JPH10246522A - Screw type freezer - Google Patents

Screw type freezer

Info

Publication number
JPH10246522A
JPH10246522A JP5312297A JP5312297A JPH10246522A JP H10246522 A JPH10246522 A JP H10246522A JP 5312297 A JP5312297 A JP 5312297A JP 5312297 A JP5312297 A JP 5312297A JP H10246522 A JPH10246522 A JP H10246522A
Authority
JP
Japan
Prior art keywords
oil
refrigerant
temperature
flow path
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5312297A
Other languages
Japanese (ja)
Inventor
Noboru Tsuboi
昇 壷井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5312297A priority Critical patent/JPH10246522A/en
Publication of JPH10246522A publication Critical patent/JPH10246522A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves

Abstract

PROBLEM TO BE SOLVED: To enable a stable operation to be carried out under a less amount of consumption power and while keeping a viscosity of refrigerant required for a bearing in a main body of a compressor by a method wherein a temperature of the refrigerant supplied to the main body of the compressor in a screw type freezing machine is kept at a specified temperature. SOLUTION: A secondary side of an evaporator 5 is provided with a thermo-sensitive cylinder 11 for sensing a degree of superheat of refrigerant at this part and adjusting a degree of opening of a first expansion valve 4 in such a way that this degree of superheat may become a value of set range. A section of a refrigerant dividing flow passage III at the secondary side of a refrigerant cooling device 6 is provided with a thermo-sensitive cylinder 12 for sensing a degree of superheat and for adjusting a degree of opening of a second expansion valve 8 in such a way that the detected degree of superheat may become a value of set range, for example, 5 deg.C of the degree of superheat. A temperature of the fed refrigerant can be kept in a range of about 60 to 80 deg.C by adjusting a degree of superheat of the refrigerant at the secondary side of a refrigerant cooling device 6 under an operation of a second expansion valve 8. Due to this fact, a consumption power can be reduced and a stable operation can be assured by keeping a viscosity of refrigerant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、油冷式スクリュ圧
縮機本体に供給する油を冷媒で冷却するようにしたスク
リュ冷凍機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a screw refrigerator in which oil supplied to an oil-cooled screw compressor body is cooled by a refrigerant.

【0002】[0002]

【従来の技術】従来、油冷式圧縮機本体に供給する油を
冷媒で冷却するようにした冷凍機として、図5に示す冷
凍機が公知である(特開平4−177059号公報)。
この冷凍機は、二段形の油冷式圧縮機本体21、油分離
回収器22、凝縮器23、受液器24、過冷却器25、
膨張弁26および蒸発器27を含む閉じた冷媒の循環流
路Xと、油分離回収器22から油冷却器28を経て圧縮
機本体21内の給油箇所に至る油供給流路Yと、受液器
24にて循環流路Xから分岐し、開閉弁29,30、膨
張弁31,32を経て、さらに油冷却器28内を通過し
て、圧縮機本体21内の中間圧力領域、即ち第一段圧縮
機本体と第二段圧縮機本体との間の中間流路部分に至る
冷媒用分岐流路Zとを備えている。
2. Description of the Related Art Conventionally, a refrigerator shown in FIG. 5 is known as a refrigerator in which oil supplied to an oil-cooled compressor body is cooled by a refrigerant (Japanese Patent Application Laid-Open No. H4-177059).
This refrigerator has a two-stage oil-cooled compressor main body 21, an oil separation and recovery unit 22, a condenser 23, a liquid receiver 24, a subcooler 25,
A closed refrigerant circulation flow path X including an expansion valve 26 and an evaporator 27, an oil supply flow path Y from the oil separation and recovery unit 22 to an oil supply point in the compressor body 21 via the oil cooler 28, Branching off from the circulation flow path X in the compressor 24, passing through the on-off valves 29, 30, the expansion valves 31, 32, and further through the oil cooler 28, into the intermediate pressure region in the compressor body 21, A refrigerant branch flow path Z that reaches an intermediate flow path portion between the stage compressor main body and the second stage compressor main body is provided.

【0003】そして、油冷却器28にて、油供給流路Y
内の油と、冷媒用分岐流路Z内の冷媒との間で熱交換さ
せて、上記油を40〜60℃に冷却し、この油を上記給
油箇所に導くようになっている。この冷凍機は、二段形
のものであるが、図6に示すように単段形スクリュ圧縮
機本体41に上記同様の構造を考えると、油冷却器にて
油と熱交換した後の冷媒ガス油は、スクリュロータ42
とケーシング43との間の形成される空間の内のガス圧
縮空間44、即ち吸込口45、吐出口46のいずれにも
連通しないガス閉込み空間に供給されることになる。
Then, an oil supply passage Y
Heat is exchanged between the internal oil and the refrigerant in the refrigerant branch channel Z to cool the oil to 40 to 60 ° C. and guide the oil to the oil supply point. This refrigerator is of a two-stage type. However, considering a similar structure to the single-stage screw compressor main body 41 as shown in FIG. 6, the refrigerant after heat exchange with oil in an oil cooler is performed. Gas oil is supplied to the screw rotor 42
The gas is supplied to the gas compression space 44 of the space formed between the casing and the casing 43, that is, the gas confined space that does not communicate with any of the suction port 45 and the discharge port 46.

【0004】[0004]

【発明が解決しようとする課題】図5に示す上記従来の
冷凍機の場合、油冷却器28内に流入した冷却用冷媒
は、油冷却器28を通過した後、ガス状態となって上記
中間圧力領域に導かれ、油は40〜60℃にまで冷却さ
れる。一方、後述するように圧縮機本体21内への給油
温度が低くなると圧縮機本体21での消費動力が大きく
なるという問題が生じる。また、図6に示す単段形スク
リュ圧縮機本体41を用いた冷凍機の場合、吸込口45
に連通しないガス圧縮機空間44に油冷却器からの冷媒
ガスを流入させることになるため、その流入量が多い
程、即ち油冷却を強めれば強める程、ガス圧縮空間44
における圧力が高くなる。その結果、吸込口45側に漏
れるガスの量が多くなり、そのガスをさらに圧縮しなけ
ればならなくなり、圧縮機本体41での消費動力が増大
するという問題が生じる。本発明は、斯る従来の問題点
をなくすことを課題としてなされたもので、少ない消費
動力で、かつ圧縮機本体内の軸受に必要な油の粘度を確
保して、安定した運転を可能としたスクリュ冷凍機を提
供しようとするものである。
In the case of the above-described conventional refrigerator shown in FIG. 5, the cooling refrigerant flowing into the oil cooler 28 passes through the oil cooler 28, becomes a gas state, and becomes a gas state. Guided to the pressure zone, the oil is cooled to 40-60 ° C. On the other hand, as will be described later, when the oil supply temperature into the compressor main body 21 decreases, a problem arises in that the power consumption in the compressor main body 21 increases. In the case of a refrigerator using the single-stage screw compressor main body 41 shown in FIG.
Since the refrigerant gas from the oil cooler flows into the gas compressor space 44 that is not communicated with the gas compressor space 44, the larger the flow rate, that is, the stronger the oil cooling, the greater the gas compression space 44.
The pressure at increases. As a result, the amount of gas leaking to the suction port 45 increases, and the gas must be further compressed, which causes a problem that power consumption in the compressor body 41 increases. SUMMARY OF THE INVENTION The present invention has been made to eliminate the above-mentioned conventional problems, and has a low power consumption and secures the viscosity of oil necessary for a bearing in a compressor body to enable stable operation. It is intended to provide an improved screw refrigerator.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、第1発明は、油冷式スクリュ圧縮機本体の他、少な
くとも油分離回収器、凝縮器、第1膨張弁および蒸発器
を含む冷媒の閉じた循環流路と、上記油分離回収器の下
部の油溜まり部から油冷却器を経て、上記圧縮機本体内
のロータ収容空間、軸受・軸封部等の給油箇所に至る油
供給流路と、上記凝縮器と上記第1膨張弁との間の上記
循環流路の部分から分岐して第2膨張弁を経て、上記油
供給流路内の油と熱交換可能に上記油冷却器内を通過し
た後、上記圧縮機本体内のガス圧縮空間に至る冷媒用分
岐流路と、上記油冷却器の二次側の部分にて、上記分岐
流路内の冷媒の過熱度を検出し、この過熱度を、上記圧
縮機本体に給油される油の温度が60〜80℃に保たれ
るために必要な範囲内の値にするように上記第2膨張弁
の開度を調節する感温筒とを設けて形成した。
In order to solve the above-mentioned problems, a first invention includes at least an oil separation and recovery unit, a condenser, a first expansion valve, and an evaporator in addition to an oil-cooled screw compressor main body. Oil supply from the closed circulation flow path of the refrigerant and the oil reservoir at the lower part of the oil separation and recovery unit, through the oil cooler, to the oil supply points such as the rotor housing space in the compressor body, bearings and shaft seals A flow path, a portion of the circulation flow path between the condenser and the first expansion valve, which branches off from a portion of the circulation flow path, passes through a second expansion valve, and exchanges heat with oil in the oil supply flow path through the oil cooling. After passing through the interior of the compressor, the branch flow path for the refrigerant reaching the gas compression space in the compressor main body, and the degree of superheat of the refrigerant in the branch flow path is detected at the secondary side of the oil cooler. The degree of superheat is adjusted to a range necessary for maintaining the temperature of oil supplied to the compressor body at 60 to 80 ° C. A feeler bulb adjusting the opening of the second expansion valve so that the value of the inner formed by providing.

【0006】また、第2発明は、油冷式スクリュ圧縮機
本体の他、少なくとも油分離回収器、凝縮器、第1膨張
弁および蒸発器を含む冷媒の閉じた循環流路と、上記油
分離回収器の下部の油溜まり部から油冷却器を経て、上
記圧縮機本体内のロータ収容空間、軸受・軸封部等の給
油箇所に至る油供給流路と、上記凝縮器と上記第1膨張
弁との間の上記循環流路の部分から分岐して温度調節用
流量調節弁を経て、上記油供給流路内の油と熱交換可能
に上記油冷却器内を通過した後、上記圧縮機本体内のガ
ス圧縮空間に至る冷媒用分岐流路と、上記油冷却器と上
記圧縮機本体との間にて、上記油供給流路内の油の温度
を検出し、この検出温度に基づき、上記圧縮機本体に給
油される油の温度が60〜80℃に保たれるために必要
な範囲内の値にするように上記流量調節弁の開度を調節
する感温筒とを設けて形成した。
A second invention provides a closed refrigerant flow path including at least an oil separation and recovery unit, a condenser, a first expansion valve and an evaporator, in addition to the oil-cooled screw compressor main body, An oil supply flow path from an oil reservoir at a lower portion of the recovery device to an oil supply point such as a rotor housing space in the compressor body, a bearing / shaft seal portion, etc., through an oil cooler, the condenser and the first expansion After branching from the portion of the circulation flow path between the oil supply passage and the temperature control flow control valve, and passing through the oil cooler so as to be able to exchange heat with oil in the oil supply flow path, the compressor The branch passage for the refrigerant reaching the gas compression space in the main body, between the oil cooler and the compressor body, detects the temperature of the oil in the oil supply passage, based on the detected temperature, The value of the oil supplied to the compressor body should be within a range necessary for maintaining the temperature of the oil at 60 to 80 ° C. It was formed by providing a temperature sensing tube for adjusting the opening degree of the flow rate control valve so.

【0007】[0007]

【発明の実施の形態】次に、本発明の実施の一形態を図
面にしたがって説明する。図1は、第1発明に係るスク
リュ冷凍機を示し、油冷式スクリュ圧縮機本体1、油分
離回収器2、凝縮器3、第1膨張弁4および蒸発器5を
含む冷媒の閉じた循環流路Iと、油分離回収器2の下部
の油溜まり部から油冷却器6を経て、圧縮機本体1内の
ロータ収容空間、軸受・軸封部等の給油箇所に至る油供
給流路IIと、凝縮器3と第1膨張弁4との間の循環流路
Iの部分から分岐して絞り弁の一例であるオリフィス7
および第2膨張弁8を経て、油供給流路II内の油と熱交
換可能に油冷却器6内を通過した後、圧縮機本体1内の
ガス圧縮空間、即ち上記同様吸込口、吐出口のいずれに
も連通しないガス閉込み空間に至る冷媒用分岐流路III
とが形成してある。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a screw refrigerator according to a first invention, in which closed circulation of refrigerant including an oil-cooled screw compressor main body 1, an oil separation and recovery unit 2, a condenser 3, a first expansion valve 4, and an evaporator 5 is shown. Oil supply flow path II from flow path I to an oil supply point such as a rotor housing space in the compressor main body 1, a bearing / shaft seal part, etc., from an oil reservoir at a lower portion of the oil separation and recovery unit 2 through an oil cooler 6. And an orifice 7 branching from a portion of the circulation flow path I between the condenser 3 and the first expansion valve 4 and being an example of a throttle valve.
After passing through the oil cooler 6 through the second expansion valve 8 and the oil in the oil supply flow path II so as to be able to exchange heat with the oil, the gas compression space in the compressor body 1, that is, the suction port and the discharge port as described above. Refrigerant branch channel III leading to gas confined space not communicating with any of
Are formed.

【0008】さらに、蒸発器5の二次側には、この部分
の冷媒の過熱度を検出して、この過熱度が設定範囲内の
値になるように第1膨張弁4の開度を調節する感温筒1
1が設けてある。油冷却器6の二次側の冷媒用分岐流路
IIIの部分には、この部分の冷媒の過熱度を検出して、
検出した過熱度が設定した範囲内の値、例えば過熱度5
℃になるように第2膨張弁8の開度を調節する感温筒1
2が設けてある。
Further, on the secondary side of the evaporator 5, the degree of superheat of the refrigerant in this portion is detected, and the opening of the first expansion valve 4 is adjusted so that the degree of superheat falls within a set range. Temperature sensing cylinder 1
1 is provided. Branch flow path for refrigerant on the secondary side of oil cooler 6
In part III, the degree of superheat of the refrigerant in this part is detected,
The detected superheat degree is a value within a set range, for example, superheat degree 5
Temperature-sensitive cylinder 1 for adjusting the opening degree of the second expansion valve 8 so that the temperature becomes 1 ° C.
2 are provided.

【0009】図2は、圧縮機本体1への給油温度(横
軸:℃)と圧縮機本体1での消費動力(縦軸:kw)と
の関係についてテストした結果を示すもので、給油温度
の上昇とともに上記消費動力は減少する。例えば、この
図から給油温度が53℃で消費動力が44.7kwであ
るのが、給油温度が75℃になると消費動力が40.5
kwと給油温度が53℃の場合に比して9%減少するこ
とが分かる。図3は、上記給油温度(横軸:℃)と、給
油状態下の油の粘度(縦軸:cst)との関係を示すも
ので、給油温度の上昇とともに上記粘度が低下し、給油
温度が80℃を超えると軸受に最低必要とされる10c
stの粘度が確保されないことが分かる。以上より、図
2において、Aで示す範囲では上記消費動力が比較的大
きく、Cで示す範囲では油の粘性が確保出来ず、Bで示
す範囲、即ち給油温度が60〜80℃の範囲が消費動力
が比較的少なく、かつ油の粘性も確保できる最適な範囲
であるといえる。
FIG. 2 shows the result of a test on the relationship between the temperature of oil supply to the compressor body 1 (horizontal axis: ° C.) and the power consumed by the compressor body 1 (vertical axis: kw). The consumption power decreases with the rise of. For example, from this figure, the refueling temperature is 53 ° C. and the power consumption is 44.7 kw.
It can be seen that kw and the refueling temperature are reduced by 9% as compared with the case of 53 ° C. FIG. 3 shows the relationship between the lubricating temperature (horizontal axis: ° C.) and the viscosity of the oil under the lubricating condition (vertical axis: cst). If the temperature exceeds 80 ° C, the minimum required for bearings is 10c.
It turns out that the viscosity of st is not ensured. As described above, in FIG. 2, the power consumption is relatively large in the range indicated by A, the viscosity of the oil cannot be ensured in the range indicated by C, and the range indicated by B, that is, the oil supply temperature range of 60 to 80 ° C. It can be said that the power is relatively small and the viscosity is in an optimum range in which the viscosity of the oil can be ensured.

【0010】上記スクリュ冷凍機では、第2膨張弁8に
より油冷却器6の二次側での冷媒の過熱度を調節するこ
とにより給油温度を60〜80℃の範囲内に保ち、上記
消費動力の減少、油の粘度の確保により安定した運転を
行えるようにしてある。なお、上述した実施形態では固
定絞りのオリフィス7を設けたものを示したが、本願第
1発明はこのオリフィス7を必ずしも必要とするもので
はない。
In the above screw refrigerator, the refueling temperature is maintained in the range of 60 to 80 ° C. by adjusting the degree of superheat of the refrigerant on the secondary side of the oil cooler 6 by the second expansion valve 8, and the power consumption is reduced. The stable operation can be performed by reducing the oil content and securing the viscosity of the oil. In the embodiment described above, the fixed throttle orifice 7 is provided, but the first invention of the present application does not necessarily require the orifice 7.

【0011】図4は、第2発明に係るスクリュ冷凍機を
示し、図1に示すスクリュ冷凍機とは、オリフィス7、
第2膨張弁8に代えて温度調節用流量調節弁9を設け、
感温筒12に代えて感温筒13を設けた点を除き、他は
実質的に同一であり、互いに対応する部分については同
一番号を付して説明を省略する。このスクリュ冷凍機で
は、圧縮機本体1に供給される油の温度を検出し、この
検出温度に基づき、圧縮機本体1に給油される油の温度
が60〜80℃に保たれるために必要な範囲内の値にす
るように流量調節弁9の開度を調節するようにしてあ
る。そして、斯る構成により、第1発明と同様に消費動
力の減少、油の粘度の確保により安定した運転を行える
ようになっている。
FIG. 4 shows a screw refrigerator according to the second invention. The screw refrigerator shown in FIG.
A temperature control flow control valve 9 is provided in place of the second expansion valve 8,
Except that a temperature sensing tube 13 is provided in place of the temperature sensing tube 12, the other portions are substantially the same, and corresponding portions are denoted by the same reference numerals and description thereof is omitted. In this screw refrigerator, the temperature of the oil supplied to the compressor body 1 is detected, and based on the detected temperature, it is necessary to maintain the temperature of the oil supplied to the compressor body 1 at 60 to 80 ° C. The opening of the flow rate control valve 9 is adjusted so as to have a value within a suitable range. With such a configuration, stable operation can be performed by reducing the power consumption and ensuring the viscosity of the oil, as in the first invention.

【0012】なお、上述した各実施形態においては、凝
縮器3は受液器と一体形のものを示したが、本発明のこ
の凝縮器3の形式を限定するものではなく、受液器と分
離したタイプのものであってもよい。
In each of the above-described embodiments, the condenser 3 is integrated with the receiver, but the present invention does not limit the type of the condenser 3 of the present invention. It may be of a separate type.

【0013】[0013]

【発明の効果】以上の説明より明らかなように、本発明
によれば、スクリュ冷凍機の圧縮機本体に給油される油
の温度が60〜80℃に保たれるようにしてある。この
ため、少ない消費動力で、かつ圧縮機本体内の軸受に必
要な油の粘度を確保して、安定した運転が可能になる等
の効果を奏する。
As is apparent from the above description, according to the present invention, the temperature of the oil supplied to the compressor body of the screw refrigerator is maintained at 60 to 80 ° C. For this reason, it is possible to secure the viscosity of the oil necessary for the bearing in the compressor main body with a small power consumption and to achieve an effect such that a stable operation becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 第1発明に係るスクリュ冷凍機の全体構成を
示す図である。
FIG. 1 is a view showing an entire configuration of a screw refrigerator according to a first invention.

【図2】 給油温度と圧縮機本体での消費動力との関係
についての実測結果を示す図である。
FIG. 2 is a diagram showing a result of actual measurement on a relationship between a refueling temperature and power consumption in a compressor body.

【図3】 給油温度と給油状態下の油の粘度との関係を
示す図である。
FIG. 3 is a diagram showing a relationship between oil supply temperature and oil viscosity under an oil supply state.

【図4】 第1発明に係るスクリュ冷凍機の全体構成を
示す図である。
FIG. 4 is a view showing the overall configuration of the screw refrigerator according to the first invention.

【図5】 従来の油冷式圧縮機本体を用いた冷凍機の全
体構成を示す図である。
FIG. 5 is a diagram showing an entire configuration of a refrigerator using a conventional oil-cooled compressor main body.

【図6】 図5に示す冷凍機と同様の構造を単段形スク
リュ圧縮機本体に適用した場合における油冷却器からで
た冷媒ガスの戻り位置を示す図である。
6 is a diagram showing a return position of a refrigerant gas from an oil cooler when a structure similar to the refrigerator shown in FIG. 5 is applied to a single-stage screw compressor main body.

【符号の説明】[Explanation of symbols]

1 スクリュ圧縮機本体 2 油分離回収
器 3 凝縮器 4 第1膨張弁 5 蒸発器 8 第2膨張弁 9 流量調節弁 12,13 感
温筒 I 循環流路 II 油供給流路 III 冷媒用分岐流路
DESCRIPTION OF SYMBOLS 1 Screw compressor main body 2 Oil separation and recovery unit 3 Condenser 4 First expansion valve 5 Evaporator 8 Second expansion valve 9 Flow control valve 12, 13 Thermosensitive cylinder I Circulation channel II Oil supply channel III Branch flow for refrigerant Road

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 油冷式スクリュ圧縮機本体の他、少なく
とも油分離回収器、凝縮器、第1膨張弁および蒸発器を
含む冷媒の閉じた循環流路と、上記油分離回収器の下部
の油溜まり部から油冷却器を経て、上記圧縮機本体内の
ロータ収容空間、軸受・軸封部等の給油箇所に至る油供
給流路と、上記凝縮器と上記第1膨張弁との間の上記循
環流路の部分から分岐して第2膨張弁を経て、上記油供
給流路内の油と熱交換可能に上記油冷却器内を通過した
後、上記圧縮機本体内のガス圧縮空間に至る冷媒用分岐
流路と、上記油冷却器の二次側の部分にて、上記分岐流
路内の冷媒の過熱度を検出し、この過熱度を、上記圧縮
機本体に給油される油の温度が60〜80℃に保たれる
ために必要な範囲内の値にするように上記第2膨張弁の
開度を調節する感温筒とを設けて形成したことを特徴と
するスクリュ冷凍機。
1. An oil-cooled screw compressor main body, a closed circulation flow path of a refrigerant including at least an oil separation and recovery unit, a condenser, a first expansion valve and an evaporator, and a lower part of the oil separation and recovery unit. An oil supply passage extending from an oil reservoir to an oil supply point, such as a rotor housing space in the compressor body, a bearing / shaft seal, or the like, through an oil cooler, and an oil supply passage between the condenser and the first expansion valve. After branching from the portion of the circulation flow path, passing through the oil cooler through the second expansion valve so as to be able to exchange heat with the oil in the oil supply flow path, the oil flows into the gas compression space in the compressor body. In the refrigerant branch flow path and the secondary side of the oil cooler, the degree of superheat of the refrigerant in the branch flow path is detected, and the degree of superheat is determined by the amount of oil supplied to the compressor body. Temperature sensing for adjusting the opening of the second expansion valve so that the temperature is kept within a range necessary for maintaining the temperature at 60 to 80 ° C. A screw refrigerating machine formed by providing a tube.
【請求項2】 油冷式スクリュ圧縮機本体の他、少なく
とも油分離回収器、凝縮器、第1膨張弁および蒸発器を
含む冷媒の閉じた循環流路と、上記油分離回収器の下部
の油溜まり部から油冷却器を経て、上記圧縮機本体内の
ロータ収容空間、軸受・軸封部等の給油箇所に至る油供
給流路と、上記凝縮器と上記第1膨張弁との間の上記循
環流路の部分から分岐して温度調節用流量調節弁を経
て、上記油供給流路内の油と熱交換可能に上記油冷却器
内を通過した後、上記圧縮機本体内のガス圧縮空間に至
る冷媒用分岐流路と、上記油冷却器と上記圧縮機本体と
の間にて、上記油供給流路内の油の温度を検出し、この
検出温度に基づき、上記圧縮機本体に給油される油の温
度が60〜80℃に保たれるために必要な範囲内の値に
するように上記流量調節弁の開度を調節する感温筒とを
設けて形成したことを特徴とするスクリュ冷凍機。
2. An oil-cooled screw compressor main body, a closed circulation flow path of a refrigerant including at least an oil separation and recovery unit, a condenser, a first expansion valve and an evaporator, and a lower part of the oil separation and recovery unit. An oil supply passage extending from an oil reservoir to an oil supply point, such as a rotor housing space in the compressor body, a bearing / shaft seal, or the like, through an oil cooler, and an oil supply passage between the condenser and the first expansion valve. After branching from the part of the circulation flow path and passing through the oil cooler through a temperature control flow control valve and heat exchange with oil in the oil supply flow path, gas compression in the compressor body is performed. The refrigerant branch flow path to the space, between the oil cooler and the compressor main body, detects the temperature of the oil in the oil supply flow path, based on the detected temperature, the compressor main body The above flow rate adjustment is performed so that the temperature of the oil to be supplied is within a range necessary for maintaining the temperature of the oil at 60 to 80 ° C. A screw refrigerator comprising a temperature-sensitive cylinder for adjusting the degree of opening of a node valve.
JP5312297A 1997-03-07 1997-03-07 Screw type freezer Pending JPH10246522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5312297A JPH10246522A (en) 1997-03-07 1997-03-07 Screw type freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5312297A JPH10246522A (en) 1997-03-07 1997-03-07 Screw type freezer

Publications (1)

Publication Number Publication Date
JPH10246522A true JPH10246522A (en) 1998-09-14

Family

ID=12934011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5312297A Pending JPH10246522A (en) 1997-03-07 1997-03-07 Screw type freezer

Country Status (1)

Country Link
JP (1) JPH10246522A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308330A (en) * 2004-04-22 2005-11-04 Kobe Steel Ltd Screw refrigeration unit
JP2012137214A (en) * 2010-12-24 2012-07-19 Mitsubishi Electric Corp Refrigerating device
JP2012202565A (en) * 2011-03-23 2012-10-22 Mitsubishi Electric Corp Refrigeration device
CN105180541A (en) * 2015-10-14 2015-12-23 珠海格力电器股份有限公司 Injection oil return control method and device for air-conditioning system and air-conditioning system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308330A (en) * 2004-04-22 2005-11-04 Kobe Steel Ltd Screw refrigeration unit
JP4546136B2 (en) * 2004-04-22 2010-09-15 株式会社神戸製鋼所 Screw refrigeration equipment
JP2012137214A (en) * 2010-12-24 2012-07-19 Mitsubishi Electric Corp Refrigerating device
JP2012202565A (en) * 2011-03-23 2012-10-22 Mitsubishi Electric Corp Refrigeration device
CN105180541A (en) * 2015-10-14 2015-12-23 珠海格力电器股份有限公司 Injection oil return control method and device for air-conditioning system and air-conditioning system

Similar Documents

Publication Publication Date Title
JP2009532654A (en) Refrigeration transport unit
JP3238973B2 (en) Refrigeration equipment
JP2000146328A (en) Refrigerating and air-conditioning device
JPH08189753A (en) Refrigerator
US2221062A (en) Refrigerating apparatus
JP2000205670A (en) Vapor compression type refrigeration cycle
JPH07190520A (en) Freezer
JPH10246522A (en) Screw type freezer
JP2002267285A (en) Cooler/refrigerator
US7263849B2 (en) Refrigerating system for refrigerator
JP3495899B2 (en) Screw refrigerator
JP4269459B2 (en) Freezer refrigerator
JP3458058B2 (en) Refrigeration equipment
EP1496321B1 (en) Refrigerating equipment
JPH04106379A (en) Refrigerating device
CA2256768C (en) Refrigeration system with improved heat exchanger efficiency
JPH07260262A (en) Refrigerating device
ES2157742A1 (en) Method of operating a refrigerating unit with a refrigerant fluid circuit
KR850000602B1 (en) Decompression apparatus of freezing apparatus
JPH0854148A (en) Refrigerating device
JP3541110B2 (en) Screw refrigerator
JPH06281296A (en) Expansion valve
CN211424747U (en) Oilless bearing liquid supply system and air conditioning unit
JPH1137580A (en) Screw type freezer
JPH03152349A (en) Freezer device