JPH0854148A - Refrigerating device - Google Patents

Refrigerating device

Info

Publication number
JPH0854148A
JPH0854148A JP18937194A JP18937194A JPH0854148A JP H0854148 A JPH0854148 A JP H0854148A JP 18937194 A JP18937194 A JP 18937194A JP 18937194 A JP18937194 A JP 18937194A JP H0854148 A JPH0854148 A JP H0854148A
Authority
JP
Japan
Prior art keywords
pressure
temperature
pilot
passage
discharge gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18937194A
Other languages
Japanese (ja)
Inventor
Kenji Kinoue
憲嗣 紀ノ上
Yasushi Omichi
康史 大道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP18937194A priority Critical patent/JPH0854148A/en
Publication of JPH0854148A publication Critical patent/JPH0854148A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To expand the range of operation while improving the reliability of a refrigerating device by a method wherein the pilot pressure of a temperature sensitive expansion valve for liquid injection is controlled to reduce the superheating degree of discharged gas and secure the cooling of a compressor sufficiently, in an operation area wherein the discharged gas becomes high- pressure and high-temperature gas. CONSTITUTION:When the pressure of discharged gas or a pilot pressure taken into a pilot passage 72 has exceeded a set value, a pressure regulating valve 80 is opened and the pilot pressure is released to the side of low pressure through a communicating line 9 to increase the opening degree of the temperature sensitive expansion valve 7 while the amount of liquid injection is increased to reduce the degree of superheat of discharged gas whereby the increase of the temperature of discharged gas is restrained and the cooling of a compressor 1 can be secured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高圧液冷媒や高圧油等
の液体を、圧縮機における圧縮途上の中間圧力室にイン
ジェクションして、吐出ガスの過熱度を適正範囲に制御
するようにした冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is designed to inject a liquid such as a high-pressure liquid refrigerant or a high-pressure oil into an intermediate pressure chamber in the middle of compression in a compressor to control the degree of superheat of discharge gas within an appropriate range. Refrigeration equipment.

【0002】[0002]

【従来の技術】従来、特公昭63−25255号公報に
開示され且つ図4に示すように、スクリューロータRを
もつスクリュー型の圧縮機Sに、圧縮途上の中間圧力室
に開口するインジェクションポートMを備え、このイン
ジェクションポートMに、凝縮器Cと減圧機構Wとの間
の高圧液域Hから延びる液インジェクション通路Jを接
続して、この通路Jに、循環冷媒(例えばフロン22)
に対して同一圧力条件下で飽和温度の高い冷媒(例えば
フロン12)を内部に封入し、圧縮機Sの吐出ガス温度
を感受する感温筒Tと、圧縮機Sの吐出ガス圧力を取り
込むパイロット通路Pとをもつ感温膨張弁Vを介装して
いる。こうして、フロン22とフロン12との飽和温度
の差(約20deg)を、感温膨張弁Vの設定バネ力で
決まる通常の過熱度制御値5〜10degに加算し、吐
出ガスの過熱度を25〜30deg程度の所定値に制御
するようにしている。尚、図4中、Eは蒸発器である。
2. Description of the Related Art Conventionally, as shown in FIG. 4 of Japanese Patent Publication No. 63-25255 and shown in FIG. 4, a screw type compressor S having a screw rotor R is provided with an injection port M opening to an intermediate pressure chamber during compression. A liquid injection passage J extending from a high-pressure liquid region H between the condenser C and the pressure reducing mechanism W is connected to the injection port M, and a circulating refrigerant (for example, Freon 22) is connected to the passage J.
On the other hand, under the same pressure condition, a refrigerant having a high saturation temperature (for example, Freon 12) is enclosed inside, and a temperature sensing tube T that senses the discharge gas temperature of the compressor S, and a pilot that takes in the discharge gas pressure of the compressor S A temperature-sensitive expansion valve V having a passage P is interposed. In this way, the difference in saturation temperature between the freon 22 and the freon 12 (about 20 deg) is added to the normal superheat control value of 5 to 10 deg determined by the set spring force of the temperature expansion valve V, and the superheat of the discharge gas is set to 25. It is controlled to a predetermined value of about 30 deg. In addition, in FIG. 4, E is an evaporator.

【0003】[0003]

【発明が解決しようとする課題】吐出ガスの過熱度は、
スクリューロータR等の可動部材側と、その外周を覆う
ケーシング等の静止部材側との間の熱膨張差に基づいて
生じる焼き付きを防止すべき点、並びに、潤滑油による
潤滑性能を確保すべき点の両面から適正値に制御しなけ
ればならない。
The degree of superheat of the discharge gas is
The point that seizure caused by the difference in thermal expansion between the movable member side such as the screw rotor R and the stationary member side such as the casing that covers the outer periphery thereof should be prevented, and the lubricating performance by the lubricating oil should be ensured. Both sides must be controlled to proper values.

【0004】すなわち、可動部材と静止部材とで画成す
る圧縮室内の漏れを防止すべきことから、両部材間のシ
ール隙間は小さく管理され、両部材間に熱膨張の差が現
われると、その隙間に狂いが生じる。一般に、外気によ
って冷され易い外側の静止部材に対し、内部の可動部材
は高温になり易く、可動部材の大きな熱膨張により、そ
の外面が静止部材の内面に衝突することになる。このた
め、液冷媒や油を圧縮途上の中間圧力室に注入して可動
部材を冷し、吐出ガスの過熱度を一定以下に抑制して、
吐出ガス温度を下げる必要がある。一方、吐出ガスの過
熱度を余り小さくし過ぎると、吐出側にガスと共に流出
する油に冷媒が多く溶け込み、油の粘度が低下して油滴
の粒が細かくなり、油分離が困難になると共に、潤滑性
能が低下する恐れがある。従って、吐出ガスの過熱度
は、大き過ぎても小さ過ぎても良く無く、25deg程
度にするのが好ましいのである。
That is, since it is necessary to prevent leakage in the compression chamber defined by the movable member and the stationary member, the seal gap between both members is controlled to be small, and when a difference in thermal expansion appears between the two members, A gap occurs in the gap. In general, a movable member inside is easily heated to a temperature higher than that of an outer stationary member that is easily cooled by the outside air, and a large thermal expansion of the movable member causes an outer surface of the movable member to collide with an inner surface of the stationary member. Therefore, liquid refrigerant or oil is injected into the intermediate pressure chamber during compression to cool the movable member, and the degree of superheat of the discharged gas is suppressed below a certain level,
It is necessary to lower the discharge gas temperature. On the other hand, if the superheat degree of the discharge gas is made too small, a large amount of the refrigerant dissolves in the oil flowing out to the discharge side together with the gas, the viscosity of the oil decreases, the oil droplets become finer, and oil separation becomes difficult. , The lubrication performance may decrease. Therefore, the degree of superheat of the discharged gas does not have to be too large or too small, and is preferably about 25 deg.

【0005】上記従来例では、フロン22とフロン12
との飽和温度の差を、感温膨張弁Vの通常の過熱度制御
値に加算し、吐出ガスの過熱度を25〜30deg程度
の所定値に制御しようとしており、焼き付きの防止及び
潤滑性能の確保の両面を満たしているように一見思われ
る。
In the above conventional example, the CFC 22 and CFC 12 are
Is added to the normal superheat control value of the temperature-sensitive expansion valve V to control the superheat of the discharge gas to a predetermined value of about 25 to 30 deg. At first glance, it seems to satisfy both sides of securing.

【0006】しかしながら、実際には、図3に示すよう
に、パイロット通路に取り込む循環冷媒(フロン22)
と感温筒に封入する冷媒(フロン12)との飽和温度差
は、広い運転範囲内において常に一定値を示すものでは
なく、圧力が高くなるほどその温度差が大きくなる傾向
にあるし、又、吐出ガスが高圧高温になって外気との温
度差が大きくなるほど、感温筒自身やその取付部等の放
熱量が増えて、感温筒が実際に感受する温度が低くなっ
てしまう。このため、これら循環冷媒と感温筒封入冷媒
との飽和温度差の狂い並びに感温筒の放熱の影響によっ
て、吐出ガスが高圧高温となる運転領域で、過熱度が必
要以上に大きくなり過ぎ、圧縮機の冷却が不十分となっ
て、その信頼性が低下し、広い運転範囲をカバーするこ
とができない問題がある。特に、一般空調システムより
も広い吐出圧力範囲をもつ給湯チラーシステム等で、こ
の問題が顕著になる。
However, in practice, as shown in FIG. 3, the circulating refrigerant (CFC 22) taken into the pilot passage.
The saturation temperature difference between the refrigerant and the refrigerant (Freon 12) sealed in the temperature sensing cylinder does not always show a constant value in a wide operating range, and the temperature difference tends to increase as the pressure increases, and The higher the pressure of the discharged gas becomes and the larger the temperature difference from the outside air becomes, the more the heat radiation amount of the temperature sensing tube itself or its mounting portion increases, and the temperature actually sensed by the temperature sensing tube becomes lower. Therefore, due to the deviation of the saturation temperature difference between these circulating refrigerant and the temperature-sensing cylinder-enclosed refrigerant and the effect of heat radiation of the temperature-sensing cylinder, in the operating region where the discharge gas has a high pressure and high temperature, the degree of superheat becomes unnecessarily large, There is a problem that the compressor is not sufficiently cooled, its reliability is lowered, and a wide operating range cannot be covered. In particular, this problem becomes remarkable in a hot water chiller system having a discharge pressure range wider than that of a general air conditioning system.

【0007】本発明の主目的は、吐出ガスが高圧高温と
なる運転領域での圧縮機の冷却を十分に確保し、広い運
転範囲内において適正な過熱度制御が行え、圧縮機の信
頼性を向上しつつ運転範囲を拡大できる冷凍装置を提供
する点にある。
The main object of the present invention is to ensure sufficient cooling of the compressor in an operating region where the discharge gas has a high pressure and high temperature, and to perform appropriate superheat control within a wide operating range, thereby improving the reliability of the compressor. It is a point to provide a refrigeration system capable of improving the operation range while improving.

【0008】[0008]

【課題を解決するための手段】そこで、上記主目的を達
成するため、請求項1記載の発明は、図1に示すよう
に、圧縮機1に、圧縮途上の中間圧力室に開口するイン
ジェクションポート16を備え、このインジェクション
ポート16に、高圧域から延びる液インジェクション通
路6を接続して、この通路6に、循環冷媒に対し同一圧
力条件下で飽和温度の高い冷媒を封入し、圧縮機1の吐
出ガス温度を感受する感温筒71と、圧縮機1の吐出ガ
ス圧力を取り込むパイロット通路72とをもち、吐出ガ
スの過熱度を所定値に制御する感温膨張弁7を介装した
冷凍装置において、前記パイロット通路72に、吐出ガ
スの圧力又は温度が設定値を超えるとき、このパイロッ
ト通路72を高圧域に対し低圧の低圧域に開いて、該パ
イロット通路72のパイロット圧力を低圧側に逃がす圧
力調節手段8を設けた。
In order to achieve the above-mentioned main object, the invention according to claim 1 is, as shown in FIG. 1, an injection port opening to an intermediate pressure chamber in the middle of compression in a compressor 1. 16, a liquid injection passage 6 extending from a high pressure region is connected to the injection port 16, and a refrigerant having a high saturation temperature is filled in the passage 6 under the same pressure condition with respect to the circulating refrigerant. A refrigeration system having a temperature sensitive cylinder 71 for sensing the discharge gas temperature and a pilot passage 72 for taking in the discharge gas pressure of the compressor 1 and having a temperature sensitive expansion valve 7 for controlling the superheat degree of the discharge gas to a predetermined value. In the pilot passage 72, when the pressure or temperature of the discharge gas exceeds a set value, the pilot passage 72 is opened to a low pressure region of low pressure with respect to a high pressure region, The pilots pressure provided pressure adjusting means 8 for releasing the low pressure side.

【0009】請求項2記載の発明は、圧力調節手段8を
簡易に構成するため、図2に示すように、この圧力調節
手段8が、パイロット通路72を低圧域に開く連通ライ
ン9に介装され、パイロット通路72のパイロット圧力
で作動して該通路72を低圧域に対し開閉する弁体81
と、この弁体81の作動圧力を設定する付勢体82とを
もつ圧力調節弁80から成る構成とした。
According to the second aspect of the present invention, since the pressure adjusting means 8 is simply constructed, as shown in FIG. 2, the pressure adjusting means 8 is interposed in the communication line 9 for opening the pilot passage 72 in the low pressure region. The valve body 81 is operated by the pilot pressure in the pilot passage 72 to open and close the passage 72 with respect to the low pressure region.
And a biasing body 82 for setting the operating pressure of the valve body 81.

【0010】[0010]

【作用】請求項1記載の発明では、図1に示すように、
吐出ガスが高圧高温となる運転領域にあって、その吐出
ガスの圧力又は温度が設定値を超えるとき、圧力調節手
段8により、感温膨張弁7のパイロット通路72が低圧
域に開かれ、該パイロット通路72のパイロット圧力が
低圧側に逃がされる。これにより、感温膨張弁7では、
感温筒71側からの圧力によって、その開度が大きくさ
れ、液インジェクション通路6に移送する液量が増え、
インジェクションポート16を経て圧縮機1の中間圧力
室に注入される液量が増える。このため、図3に示すよ
うに、吐出ガスの過熱度は小さくなり、吐出ガスの温度
上昇を抑制できると共に、圧縮機1の冷却が確保でき
る。
In the invention described in claim 1, as shown in FIG.
When the pressure or temperature of the discharge gas exceeds the set value in the operating region where the discharge gas has a high pressure and high temperature, the pressure adjusting means 8 opens the pilot passage 72 of the temperature-sensitive expansion valve 7 to the low pressure region, The pilot pressure in the pilot passage 72 is released to the low pressure side. Thereby, in the temperature-sensitive expansion valve 7,
Due to the pressure from the temperature sensitive cylinder 71 side, the opening degree is increased, and the amount of liquid transferred to the liquid injection passage 6 is increased,
The amount of liquid injected into the intermediate pressure chamber of the compressor 1 via the injection port 16 increases. For this reason, as shown in FIG. 3, the degree of superheat of the discharge gas is reduced, the temperature rise of the discharge gas can be suppressed, and the cooling of the compressor 1 can be ensured.

【0011】一方、このように吐出ガスの過熱度が小さ
くされても、該過熱度が小さくされる吐出ガスの高圧高
温条件下では、吐出ガスの風量自体が小さいため、吐出
通路内での油分離能力に十分余裕があり、過熱度の低下
に伴う油分離効率の悪化は問題とならない。又、給油の
面からも、過熱度が小さくなる吐出ガスの高圧高温条件
下では、高低差圧が十分に確保でき、油の移送力を大き
く確保できて、給油量を十分に確保できると共に、給油
箇所に至るまでの油移送経路において、十分な減圧によ
り、油中に溶けた冷媒を蒸発でき、油の粘度も維持でき
る。
On the other hand, even if the superheat degree of the discharge gas is reduced in this way, under the high-pressure and high-temperature conditions of the discharge gas in which the superheat degree is reduced, the air volume of the discharge gas itself is small, so the oil in the discharge passage is small. There is a sufficient margin in separation capacity, and deterioration of oil separation efficiency due to a decrease in superheat does not pose a problem. Also from the aspect of refueling, under the high pressure and high temperature conditions of the discharge gas where the degree of superheat becomes small, a high and low differential pressure can be sufficiently secured, a large oil transfer force can be secured, and a sufficient amount of refueling can be secured, By sufficiently reducing the pressure in the oil transfer route to the oil supply point, the refrigerant dissolved in the oil can be evaporated and the viscosity of the oil can be maintained.

【0012】こうして、吐出ガスが高圧高温となる運転
領域において、圧縮機1の冷却を十分に確保できると共
に、高い潤滑性能も維持でき、圧縮機1の信頼性を向上
することができるのである。
In this way, in the operating region where the discharged gas has a high pressure and a high temperature, it is possible to sufficiently secure the cooling of the compressor 1, maintain a high lubricating performance, and improve the reliability of the compressor 1.

【0013】請求項2記載の発明では、図2に示すよう
に、吐出ガスが高圧高温となる運転領域において、その
吐出ガスの圧力、即ちパイロット通路72に取り込むパ
イロット圧力が、付勢体82による設定圧を超えると
き、弁体81が作動して連通ライン9が開かれ、パイロ
ット通路72が低圧域に開かれる。これにより、感温膨
張弁7の開度が大きくなり、液インジェクション通路6
から圧縮機1の中間圧力室に注入される液量が増え、吐
出ガスの過熱度が小さくなり、吐出ガスの温度上昇を抑
制できると共に、圧縮機1の冷却が確保できる。
According to the second aspect of the present invention, as shown in FIG. 2, the pressure of the discharge gas, that is, the pilot pressure taken into the pilot passage 72, in the operating region where the discharge gas has a high pressure and a high temperature, is due to the urging body 82. When the set pressure is exceeded, the valve element 81 operates to open the communication line 9 and open the pilot passage 72 in the low pressure region. As a result, the opening degree of the temperature-sensitive expansion valve 7 is increased, and the liquid injection passage 6
Therefore, the amount of liquid injected into the intermediate pressure chamber of the compressor 1 increases, the degree of superheat of the discharge gas decreases, the temperature rise of the discharge gas can be suppressed, and the cooling of the compressor 1 can be ensured.

【0014】このように、弁体81と付勢体82とをも
つ圧力調節弁80による自己圧力感知により、吐出ガス
が高圧高温となる運転領域において、自動的にインジェ
クション液量を増して、過熱度を低下させるため、それ
だけ構成を簡易にすることができる。
As described above, by detecting the self-pressure by the pressure control valve 80 having the valve body 81 and the biasing body 82, the injection liquid amount is automatically increased in the operating region where the discharge gas has a high pressure and a high temperature, and the superheat is generated. Since the frequency is reduced, the structure can be simplified accordingly.

【0015】[0015]

【実施例】図1において、1はケーシング11の内部に
スクリューロータ12を内装したスクリュー型の圧縮機
であり、吸入ポート13から吸い込む低圧の吸入ガス冷
媒を、スクリューロータ12に設けるスクリュー溝14
の内部で圧縮し、吐出ポート15から高圧の吐出ガスを
吐き出すようにしている。スクリュー溝14内における
吸入ガスの閉じ切り部以降には、圧縮途上の中間圧力室
に開口するインジェクションポート16を設けている。
尚、図示のものでは、スクリューロータ12を一つとし
たシングルタイプのものを示したが、一対のスクリュー
ロータを備えるダブルタイプのものであってもよい。更
に、圧縮機1の型式は、スクリュー型に限らず、スクロ
ール型等であってもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, reference numeral 1 is a screw type compressor having a screw rotor 12 inside a casing 11, and a low pressure suction gas refrigerant sucked from a suction port 13 is provided in a screw groove 14 of the screw rotor 12.
Is compressed inside, and high-pressure discharge gas is discharged from the discharge port 15. An injection port 16 that opens to the intermediate pressure chamber in the middle of compression is provided after the closed portion of the suction gas in the screw groove 14.
Although the single type shown in the drawing has one screw rotor 12, it may be a double type having a pair of screw rotors. Further, the type of the compressor 1 is not limited to the screw type, but may be a scroll type or the like.

【0016】圧縮機1の吐出側から吸入側にかけては、
高圧の吐出ガスを凝縮して高圧液とする凝縮器2、その
凝縮した高圧液を溜める受液器20、高圧液冷媒を減圧
して低圧液とする減圧機構3、低圧液を蒸発させて低圧
ガスとする蒸発器4を、順次、高圧ガス管51、高圧液
管52,53、低圧液管54、低圧ガス管55を介して
接続し、冷凍サイクルを構成するようにしている。循環
冷媒には、フロン22を用いている。
From the discharge side to the suction side of the compressor 1,
A condenser 2 that condenses the high-pressure discharge gas into a high-pressure liquid, a receiver 20 that stores the condensed high-pressure liquid, a decompression mechanism 3 that decompresses the high-pressure liquid refrigerant into a low-pressure liquid, and a low-pressure liquid that evaporates to a low pressure. The evaporator 4 used as a gas is sequentially connected via a high pressure gas pipe 51, high pressure liquid pipes 52 and 53, a low pressure liquid pipe 54, and a low pressure gas pipe 55 to form a refrigeration cycle. Freon 22 is used as the circulating refrigerant.

【0017】インジェクションポート16には、受液器
20から延びる配管から成る液インジェクション通路6
を接続しており、この通路6に、循環冷媒に対し同一圧
力条件下で飽和温度の高い冷媒であるフロン12を内部
に封入し、圧縮機1の吐出ガス温度を感受する感温筒7
1と、圧縮機1の吐出ガス圧力を取り込む小径配管から
成るパイロット通路72とをもち、吐出ガスの過熱度を
所定値に制御する感温膨張弁7を介装している。感温膨
張弁7は、既知の通り、感温筒71の圧力と、パイロッ
ト通路72のパイロット圧力及び設定バネ73のバネ力
の加算値とを、ダイアフラム74を介して対抗させ、ダ
イアフラム74に弁竿75を介して直結する弁体76を
作動させて、通路6を開閉するようにしたものである。
The injection port 16 has a liquid injection passage 6 formed of a pipe extending from the liquid receiver 20.
In this passage 6, a freon 12 which is a refrigerant having a high saturation temperature under the same pressure condition as the circulating refrigerant is sealed inside, and a temperature sensing tube 7 for sensing the temperature of the gas discharged from the compressor 1 is connected.
1 and a pilot passage 72 composed of a small-diameter pipe for taking in the discharge gas pressure of the compressor 1, and a temperature-sensitive expansion valve 7 for controlling the superheat degree of the discharge gas to a predetermined value is interposed. As is known, the temperature-sensitive expansion valve 7 causes the pressure of the temperature-sensitive cylinder 71 and the added value of the pilot pressure of the pilot passage 72 and the spring force of the setting spring 73 to oppose each other via the diaphragm 74, so that the diaphragm 74 receives the valve. The valve body 76 directly connected via the rod 75 is operated to open and close the passage 6.

【0018】以上の構成において、パイロット通路72
に、吐出ガスの圧力又は温度が設定値を超えるとき、こ
のパイロット通路72を高圧域に対し低圧の低圧域であ
る圧縮機1の吸入ポート13に開いて、パイロット圧力
を低圧側に逃がす圧力調節手段8を設ける。
In the above structure, the pilot passage 72
When the pressure or temperature of the discharge gas exceeds the set value, the pilot passage 72 is opened to the suction port 13 of the compressor 1 which is a low pressure region where the pressure is higher than the high pressure region, and the pilot pressure is released to the low pressure side. Means 8 are provided.

【0019】具体的に、圧力調節手段8は、パイロット
通路72の途中部から分岐させて吸入ポート13に接続
する配管から成る連通ライン9に介装する圧力調節弁8
0で構成している。
Specifically, the pressure adjusting means 8 is provided in a communication line 9 formed of a pipe branched from an intermediate portion of the pilot passage 72 and connected to the suction port 13.
It consists of zero.

【0020】圧力調節手段8を構成する圧力調節弁80
は、図2に示すように、本体800の内部に、連通ライ
ン9の一次側91から取り込むパイロット通路72のパ
イロット圧力で作動して該一次側91を低圧側の2次側
92に対し開閉するボール式の弁体81と、この弁体8
1の作動圧力を設定するコイルスプリングから成る付勢
体82とをもち、パイロット圧力が付勢体82で設定す
る圧力を超えると、弁体81を弁座83から離間させ
て、連通ライン9の一次側91と二次側92とを連通さ
せ、パイロット通路72のパイロット圧力を低圧側に逃
がすものである。尚、図2において、84は付勢体82
の設定圧を調節するネジ込み式の調節体、85は付勢体
82側と弁体81側とを連結させる連結棒、86は弁体
81の作動を安定化させるベローズである。
Pressure regulating valve 80 constituting the pressure regulating means 8
2 operates inside the main body 800 by the pilot pressure of the pilot passage 72 taken from the primary side 91 of the communication line 9 to open / close the primary side 91 with respect to the secondary side 92 on the low pressure side. Ball type valve body 81 and this valve body 8
When the pilot pressure exceeds the pressure set by the biasing body 82, the valve body 81 is separated from the valve seat 83, and the communication line 9 of the communication line 9 is provided. The primary side 91 and the secondary side 92 are communicated with each other, and the pilot pressure in the pilot passage 72 is released to the low pressure side. In FIG. 2, 84 is a biasing member 82.
Reference numeral 85 is a screw-in type adjusting body for adjusting the setting pressure, 85 is a connecting rod for connecting the urging body 82 side and the valve body 81 side, and 86 is a bellows for stabilizing the operation of the valve body 81.

【0021】以上の構成により、吐出ガスが高圧高温と
なる運転領域となって、その吐出ガスの圧力、即ちパイ
ロット通路72に取り込むパイロット圧力が、付勢体8
2による設定圧を超えるとき、弁体81が自動的に開い
て連通ライン9が開かれ、パイロット通路72が低圧域
に開かれる。これにより、感温膨張弁7の開度が大きく
なり、液インジェクション通路6から圧縮機1の中間圧
力室に注入される液量が増え、吐出ガスの過熱度が小さ
くなり、吐出ガスの温度上昇を抑制できると共に、圧縮
機1の冷却が確保できるのである。
With the above-described structure, the discharge gas is in an operating region where the discharge gas has a high pressure and a high temperature, and the pressure of the discharge gas, that is, the pilot pressure taken into the pilot passage 72 is the biasing member 8.
When the pressure set by 2 is exceeded, the valve body 81 is automatically opened, the communication line 9 is opened, and the pilot passage 72 is opened to the low pressure region. As a result, the opening degree of the temperature-sensitive expansion valve 7 increases, the amount of liquid injected from the liquid injection passage 6 into the intermediate pressure chamber of the compressor 1 increases, the superheat of the discharge gas decreases, and the temperature of the discharge gas rises. That is, the cooling of the compressor 1 can be ensured.

【0022】[0022]

【発明の効果】請求項1記載の発明によれば、吐出ガス
が高圧高温となる運転領域において、圧縮機1へのイン
ジェクション液量を決める感温膨張弁7のパイロット圧
力を制御して、そのインジェクション液量を増すため、
吐出ガスの過熱度を低下できて圧縮機1の冷却を十分に
確保できると共に、高い潤滑性能も維持でき、圧縮機1
の信頼性を向上しつつ、運転範囲を拡大することができ
る。
According to the first aspect of the present invention, the pilot pressure of the temperature-sensitive expansion valve 7 that determines the amount of injection liquid to the compressor 1 is controlled in the operating region where the discharge gas has a high pressure and high temperature, and To increase the injection liquid volume,
The degree of superheat of the discharge gas can be reduced, cooling of the compressor 1 can be sufficiently ensured, and high lubrication performance can be maintained.
The operating range can be expanded while improving the reliability of the.

【0023】請求項2記載の発明によれば、圧力調節弁
80による自己圧力感知により、吐出ガスが高圧高温と
なる運転領域において、自動的にインジェクション液量
を増して、過熱度を低下させるため、それだけ構成を簡
易にすることができる。
According to the second aspect of the present invention, the self-pressure sensing by the pressure control valve 80 automatically increases the injection liquid amount and lowers the superheat degree in the operating region where the discharge gas has a high pressure and high temperature. , The configuration can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る冷凍装置の配管図。FIG. 1 is a piping diagram of a refrigerating apparatus according to the present invention.

【図2】同冷凍装置に用いる圧力調節弁の断面図。FIG. 2 is a cross-sectional view of a pressure control valve used in the refrigeration system.

【図3】同冷凍装置の効果を従来例との対比で示す温度
対圧力特性図。
FIG. 3 is a temperature vs. pressure characteristic diagram showing the effect of the refrigeration system in comparison with a conventional example.

【図4】従来例の配管図。FIG. 4 is a piping diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1;圧縮機、16;インジェクションポート、6;液イ
ンジェクション通路、7;感温膨張弁、71;感温筒、
72;パイロット通路、8;圧力調節手段、80;圧力
調節弁、81;弁体、82;付勢体、9;連通ライン
1; compressor, 16; injection port, 6; liquid injection passage, 7; temperature-sensitive expansion valve, 71; temperature-sensitive cylinder,
72; pilot passage, 8; pressure adjusting means, 80; pressure adjusting valve, 81; valve body, 82; biasing body, 9; communication line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】圧縮機(1)に、圧縮途上の中間圧力室に
開口するインジェクションポート(16)を備え、この
インジェクションポート(16)に、高圧域から延びる
液インジェクション通路(6)を接続して、この通路
(6)に、循環冷媒に対し同一圧力条件下で飽和温度の
高い冷媒を封入し、圧縮機(1)の吐出ガス温度を感受
する感温筒(71)と、圧縮機(1)の吐出ガス圧力を
取り込むパイロット通路(72)とをもち、吐出ガスの
過熱度を所定値に制御する感温膨張弁(7)を介装した
冷凍装置において、前記パイロット通路(72)に、吐
出ガスの圧力又は温度が設定値を超えるとき、このパイ
ロット通路(72)を高圧域に対し低圧の低圧域に開い
て、該パイロット通路(72)のパイロット圧力を低圧
側に逃がす圧力調節手段(8)を設けたことを特徴とす
る冷凍装置。
1. A compressor (1) is provided with an injection port (16) opening to an intermediate pressure chamber during compression, and a liquid injection passage (6) extending from a high pressure region is connected to this injection port (16). Then, the passage (6) is filled with a refrigerant having a high saturation temperature under the same pressure condition with respect to the circulating refrigerant, and the temperature sensing cylinder (71) for sensing the discharge gas temperature of the compressor (1) and the compressor ( In a refrigerating apparatus having a pilot passage (72) for taking in the discharge gas pressure of 1) and having a temperature-sensitive expansion valve (7) for controlling the superheat degree of the discharge gas to a predetermined value, the pilot passage (72) is provided. When the pressure or temperature of the discharge gas exceeds a set value, the pilot passage (72) is opened to a low pressure region which is lower than the high pressure region, and the pilot pressure of the pilot passage (72) is released to the low pressure side. Refrigeration system, characterized in that a stage (8).
【請求項2】圧力調節手段(8)が、パイロット通路
(72)を低圧域に開く連通ライン(9)に介装され、
パイロット通路(72)のパイロット圧力で作動して該
通路(72)を低圧域に対し開閉する弁体(81)と、
この弁体(81)の作動圧力を設定する付勢体(82)
とをもつ圧力調節弁(80)から成る請求項1記載の冷
凍装置。
2. A pressure adjusting means (8) is interposed in a communication line (9) for opening a pilot passage (72) to a low pressure region,
A valve body (81) that operates by pilot pressure in the pilot passage (72) to open and close the passage (72) with respect to a low pressure region;
A biasing body (82) for setting the operating pressure of this valve body (81)
2. Refrigeration system according to claim 1, comprising a pressure regulating valve (80) with and.
JP18937194A 1994-08-11 1994-08-11 Refrigerating device Withdrawn JPH0854148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18937194A JPH0854148A (en) 1994-08-11 1994-08-11 Refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18937194A JPH0854148A (en) 1994-08-11 1994-08-11 Refrigerating device

Publications (1)

Publication Number Publication Date
JPH0854148A true JPH0854148A (en) 1996-02-27

Family

ID=16240207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18937194A Withdrawn JPH0854148A (en) 1994-08-11 1994-08-11 Refrigerating device

Country Status (1)

Country Link
JP (1) JPH0854148A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496321A1 (en) * 2002-03-29 2005-01-12 Daikin Industries, Ltd. Refrigerating equipment
CN110440490A (en) * 2018-05-02 2019-11-12 广东Tcl智能暖通设备有限公司 Gas-supplying enthalpy-increasing control method, storage medium and the control equipment of enthalpy-increasing compressor
CN111829173A (en) * 2019-04-23 2020-10-27 杭州先途电子有限公司 Control method and system and air source heat pump air heater
EP4317853A1 (en) 2022-08-03 2024-02-07 Panasonic Intellectual Property Management Co., Ltd. Vapor compression refrigeration cycle device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496321A1 (en) * 2002-03-29 2005-01-12 Daikin Industries, Ltd. Refrigerating equipment
EP1496321A4 (en) * 2002-03-29 2007-07-18 Daikin Ind Ltd Refrigerating equipment
CN110440490A (en) * 2018-05-02 2019-11-12 广东Tcl智能暖通设备有限公司 Gas-supplying enthalpy-increasing control method, storage medium and the control equipment of enthalpy-increasing compressor
CN111829173A (en) * 2019-04-23 2020-10-27 杭州先途电子有限公司 Control method and system and air source heat pump air heater
EP4317853A1 (en) 2022-08-03 2024-02-07 Panasonic Intellectual Property Management Co., Ltd. Vapor compression refrigeration cycle device

Similar Documents

Publication Publication Date Title
US6779355B2 (en) Refrigeration device
JP2000346466A (en) Vapor compression type refrigerating cycle
JP2000205670A (en) Vapor compression type refrigeration cycle
JP2001147048A (en) Superheat extent controller for refrigeration circuit
JP2003004316A (en) Method for controlling refrigeration unit
JPH0854148A (en) Refrigerating device
US3388558A (en) Refrigeration systems employing subcooling control means
JPH06159270A (en) Scroll compressor incorporating overheat preventing device
JP2003194427A (en) Cooling device
JPH07260262A (en) Refrigerating device
US1971695A (en) Expansion valve
JPH07294073A (en) Refrigeration device
JP2808514B2 (en) Subcooling control valve, oil separator for refrigeration system, and refrigeration system
JPS6325255B2 (en)
JPH09133436A (en) Temperature type expansion valve and air-conditioning device for vehicle using the valve
JP3505209B2 (en) Refrigeration equipment
JPH03152349A (en) Freezer device
JP2001116399A (en) Refrigeration cycle
JPH10246522A (en) Screw type freezer
JPH06307721A (en) Refrigerating-air-conditioning equipment
EP3872419A1 (en) Refrigeration apparatus
JPH08313074A (en) Refrigerating apparatus
JP2005265385A (en) Decompression device
JPH03233262A (en) Freezing cycle
JPS592452Y2 (en) Refrigerator oil temperature control device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011106