセンサーは、コンプレッサー
51の吐出温度が、例えば、潤滑油が劣化する直前の温
度のような一定の制限値を越えた場合、膨張弁3の操作
を停止するための安全装置である。
The third sensor is provided for stopping the operation of the expansion valve 3 when the discharge temperature of the compressor 51 exceeds a certain limit value, for example, the temperature immediately before the deterioration of the lubricating oil. It is a safety device.

【0032】図2は図1の制御装置の動作を示すフロー
チャートである。図2に示すように、ガス冷却器52の
出口の温度が、第1のセンサ2によって、検出される
(ステップS1)。次に、ガス冷却器の出口圧力が第1
のセンサ2によって、検出される(ステップS2)。次
に,蒸発器54の出口の温度が第2のセンサ4によっ
て、検出される(ステップS3)。次に,蒸発器54の
出口の圧力が第2のセンサ4によって検出される(ステ
ップS4)。これらの検出出力に基づいて、制御回路5
は、冷凍能力を算出し、予め設定された目標値より小さ
いか否かを判断する(ステップS5)。この場合、算出
された冷凍能力が目標値以上である場合には、ステップ
S1段階へと戻る。
FIG. 2 is a flowchart showing the operation of the control device of FIG. As shown in FIG. 2, the temperature at the outlet of the gas cooler 52 is detected by the first sensor 2 (Step S1). Next, the outlet pressure of the gas cooler becomes the first pressure.
(Step S2). Next, the temperature at the outlet of the evaporator 54 is detected by the second sensor 4 (step S3). Next, the pressure at the outlet of the evaporator 54 is detected by the second sensor 4 (Step S4). On the basis of these detection outputs, the control circuit 5
Calculates the refrigerating capacity and determines whether or not it is smaller than a preset target value (step S5). In this case, if the calculated refrigerating capacity is equal to or more than the target value, the process returns to step S1.

【0033】一方、目標値よりも算出された冷凍能力が
小さい場合には、膨張弁を絞るように、制御回路5は制
御する(ステップS6)。
On the other hand, if the calculated refrigerating capacity is smaller than the target value, the control circuit 5 controls the expansion valve to be throttled (step S6).

【0034】次に、圧縮機の吐出温度が第3のセンサ1
によって検出される(ステップS7)。この場合、吐出
温度が予め定められた上限値以上である場合には、再び
ステップS1段階に戻る。一方、吐出温度が上限値より
も高い場合には、膨張弁3を開くように制御回路は制御
する(ステップS9)。以上の動作が繰り返される。
Next, the discharge temperature of the compressor is measured by the third sensor 1.
(Step S7). In this case, if the discharge temperature is equal to or higher than the predetermined upper limit, the process returns to step S1 again. On the other hand, if the discharge temperature is higher than the upper limit, the control circuit controls the expansion valve 3 to open (step S9). The above operation is repeated.

【0035】次に、本発明の第2の実施の形態による冷
凍回路の制御についてさらに、具体的に説明する。
Next, the control of the refrigeration circuit according to the second embodiment of the present invention will be described more specifically.

【0036】図3乃至7は低圧側の圧力を一定にした制
御の説明に供せられる図である。
FIGS. 3 to 7 are views for explaining the control in which the pressure on the low pressure side is kept constant.

【0037】図4に示すように、同じ条件においては、
COの方が従来技術による冷媒R134aよりも、冷
凍能力の圧縮機回転数依存率が大きい。
As shown in FIG. 4, under the same conditions,
Towards CO 2 than R134a refrigerant according to the prior art, a large compressor speed dependent ratio of refrigerating capacity.

【0038】本発明の第2の実施の形態においては、過
熱度の制御ではなく、圧力制御を行う。どの回転数でも
蒸発圧力が約35kg/cm(3.43MPa、0
℃)になるように、膨張弁開度を調整する。但し、通常
運転時の過熱度が望まれる過熱度になるように設定して
おく。
In the second embodiment of the present invention, pressure control is performed instead of superheat control. At any rotation speed, the evaporation pressure is about 35 kg / cm 2 (3.43 MPa, 0
° C). However, the degree of superheat during normal operation is set so as to be a desired degree of superheat.

【0039】つまり、図3の例においては、中速時の過
熱度が10Kになるようにして、蒸発圧力を回転数が変
化しても約35kg/cm(3.43MPa、0℃)
となるように制御するものである。
That is, in the example of FIG. 3, the superheat degree at the medium speed is set to 10K, and the evaporation pressure is changed to about 35 kg / cm 2 (3.43 MPa, 0 ° C.) even when the rotation speed is changed.
It is controlled so that

【0040】このような膨張弁3を使うと,図3に示す
ようなサイクルになることを実験により確認した。
Experiments have confirmed that the use of such an expansion valve 3 results in a cycle as shown in FIG.

【0041】つまり、図5の曲線43に示すように、従
来技術によるものは、過熱度の回転数依存性は、殆どみ
られないが、図5の曲線44に示すように、本発明にお
いては、中速時に過熱度10Kで運転したものが、回転
数が下がると過熱度(SH)が増加する。反対に回転数
が上がれば、過熱度(SH)が低下する。この結果、本
発明の目的である、アイドリング時に過熱度を大きくす
る効果が得られる。
That is, as shown by the curve 43 in FIG. 5, in the prior art, the dependence of the degree of superheat on the rotation speed is hardly observed, but as shown by the curve 44 in FIG. When the engine is operated at a superheat degree of 10K at a medium speed, the superheat degree (SH) increases as the rotational speed decreases. Conversely, if the rotation speed increases, the degree of superheat (SH) decreases. As a result, the effect of increasing the degree of superheating during idling, which is the object of the present invention, can be obtained.

【0042】尚、図6に示すように、低圧一定制御を行
った場合、冷凍能力は圧縮機の回転数に依存するが、高
速になるとその増加の割合は、曲線46に示される従来
技術によるものよりも減少する(曲線45)。また、図
7に示すように、COP(成績係数)は低圧一定制御を
行った場合、従来技術によるものは、線48に示される
ように、変動が少ないが、本発明によるものは、中程度
の回転数(約1200rpm)において、最大となる。
As shown in FIG. 6, when the low pressure constant control is performed, the refrigerating capacity depends on the number of revolutions of the compressor. Less than the one (curve 45). As shown in FIG. 7, when the constant low pressure control is performed, the COP (coefficient of performance) according to the related art has a small variation as indicated by a line 48, while the COP (coefficient of performance) according to the present invention has a medium level. At the rotation speed (about 1200 rpm).

【0043】また、膨張弁3は,開度を固定したもので
あれば良いと考えられるが、あくまで圧力を一定に保つ
ものでないと、好ましい効果が得られないので、本発明
の第2の実施の形態においては、開度を調節したものを
用いている。
It is considered that the expansion valve 3 only needs to have a fixed opening degree. However, unless the pressure is kept constant, a desirable effect cannot be obtained. In the embodiment, the one whose opening is adjusted is used.

【0044】また、図5に示すように、どんどん高い回
転になっていた場合、過熱度が0になり、コンプレッサ
ーに液冷媒が戻り液圧縮による損傷を招くことが考えら
れるが、本発明では、このような危険が考えられる場合
には、コンプレッサー内部容積が変化する可変容量コン
プレッサーを用いると良い。
Further, as shown in FIG. 5, when the rotation speed becomes higher and higher, the degree of superheat becomes zero, and the liquid refrigerant returns to the compressor and may be damaged by the liquid compression. When such a danger is considered, it is preferable to use a variable displacement compressor in which the internal volume of the compressor changes.

【0045】図8は本発明の第2の実施の形態による冷
凍回路の制御装置としての膨張弁の一例を示す断面図で
ある。図8を参照すると、膨張弁3は、弁筐体3a、3
b内に配置された弁本体11aと弁ロッド11bと、弁
ロッド11bを支持する支持部材11cとを備えた弁部
材と、筐体3b内空間に設けられたリング状のばね支持
部15と、ばね支持部15と支持部材11c間に設けら
れ、弁部材を上方に移動するように付勢するコイルバネ
16と、支持部材11cに当接するように設けられた、
ダイヤフラム17と、ダイヤフラム17を下方に付勢す
るように設けられたコイルバネ19とを備えている。弁
座部13の外側の空間は、配管3cを介してガスクーラ
(ガス冷却器)52に接続されており、一方、膨張弁3
の内部空間14は、エバポレータ(蒸発器)54に接続
されている。
FIG. 8 is a sectional view showing an example of an expansion valve as a control device of a refrigeration circuit according to a second embodiment of the present invention. Referring to FIG. 8, the expansion valve 3 includes valve housings 3a and 3a.
b, a valve member including a valve body 11a, a valve rod 11b, and a support member 11c for supporting the valve rod 11b; a ring-shaped spring support portion 15 provided in a space inside the housing 3b; A coil spring 16 provided between the spring support portion 15 and the support member 11c to urge the valve member to move upward; and a coil spring 16 provided to contact the support member 11c.
The diaphragm 17 includes a coil spring 19 provided to urge the diaphragm 17 downward. The space outside the valve seat 13 is connected to a gas cooler (gas cooler) 52 via a pipe 3c.
The internal space 14 is connected to an evaporator (evaporator) 54.

【0046】内部空間14の圧力が高くなると、ダイヤ
フラム17を、バネ19の抗力に打ち勝ち上方に押し上
げる。このために、弁が閉成するので、予め定められた
圧力以下にエバポレータ54の入り口の圧力を制御する
ことができる。このため、バネ19は、35kg/cm
(3.43MPa)以上の圧力を保つように、構成さ
れている。
When the pressure in the internal space 14 increases, the diaphragm 17 is pushed upward by overcoming the drag of the spring 19. For this reason, since the valve is closed, the pressure at the inlet of the evaporator 54 can be controlled to a predetermined pressure or less. For this reason, the spring 19 is 35 kg / cm
2 (3.43 MPa) or more.

【0047】図9(a)及び図9(b)は図8の膨張弁
の他の例を示す図であり、(a)は管の口径が絞られた
状態、(b)は管の口径が大きくなった状態を示してい
る。図9(a)及び(b)を参照すると、この種の弁
は、ワックスペレット型と呼ばれるものであり、金属、
例えば、真鍮製のコップ状をしたカプセル23内にゴム
ブーツ25を入れカプセル23とゴムブーツ25の間に
は、パラフィン状プラスチックスのワックス24が入れ
られており、カプセル23は、膨張の値の温度雰囲気に
さらされている。ゴムブーツ25の中には、ステンレス
製のテーパ棒状のピストン27がさし込まれており、カ
プセルの段付き部真鍮製の弁が取り付けられ、スプリン
グ26で上方に付勢されている。
FIGS. 9A and 9B are diagrams showing another example of the expansion valve of FIG. 8, wherein FIG. 9A shows a state in which the diameter of the pipe is reduced, and FIG. Indicates a state where has become larger. Referring to FIGS. 9 (a) and 9 (b), this type of valve is called a wax pellet type, and is made of metal,
For example, a rubber boot 25 is placed in a capsule 23 made of a brass cup, and a wax 24 made of paraffin-like plastic is put between the capsule 23 and the rubber boot 25. Have been exposed to A stainless steel tapered rod-shaped piston 27 is inserted into the rubber boot 25, and a stepped portion made of brass is attached to the capsule, and is urged upward by a spring 26.

【0048】ここで、図9(a)の状態で、膨張液の温
度が降下する。つまり低圧側圧力が下がると、ワックス
24が収縮して、ゴムブーツ25が膨張し、テーパピス
トン27がブーツ25内部に挿入される状態となる。
Here, in the state shown in FIG. 9A, the temperature of the expanding liquid drops. That is, when the low pressure side pressure decreases, the wax 24 contracts, the rubber boot 25 expands, and the taper piston 27 is inserted into the boot 25.

【0049】しかし、ピストン27は固定されていて動
けないので、逆にカプセル23が上方に移動して、スプ
リング26によって、上昇し、図9(b)の状態とな
る。
However, since the piston 27 is fixed and cannot move, the capsule 23 moves upward and is moved upward by the spring 26 to reach the state shown in FIG. 9B.

【0050】一方、図9(b)の状態で、膨張後の温度
が高くなると、ワックス24が膨張して、ゴムブーツ2
5が圧縮され、テーパピストン27が押し出される状態
となる。しかし、ピストン27は固定されていて動けな
いので、逆にカプセル23が押し出され、スプリング2
6を圧縮して、下降する。これは、温度を検出して、低
圧を一定に制御する方法である。
On the other hand, in the state shown in FIG. 9B, when the temperature after expansion increases, the wax 24 expands and the rubber boot 2 expands.
5 is compressed, and the taper piston 27 is pushed out. However, since the piston 27 is fixed and cannot move, the capsule 23 is pushed out and the spring 2
Compress 6 and descend. This is a method of detecting the temperature and controlling the low pressure to be constant.

【0051】なお、カプセル23が降下した場合におい
ても、カプセル23と配管の壁部との間に隙間ができる
ように構成されている。
It should be noted that, even when the capsule 23 descends, a gap is formed between the capsule 23 and the wall of the pipe.

【0052】図10(a)及び図10(b)は図8の膨
張弁のもう一つの他の例を示す図である。図10(a)
及び図10(b)に示すように、膨張弁30は、筐体3
0aと、筐体30a内に収容された弁部材と、弁部材を
支持する支持部材32と、筐体30a上部を封じるウレ
タンフォーム等の断熱材からなる蓋部材34cとを備え
ている。弁部材は、弁本体31aと、ロッド31bと、
このロッド31bの一端に設けられた支持部31cとを
備えている。支持部31cの一面は、ダイアフラム34
aに接触しており、ダイアフラムと蓋部材34cとの間
には、冷凍回路に用いられる冷媒と同一の効果を有する
液体又はワックス34b等が封入されている。ダイヤフ
ラム34aの一面には、支持部31cの一端が接触して
おり、弁本体31aを上方に移動するように、ダイヤフ
ラム34aを押し上げるように、即ち、弁本体31aを
上昇させるように、付勢するコイルバネ33が支持部材
32とダイヤフラム34a間に設けられている。筐体3
0aに設けられた2つのポート30b,30cは、図8
の場合と同様に、夫々ガスクーラ52及び蒸発器54に
夫々接続されている。
FIGS. 10A and 10B show another example of the expansion valve of FIG. FIG. 10 (a)
As shown in FIG. 10B, the expansion valve 30 is
0a, a valve member housed in the housing 30a, a support member 32 for supporting the valve member, and a lid member 34c made of a heat insulating material such as urethane foam for sealing the upper portion of the housing 30a. The valve member includes a valve body 31a, a rod 31b,
And a support portion 31c provided at one end of the rod 31b. One surface of the support portion 31c is
a, and a liquid or wax 34b having the same effect as the refrigerant used in the refrigeration circuit is sealed between the diaphragm and the lid member 34c. One end of the support portion 31c is in contact with one surface of the diaphragm 34a, and urges the valve body 31a upward so as to push up the diaphragm 34a, that is, to raise the valve body 31a. A coil spring 33 is provided between the support member 32 and the diaphragm 34a. Case 3
The two ports 30b and 30c provided on the port 0a
As in the case of, they are connected to the gas cooler 52 and the evaporator 54, respectively.

【0053】図10(a)の状態において、膨張後の温
度降下すると、つまり圧力が下がると筐体30a上部に
封入されたワックス34bが収縮し、バネ31cの作用
によって、ダイヤフラム34aを上方に押し上げる。す
ると、図10(b)に示すように、弁座部の穴部35と
弁本体31aとの隙間が大きくなり、ポート30bから
吐出する流体の圧力が上昇する。
In the state of FIG. 10 (a), when the temperature drops after expansion, that is, when the pressure drops, the wax 34b sealed in the upper part of the housing 30a contracts, and the diaphragm 31a is pushed upward by the action of the spring 31c. . Then, as shown in FIG. 10B, the gap between the hole 35 of the valve seat and the valve body 31a increases, and the pressure of the fluid discharged from the port 30b increases.

【0054】一方、逆に図10(b)の状態において、
膨張後、冷媒温度が上昇すると、つまり圧力が上がると
筐体30a上部に封入されたワックス34bが膨張し、
ダイアフラム34aが下方に凸になるように、変形し、
弁部材を押し下げる。従って、図10(b)に示すよう
に、弁部材が上昇し、弁本体31aと穴部35との隙間
が広くなり、従って、再び吐出される流体の圧力は降下
する。つまりこれも図9と同様に、低圧圧力の一定制御
である。
On the other hand, in the state shown in FIG.
After the expansion, when the refrigerant temperature rises, that is, when the pressure rises, the wax 34b sealed in the upper part of the housing 30a expands,
The diaphragm 34a is deformed so as to be convex downward,
Push down the valve member. Therefore, as shown in FIG. 10 (b), the valve member rises, the gap between the valve body 31a and the hole 35 widens, and the pressure of the fluid to be discharged again drops. That is, similarly to FIG. 9, this is a constant control of the low pressure.

【0055】以上説明した本発明の実施の形態において
は、圧縮機として、密閉式電動コンプレッサーを用いる
こともできるが、勿論、従来の開放型コンプレッサーで
も好ましい結果が得られる。
In the embodiment of the present invention described above, a hermetic electric compressor can be used as the compressor, but of course, a favorable result can be obtained with a conventional open type compressor.

【0056】[0056]

【発明の効果】以上説明したように、本発明によれば、
特に、アイドリング時の能力不足が改善できる冷凍回路
の制御装置を提供することができる。
As described above, according to the present invention,
In particular, it is possible to provide a control device for a refrigeration circuit that can improve the capacity shortage during idling.

【0057】また、本発明によれば、能力制御方法とし
て冷媒充填量を増減させる方法があるが、そのような場
合に伴う複雑な部品はいらない簡単な構成で且つ簡単な
方法で容易に能力を制御することができる冷凍回路の制
御装置を提供することができる。
Further, according to the present invention, there is a method of controlling the capacity of the refrigerant as a capacity control method. However, the capacity can be easily increased by a simple structure without a complicated component required in such a case. A control device for a refrigeration circuit that can be controlled can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態による空気調和装置
の超臨界冷凍回路の構成を示すブロック図である。
FIG. 1 is a block diagram illustrating a configuration of a supercritical refrigeration circuit of an air conditioner according to a first embodiment of the present invention.

【図2】図1の制御装置の動作を示すフローチャートで
ある。
FIG. 2 is a flowchart showing an operation of the control device of FIG.

【図3】低圧側の圧力を一定にした制御の説明に供せら
れる図である。
FIG. 3 is a diagram which is used for describing control in which the pressure on the low pressure side is kept constant.

【図4】低圧側の圧力を一定にした制御の説明に供せら
れる図である。
FIG. 4 is a diagram which is used for describing control in which the pressure on the low pressure side is kept constant.

【図5】低圧側の圧力を一定にした制御の説明に供せら
れる図である。
FIG. 5 is a diagram which is used for describing control in which the pressure on the low pressure side is kept constant.

【図6】低圧側の圧力を一定にした制御の説明に供せら
れる図である。
FIG. 6 is a diagram which is used for describing control in which the pressure on the low pressure side is kept constant.

【図7】低圧側の圧力を一定にした制御の説明に供せら
れる図である。
FIG. 7 is a diagram which is used for describing control in which the pressure on the low pressure side is kept constant.

【図8】本発明の第2の実施の形態による冷凍回路の制
御装置としての膨張弁の一例を示す断面図である。
FIG. 8 is a cross-sectional view illustrating an example of an expansion valve as a control device of a refrigeration circuit according to a second embodiment of the present invention.

【図9】図8の膨張弁の他の例を示す断面図であり、
(a)は管の口径が絞られた状態、(b)は管の口径が
大きくなった状態を示している。
9 is a sectional view showing another example of the expansion valve of FIG. 8,
(A) shows a state where the diameter of the pipe is reduced, and (b) shows a state where the diameter of the pipe is increased.

【図10】(a)及び(b)は図8の膨張弁のもう一つ
の他の例を示す断面図である。
FIGS. 10 (a) and (b) are cross-sectional views showing another example of the expansion valve of FIG. 8;

【図11】従来技術による空気調和装置の冷凍回路の概
略を示す図である。
FIG. 11 is a diagram schematically showing a refrigeration circuit of an air conditioner according to the related art.

【図12】過熱度を制御した検証実験の説明に供せられ
る図である。
FIG. 12 is a diagram that is used for describing a verification experiment in which the degree of superheat is controlled.

【図13】従来技術における過熱度を多く取れるように
制御する方法を示す図である。
FIG. 13 is a diagram showing a method for controlling so as to obtain a large degree of superheat in the related art.

【符号の説明】[Explanation of symbols]

1 第3のセンサー 2 第1のセンサー 3 膨張弁 3a,3b 弁筐体 3c 配管 4 第2のセンサー 5 制御回路 10 冷凍回路 11a 弁本体 11b 弁ロッド 11c 支持部材 13 弁座部 14 内部空間 15 ばね支持部 16 コイルバネ 17 ダイヤフラム 19 コイルバネ 23 カプセル 24 ワックス 25 ゴムブーツ 26 スプリング 27 ピストン 30 膨張弁 30a 筐体 30b,30c ポート 31a 弁本体 31b ロッド 31c 支持部 32 支持部材 33 コイルバネ 34 蓋部材 34a ダイアフラム 34b ワックス 34c 蓋部材 51 圧縮機(コンプレッサー) 52 凝縮器(ガスクーラ) 53 絞り手段(膨張弁) 54 蒸発器(エバポレータ) 55a,55b,55c,55d 配管 DESCRIPTION OF SYMBOLS 1 3rd sensor 2 1st sensor 3 Expansion valve 3a, 3b Valve housing 3c Piping 4 2nd sensor 5 Control circuit 10 Refrigeration circuit 11a Valve main body 11b Valve rod 11c Support member 13 Valve seat part 14 Internal space 15 Spring Supporting part 16 Coil spring 17 Diaphragm 19 Coil spring 23 Capsule 24 Wax 25 Rubber boot 26 Spring 27 Piston 30 Expansion valve 30a Housing 30b, 30c Port 31a Valve body 31b Rod 31c Supporting part 32 Supporting member 33 Coil spring 34 Capping member 34a Diaphragm 34a Diaphragm Member 51 Compressor (compressor) 52 Condenser (gas cooler) 53 Throttling means (expansion valve) 54 Evaporator (evaporator) 55a, 55b, 55c, 55d Piping

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 CO冷媒を用い圧縮機、ガス冷却器、
膨張弁、及び蒸発器をこの順に配管によって接続し、前
記圧縮機から前記膨張弁までを高圧側、前記膨張弁から
前記圧縮機までを低圧側とし、前記高圧側が臨界圧力で
運転される蒸気圧縮型空気調和装置の冷凍回路の過熱度
制御装置において、過熱度を多く取ることによって能力
不足を補うことを特徴とする冷凍回路の過熱度制御装
置。
1. A compressor, a gas cooler using CO 2 refrigerant,
An expansion valve and an evaporator are connected in this order by piping, a high pressure side from the compressor to the expansion valve, a low pressure side from the expansion valve to the compressor, and a vapor compression in which the high pressure side is operated at a critical pressure. A superheat degree control device for a refrigeration circuit of a refrigeration circuit of a type air conditioner, wherein the superheat degree is compensated for by increasing the degree of superheat.
【請求項2】 請求項1記載の冷凍回路の過熱度制御装
置において、前記能力不足か否かの検知を、前記ガス冷
却器の出口温度に基づいて行うことを特徴とする冷凍回
路の過熱度制御装置。
2. A superheat degree control system for a refrigeration circuit according to claim 1, wherein the detection of whether or not the capacity is insufficient is performed based on an outlet temperature of the gas cooler. Control device.
【請求項3】 請求項1又は2記載の冷凍回路の過熱度
制御装置において、前記過熱度の制御は、前記膨張弁で
行うことを特徴とする冷凍回路の過熱度制御装置。
3. The superheat control device for a refrigeration circuit according to claim 1, wherein the control of the superheat is performed by the expansion valve.
【請求項4】 請求項3記載の冷凍回路の過熱度制御装
置において、前記膨張弁は、電子制御式膨張弁又は機械
式膨張弁からなることを特徴とする冷凍回路の過熱度制
御装置。
4. The superheat control apparatus for a refrigeration circuit according to claim 3, wherein said expansion valve comprises an electronically controlled expansion valve or a mechanical expansion valve.
【請求項5】 請求項1乃至4の内のいずれかに記載の
冷凍回路の過熱度制御装置において、前記過熱度は前記
蒸発器の出口の過熱度であり、前記蒸発器の出口温度に
基づいて前記膨張弁の弁開度の制御を行うことを特徴と
する冷凍回路の過熱度制御装置。
5. The superheat control device for a refrigeration circuit according to claim 1, wherein the superheat is a superheat at an outlet of the evaporator, and is based on an outlet temperature of the evaporator. Controlling the degree of opening of the expansion valve by controlling the degree of superheating of the refrigeration circuit.
【請求項6】 請求項1乃至5の内のいずれかに記載の
冷凍回路の過熱度制御装置において、吐出温度が、オイ
ルの劣化やそのほか考えられる不具合を招く温度になる
と、信号を送り過熱度を下げるように制御する吐出温度
保護手段を備えていることを特徴とする冷凍回路の過熱
度制御装置。
6. A superheat control apparatus for a refrigeration circuit according to claim 1, wherein a signal is sent when the discharge temperature reaches a temperature at which oil deterioration or other possible troubles occur. A superheat degree control device for a refrigeration circuit, comprising discharge temperature protection means for controlling so as to lower the temperature.
【請求項7】 請求項1乃至6の内のいずれかに記載の
冷凍回路の過熱度制御装置において、前記低圧側の圧力
を一定に保つ制御を行うことを特徴とする冷凍回路の過
熱度制御装置。
7. The superheat control apparatus for a refrigeration circuit according to claim 1, wherein control is performed to keep the pressure on the low-pressure side constant. apparatus.
【請求項8】 請求項1乃至7の内のいずれかに記載の
冷凍回路の過熱度制御装置において、前記圧縮機は可変
容量コンプレッサーからなることを特徴とする冷凍回路
の過熱度制御装置。
8. The superheat control apparatus for a refrigeration circuit according to claim 1, wherein said compressor comprises a variable capacity compressor.
JP32942999A 1999-11-19 1999-11-19 Superheat extent controller for refrigeration circuit Pending JP2001147048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32942999A JP2001147048A (en) 1999-11-19 1999-11-19 Superheat extent controller for refrigeration circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32942999A JP2001147048A (en) 1999-11-19 1999-11-19 Superheat extent controller for refrigeration circuit

Publications (1)

Publication Number Publication Date
JP2001147048A true JP2001147048A (en) 2001-05-29

Family

ID=18221299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32942999A Pending JP2001147048A (en) 1999-11-19 1999-11-19 Superheat extent controller for refrigeration circuit

Country Status (1)

Country Link
JP (1) JP2001147048A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1369648A3 (en) * 2002-06-04 2004-02-04 Sanyo Electric Co., Ltd. Supercritical refrigerant cycle system
EP1586836A2 (en) * 2004-04-12 2005-10-19 Lg Electronics Inc. Cooling cycle apparatus and method of controlling linear expansion valve of the same
NL1026728C2 (en) * 2004-07-26 2006-01-31 Antonie Bonte Improvement of cooling systems.
JP2006275428A (en) * 2005-03-29 2006-10-12 Tgk Co Ltd Temperature differential pressure sensing valve
EP1930670A1 (en) * 2006-12-08 2008-06-11 Valeo Systèmes Thermiques Expansion body associating two temperature sensors of a coolant fluid designed to be placed at the intake and output of a gas cooler
EP2021705A1 (en) * 2006-06-01 2009-02-11 Carrier Corporation System and method for controlled expansion valve adjustment
FR2928445A1 (en) * 2008-03-06 2009-09-11 Valeo Systemes Thermiques Expansion member controlling method for heating, ventilating and/or air conditioning installation of motor vehicle, involves considering information of overheat at evaporator exit for controlling member to calculate value of passage section
KR101106537B1 (en) 2004-12-17 2012-01-20 한라공조주식회사 Supercritical refrigerant system for vehicle
CN103808052A (en) * 2012-11-05 2014-05-21 Lg电子株式会社 Turbo chiller
CN106196787A (en) * 2016-07-11 2016-12-07 珠海格力电器股份有限公司 Control method of heat pump system and heat pump system
WO2019113094A1 (en) * 2017-12-06 2019-06-13 Johnson Controls Technology Company Control system and a control method for a hvac unit and a media comprising such processor-executable instructions
WO2019133720A1 (en) * 2017-12-29 2019-07-04 Johnson Controls Technology Company A heating, ventilation, and air conditioning system, and a mehtod of operating a vapor compression system
CN112503811A (en) * 2020-12-10 2021-03-16 珠海格力电器股份有限公司 Control method of electronic expansion valve and heat pump system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7143595B2 (en) 2002-06-04 2006-12-05 Sanyo Electric Co., Ltd. Supercritical refrigerant cycle system
EP1369648A3 (en) * 2002-06-04 2004-02-04 Sanyo Electric Co., Ltd. Supercritical refrigerant cycle system
EP1586836A2 (en) * 2004-04-12 2005-10-19 Lg Electronics Inc. Cooling cycle apparatus and method of controlling linear expansion valve of the same
EP1586836A3 (en) * 2004-04-12 2012-01-11 LG Electronics, Inc. Cooling cycle apparatus and method of controlling linear expansion valve of the same
NL1026728C2 (en) * 2004-07-26 2006-01-31 Antonie Bonte Improvement of cooling systems.
KR101106537B1 (en) 2004-12-17 2012-01-20 한라공조주식회사 Supercritical refrigerant system for vehicle
JP2006275428A (en) * 2005-03-29 2006-10-12 Tgk Co Ltd Temperature differential pressure sensing valve
US8196421B2 (en) 2006-06-01 2012-06-12 Carrier Corporation System and method for controlled expansion valve adjustment
EP2021705A1 (en) * 2006-06-01 2009-02-11 Carrier Corporation System and method for controlled expansion valve adjustment
EP2021705A4 (en) * 2006-06-01 2012-05-09 Carrier Corp System and method for controlled expansion valve adjustment
EP1930670A1 (en) * 2006-12-08 2008-06-11 Valeo Systèmes Thermiques Expansion body associating two temperature sensors of a coolant fluid designed to be placed at the intake and output of a gas cooler
FR2909752A1 (en) * 2006-12-08 2008-06-13 Valeo Systemes Thermiques RELAXATION BODY ASSOCIATING TWO TEMPERATURE SENSORS OF A REFRIGERANT FLUID WHICH ARE INTENDED TO BE RESPECTIVELY PLACED INTO AND OUT OF A GAS COOLER.
FR2928445A1 (en) * 2008-03-06 2009-09-11 Valeo Systemes Thermiques Expansion member controlling method for heating, ventilating and/or air conditioning installation of motor vehicle, involves considering information of overheat at evaporator exit for controlling member to calculate value of passage section
CN103808052A (en) * 2012-11-05 2014-05-21 Lg电子株式会社 Turbo chiller
CN103808052B (en) * 2012-11-05 2016-08-31 Lg电子株式会社 turbo refrigerating machine
CN106196787A (en) * 2016-07-11 2016-12-07 珠海格力电器股份有限公司 Control method of heat pump system and heat pump system
CN106196787B (en) * 2016-07-11 2018-11-13 珠海格力电器股份有限公司 Control method of heat pump system and heat pump system
WO2019113094A1 (en) * 2017-12-06 2019-06-13 Johnson Controls Technology Company Control system and a control method for a hvac unit and a media comprising such processor-executable instructions
US11340002B2 (en) 2017-12-06 2022-05-24 Johnson Controls Tyco IP Holdings LLP Expansion device control system for heating, ventilation, and air conditioning (HVAC) unit
WO2019133720A1 (en) * 2017-12-29 2019-07-04 Johnson Controls Technology Company A heating, ventilation, and air conditioning system, and a mehtod of operating a vapor compression system
US10955179B2 (en) 2017-12-29 2021-03-23 Johnson Controls Technology Company Redistributing refrigerant between an evaporator and a condenser of a vapor compression system
CN112503811A (en) * 2020-12-10 2021-03-16 珠海格力电器股份有限公司 Control method of electronic expansion valve and heat pump system

Similar Documents

Publication Publication Date Title
KR100360006B1 (en) Transcritical vapor compression cycle
JP3858297B2 (en) Pressure control valve and vapor compression refrigeration cycle
EP1974171B1 (en) Refrigerant vapor compression system with flash tank receiver
JP3990186B2 (en) High pressure side pressure control method and circuit device in supercritical vapor compression circuit
US20100023166A1 (en) Free-cooling limitation control for air conditioning systems
JP2001147048A (en) Superheat extent controller for refrigeration circuit
JP2007139208A (en) Expansion valve for refrigerating cycle
JP4207235B2 (en) Vapor compression refrigeration cycle
US10731904B2 (en) Air conditioner
JP4599190B2 (en) Flow rate adjusting device and air conditioner
JP2000346466A (en) Vapor compression type refrigerating cycle
JP2010101552A (en) Gas injection refrigeration system
EP3604970B1 (en) Air-conditioning device, railway vehicle air-conditioning device, and method for controlling air-conditioning device
JP2006308230A (en) Refrigerating cycle control device
JP2002228282A (en) Refrigerating device
JP2007155143A (en) Refrigerating device
JP2008096072A (en) Refrigerating cycle device
JP2021055917A (en) Heat source unit and refrigeration unit
US20170299240A1 (en) Electronic expansion valve superheat recovery for a variable speed compressor system
JP4015171B2 (en) Refrigerant condenser
JP3528433B2 (en) Vapor compression refrigeration cycle
WO2023166724A1 (en) Refrigeration cycle device
WO2024218939A1 (en) Air conditioner
JPH0854148A (en) Refrigerating device
JP2000346498A (en) Pressure control valve for vapor compression type refrigerating cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100120