JP2000146328A - Refrigerating and air-conditioning device - Google Patents

Refrigerating and air-conditioning device

Info

Publication number
JP2000146328A
JP2000146328A JP10325174A JP32517498A JP2000146328A JP 2000146328 A JP2000146328 A JP 2000146328A JP 10325174 A JP10325174 A JP 10325174A JP 32517498 A JP32517498 A JP 32517498A JP 2000146328 A JP2000146328 A JP 2000146328A
Authority
JP
Japan
Prior art keywords
valve
refrigerant
compressor
air
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10325174A
Other languages
Japanese (ja)
Other versions
JP4115017B2 (en
Inventor
Ichiro Kamimura
一朗 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP32517498A priority Critical patent/JP4115017B2/en
Publication of JP2000146328A publication Critical patent/JP2000146328A/en
Application granted granted Critical
Publication of JP4115017B2 publication Critical patent/JP4115017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0415Refrigeration circuit bypassing means for the receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the damage of a compressor by a method wherein an opening and closing valve, a refrigerant regulating tank and a control valve are arranged while the valves are controlled by an opening and closing controller so that an excessive load is not applied on the compressor upon starting the same and the amount of refrigerant, coping with the load, is supplied as the load becomes that of stationary operation. SOLUTION: When the operation of a refrigerating and air-conditioning cycle 2 is started, an opening and closing valve 11 is opened by a valve opening degree controller 15 and the valve is closed after the number of rotation of a compressor or the supply of oil to respective sliding parts is stabilized. Then, the circulation of carbon dioxide gas refrigerant is started and, after a substantially stationary operating condition is achieved and temperature regulation by a utilizing side heat exchanger 7 is started, the opening degree of opening and closing valves 13, 14 before and after a refrigerant regulating tank 12 are regulated so that the amount of refrigerant in the refrigerating and air-conditioning cycle 2 becomes an amount coping with a load. On the other hand, when the operation of the refrigerating and air- conditioning cycle 2 is to be stopped, the opening degree of the opening and closing valves 13, 14 is regulated prior to the stopping of the compressor 1 to recover the refrigerant into the regulating tank 12 and, thereafter, the opening and closing valve 11 is closed to stop the compressor 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮機と熱交換器
とを冷媒管で接続して密閉された冷媒の循環サイクルを
構成し、このサイクルの作動冷媒として二酸化炭素を使
用した冷凍空調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating and air-conditioning system in which a compressor and a heat exchanger are connected with a refrigerant pipe to form a closed refrigerant circulation cycle, and carbon dioxide is used as a working refrigerant in this cycle. About.

【0002】[0002]

【従来の技術】二酸化炭素を冷媒とする空気調和装置や
冷凍機等の冷凍空調装置は、CFC冷媒を避け、環境の
安全に役立つという趣旨でいくつかの改良がなされてい
る。二酸化炭素を冷媒とする冷凍空調サイクルと従来か
ら広く使用されているCFCやアンモニアを冷媒とする
冷凍空調サイクルとの最も大きな違いは、CFC冷媒に
代表される従来の冷媒は、もっぱら臨界圧力未満で運転
作動されるのに対して、二酸化炭素を冷媒とするサイク
ルでは、二酸化炭素の臨界温度が-31度Cと低いため
に、超臨界条件下でのサイクル運転となることである。
このため、冷凍空調制御(以下調温制御という)につい
ても、従来は、冷凍空調サイクル中の蒸発器を通過する
冷媒の質量を膨張弁で制御することによって行われてい
たのに対して、二酸化炭素を冷媒とするサイクルでは、
画一的な制御方法が定まっていない。
2. Description of the Related Art Refrigeration and air-conditioning systems such as air conditioners and refrigerators using carbon dioxide as a refrigerant have been improved in some ways to avoid CFC refrigerants and to contribute to environmental safety. The biggest difference between the refrigeration and air conditioning cycle using carbon dioxide as the refrigerant and the refrigeration and air conditioning cycle using CFC or ammonia as the refrigerant, which has been widely used in the past, is that the conventional refrigerant represented by the CFC refrigerant has a pressure less than the critical pressure. On the other hand, in a cycle using carbon dioxide as a refrigerant, the cycle operation is performed under supercritical conditions because the critical temperature of carbon dioxide is as low as −31 ° C.
For this reason, refrigeration / air-conditioning control (hereinafter referred to as temperature control) has conventionally been performed by controlling the mass of refrigerant passing through an evaporator in a refrigeration / air-conditioning cycle by an expansion valve. In a cycle using carbon as a refrigerant,
A uniform control method has not been determined.

【0003】また、二酸化炭素を冷媒とする冷凍空調サ
イクルでは、圧縮機の吐出口につながる高圧側と圧縮機
の吸込口につながる低圧側との圧力差は大きく、圧縮機
にかかる負荷も従来の冷媒とは比較にならないほど大き
くなるために、冷凍空調サイクルの構成を基本から見直
した改善及び圧縮機やサイクルの構成部品の改良が必要
とされている。
In a refrigeration / air-conditioning cycle using carbon dioxide as a refrigerant, the pressure difference between the high pressure side connected to the discharge port of the compressor and the low pressure side connected to the suction port of the compressor is large. Since the size of the refrigerating and air-conditioning cycle is incomparably larger than that of the refrigerant, there is a need to improve the structure of the refrigeration / air-conditioning cycle from the basics and to improve the components of the compressor and the cycle.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
観点からなされたものであり、二酸化炭素を冷媒とする
超臨界蒸気圧縮サイクルにおける圧縮機の起動性の改良
による圧縮機損傷の防止と併せて、冷暖房等の調温や熱
負荷に応じて、これに適した調温能力を発揮させる調整
装置を設けることにより、効率の向上された二酸化炭素
冷媒(以下炭酸ガス冷媒と略称する)の冷凍空調装置を
提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and has been made to prevent compressor damage by improving the startability of a compressor in a supercritical vapor compression cycle using carbon dioxide as a refrigerant. At the same time, by providing an adjusting device that exerts a temperature control ability suitable for temperature control and heat load such as cooling and heating, an improved efficiency of carbon dioxide refrigerant (hereinafter abbreviated as carbon dioxide gas refrigerant) is provided. It is to provide a refrigeration and air conditioning system.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明の請求項1に係る冷凍空調装置は、圧縮機、
利用側熱交換器、膨張弁、熱源側熱交換器等を順次冷媒
管で気密に接続して冷凍空調サイクルを構成し、この冷
凍空調サイクルの作動冷媒として二酸化炭素を用いたも
のにおいて、圧縮機の吐出口から膨張弁に至る高圧側の
冷媒管路と膨張弁から圧縮機の吸込口に至る低圧側の冷
媒管路とを開閉弁を介して連通する側路管を設けるとと
もに、この開閉弁の開閉を制御する制御器および、この
弁開閉制御器は圧縮機の停止時には側路管の開閉弁を開
放し、かつ、圧縮機の運転開始時には圧縮機の運転が定
常運転に移行した後に前記開閉弁を閉止するように作動
させるようにしたものである。
In order to solve the above-mentioned problems, a refrigeration / air-conditioning apparatus according to claim 1 of the present invention comprises a compressor,
The use side heat exchanger, expansion valve, heat source side heat exchanger, etc. are sequentially airtightly connected by refrigerant pipes to form a refrigeration / air-conditioning cycle. A side pipe connecting the high pressure side refrigerant pipe from the discharge port to the expansion valve and the low pressure side refrigerant pipe from the expansion valve to the suction port of the compressor via an on / off valve is provided. And a controller for controlling the opening and closing of the valve, the valve opening and closing controller opens the on-off valve of the bypass pipe when the compressor is stopped, and at the start of the operation of the compressor, after the operation of the compressor shifts to the steady operation, The on-off valve is operated to be closed.

【0006】これにより、圧縮機の始動時には、負荷が
かからない状態、或いは軽い負荷状態で圧縮機になじみ
運転をさせ、摺動部の潤滑機構や機械各部の温度平衡な
どが定常運転状態に移行した後に開閉弁を閉じて、通常
の冷凍サイクルによる炭酸ガス冷媒の循環を行なえるよ
うにしたものであり、炭酸ガス冷媒による冷凍空調サイ
クル運転を維持するための高い圧力差が、始動初期の圧
縮機の機械各部にかかって圧縮機に損傷を生じることを
未然に防ぐことができる。
As a result, when the compressor is started, the compressor is operated with no load or light load, and the lubrication mechanism of the sliding portion and the temperature equilibrium of each part of the machine are shifted to the steady operation state. The on-off valve is later closed to allow circulation of the carbon dioxide gas refrigerant by the normal refrigeration cycle.The high pressure difference for maintaining the refrigeration and air conditioning cycle operation by the carbon dioxide gas refrigerant causes It is possible to prevent the compressor from being damaged due to each part of the machine.

【0007】また、請求項2の冷凍空調装置は、請求項
1と同様な冷凍空調サイクルにおいて、高圧側の冷媒管
路と低圧側の冷媒管路とを開閉弁を介して連通する側路
管を設けるとともに、膨張弁と並列に制御開閉弁付きの
冷媒調整タンク及びこれらの弁の開度を調整する制御器
を設け、この弁開度制御器は、圧縮機の停止時には側路
管の開閉弁を開放し、かつ、冷媒調整タンクの制御開閉
弁を閉止すると共に、圧縮機の運転開始後には側路管の
開閉弁を閉止し、かつ、冷媒調整タンクの制御開閉弁の
開度を空調負荷に応じた冷媒量が冷凍空調サイクルに供
給されるように調整するものである。
According to a second aspect of the present invention, there is provided a refrigeration / air-conditioning system similar to the first aspect, wherein the high-pressure side refrigerant pipe and the low-pressure side refrigerant pipe communicate with each other via an on-off valve. A refrigerant adjustment tank with a control opening and closing valve and a controller for adjusting the opening of these valves are provided in parallel with the expansion valve, and the valve opening controller opens and closes the bypass pipe when the compressor stops. Open the valve and close the control on-off valve of the refrigerant adjustment tank, close the on-off valve of the bypass pipe after starting operation of the compressor, and air-condition the opening degree of the control on-off valve of the refrigerant adjustment tank. The adjustment is performed so that the amount of the refrigerant according to the load is supplied to the refrigeration / air-conditioning cycle.

【0008】これにより、炭酸ガスによる冷凍空調サイ
クル運転を維持するための高い圧力差が圧縮機にかかっ
て、圧縮機に障害を生じることを防ぎ、併せて、冷暖房
のための空気やブラインの調温や冷凍等の熱負荷に応じ
た冷媒量を適宜、冷凍空調サイクルに供給、調整するこ
とにより、運転制御を安定させにくい超臨界蒸気圧縮サ
イクル条件下における効率的な能力制御や調温制御を可
能にしたものである。
[0008] This prevents the compressor from being subjected to a high pressure difference for maintaining the refrigeration / air-conditioning cycle operation by carbon dioxide gas and causing a failure in the compressor, and also controls air and brine for cooling and heating. By appropriately supplying and adjusting the amount of refrigerant according to the heat load such as temperature and refrigeration to the refrigeration and air conditioning cycle, efficient capacity control and temperature control under supercritical vapor compression cycle conditions where operation control is difficult to stabilize It is made possible.

【0009】[0009]

【発明の実施の形態】以下に本発明の好適な実施の形態
を図に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0010】図1において、1は従来から広く使用され
ている電動機などを動力とした圧縮機であり、これによ
り冷凍空調サイクル2中の炭酸ガス冷媒を圧縮し循環さ
せる。この圧縮機1の吐出口3と吸込口4とは、四方弁
5を介して熱源側熱交換器6、利用側熱交換器7、膨張
弁8等に冷媒管9で気密に接続されて冷凍空調サイクル
2を構成している。利用側熱交換器7は空調する環境に
設置され、冷媒の熱を放出して部屋の暖房したり、利用
側熱交換器7の周囲の空気やブラインから熱を吸収、冷
却して冷房したりする熱交換器であり、熱源側熱交換器
6は屋外に設置されて暖房の熱を得たり、冷房をして冷
凍空調サイクル2に取り込まれた熱を放出して冷凍空調
サイクル2の継続的な運転を行なわせる熱交換器であ
る。
In FIG. 1, reference numeral 1 denotes a compressor powered by an electric motor or the like which has been widely used in the past, and compresses and circulates a carbon dioxide gas refrigerant in a refrigeration / air-conditioning cycle 2. The discharge port 3 and the suction port 4 of the compressor 1 are air-tightly connected to a heat source side heat exchanger 6, a use side heat exchanger 7, an expansion valve 8 and the like via a four-way valve 5 via a refrigerant pipe 9, and are refrigerated. The air conditioning cycle 2 is configured. The use side heat exchanger 7 is installed in an environment for air conditioning, and discharges heat of the refrigerant to heat the room, absorbs heat from air or brine around the use side heat exchanger 7, cools the room, and cools the room. The heat source side heat exchanger 6 is installed outdoors to obtain heating heat, or to cool and release heat taken into the refrigeration / air-conditioning cycle 2 to continuously operate the refrigeration / air-conditioning cycle 2. This is a heat exchanger that performs a simple operation.

【0011】10は、圧縮機1の吐出口3側の管路と吸
込口4側の管路とを開閉弁11を介して連通する側路管
であり、12は、膨張弁8と並列に制御開閉弁13、1
4を介して接続された冷媒調整タンクである。これらの
制御開閉弁13、14、側路管10の開閉弁11及び膨
張弁8はいずれも弁開度制御器15に電気的に接続さ
れ、弁開度制御器15は、例えば、利用側熱交換器7に
設けられたセンサ16からの信号や圧縮機1からの運転
信号(図示省略)を受けて、次のようにそれぞれの弁
8、11、13、14の制御をするものである。
Reference numeral 10 denotes a side pipe connecting the pipe on the discharge port 3 side of the compressor 1 and the pipe on the suction port 4 via an on-off valve 11, and 12 denotes a side pipe in parallel with the expansion valve 8. Control on-off valve 13, 1
4 is a refrigerant adjustment tank connected via the control valve 4. The control on-off valves 13 and 14, the on-off valve 11 of the bypass pipe 10, and the expansion valve 8 are all electrically connected to a valve opening controller 15. In response to a signal from a sensor 16 provided in the exchanger 7 and an operation signal (not shown) from the compressor 1, the valves 8, 11, 13, and 14 are controlled as follows.

【0012】先ず、冷凍空調サイクル2が運転を開始す
るために、圧縮機1の運転を開始するときは、弁開度制
御器15は、開閉弁11を開放状態で運転開始させ、圧
縮機1の回転数や各摺動部への給油が安定した後に弁1
1を閉止させる。このようにして、冷凍空調サイクル2
を炭酸ガス冷媒が循環を始め、ほぼ定常運転に近くな
り、利用側熱交換器7による調温が開始されてから後
に、冷媒調整タンク12の制御開閉弁13、14の開度
を調整して、冷媒調整タンク12中の冷媒を冷凍空調サ
イクル2中に補充したり、冷凍空調サイクル2から冷媒
を冷媒調整タンク12に戻す等の冷媒量の調整をして、
冷凍空調サイクル2中の冷媒量が負荷に適合した量にな
るよう、負荷が大きいときは、サイクル中の冷媒量を増
大させ、負荷が小さいときは、冷媒調整タンク12に冷
媒を回収してサイクル中の冷媒量を減らして冷凍空調負
荷とのバランスを取るようにするものである。
First, when the operation of the compressor 1 is started in order to start the operation of the refrigeration / air-conditioning cycle 2, the valve opening controller 15 starts operation of the on-off valve 11 in the open state, After the number of revolutions of the oil and lubrication of each sliding part are stabilized, the valve 1
1 is closed. Thus, the refrigerating air conditioning cycle 2
After the carbon dioxide gas refrigerant starts to circulate, the operation becomes almost steady, and after the temperature adjustment by the use side heat exchanger 7 is started, the opening of the control on-off valves 13 and 14 of the refrigerant adjustment tank 12 is adjusted. The amount of refrigerant is adjusted by replenishing the refrigerant in the refrigerant adjustment tank 12 into the refrigeration / air-conditioning cycle 2 or returning the refrigerant from the refrigeration / air-conditioning cycle 2 to the refrigerant adjustment tank 12.
When the load is large, the amount of refrigerant in the cycle is increased so that the amount of refrigerant in the refrigeration / air-conditioning cycle 2 matches the load. This is to reduce the amount of refrigerant inside to balance with the refrigeration and air conditioning load.

【0013】例えば、負荷が小さいときは、センサ16
が負荷よりも大きな調温能力を得ているという信号を制
御器15に送るので、制御器15は、膨張弁8を開放の
方向に、制御開閉弁13を開放方向に、制御開閉弁14
を閉止方向にそれぞれ制御し、冷媒調整タンク12に炭
酸ガス冷媒を貯えて、冷凍空調サイクル2中の冷媒量が
負荷に適合した量になるように減少させて調温能力を低
下させる。逆に、負荷が大きいとき、或いは大きくなる
傾向にあるとセンサ16からの信号を制御器15が受け
るときは、膨張弁8を絞る方向に、制御開閉弁13を閉
止の方向に、制御開閉弁14を開放方向にそれぞれ制御
して、冷凍空調サイクル2中に冷媒を供給し、冷媒量を
増大させることによって、冷凍空調サイクル2中の冷媒
量を増大させ、負荷に適合させるものである。
For example, when the load is small, the sensor 16
Sends a signal to the controller 15 that the temperature control capability is greater than the load, the controller 15 sets the expansion valve 8 in the opening direction, the control on / off valve 13 in the opening direction, and the control on / off valve 14
Are controlled in the closing direction, and the carbon dioxide gas refrigerant is stored in the refrigerant adjustment tank 12, and the amount of the refrigerant in the refrigeration / air-conditioning cycle 2 is reduced so as to be suitable for the load, thereby lowering the temperature control ability. Conversely, when the controller 15 receives a signal from the sensor 16 when the load is large or tends to be large, the control valve 15 is closed in the direction of closing the expansion valve 8 and the control valve 13 is closed. 14 is controlled in the opening direction to supply the refrigerant into the refrigeration / air-conditioning cycle 2 and increase the refrigerant amount, thereby increasing the refrigerant amount in the refrigeration / air-conditioning cycle 2 and adapting to the load.

【0014】このように、膨張弁8は、従来の冷凍空調
サイクル2の制御と同様に制御器で制御されるのである
が、炭酸ガス冷媒による冷凍空調サイクルは超臨界サイ
クル条件下にあるので、冷媒は凝縮器として働いている
熱交換器においてもガスと液の二相混合状態にあり、能
力制御が限られるのであるが、本発明のように、高低圧
差をなくした状態で圧縮機の運転を開始させ、圧縮機1
の摺動部の潤滑や機械各部の温度的な平衡が定常運転の
状態に移行した後に冷媒調整タンク12により、冷媒量
を調整する制御をするように弁の制御を併用すれば、圧
縮機1に過大な負荷をかけずに圧縮機1の始動を行なう
ことができ、冷凍空調サイクル2が調温運転に至った後
は、調温負荷に適合させた効率の良い炭酸ガス冷媒によ
る冷凍空調運転に移行できるものである。
As described above, the expansion valve 8 is controlled by the controller similarly to the control of the conventional refrigeration / air-conditioning cycle 2. However, since the refrigeration / air-conditioning cycle using the carbon dioxide refrigerant is under the supercritical cycle condition, The refrigerant is in a two-phase mixed state of gas and liquid even in the heat exchanger acting as a condenser, and the capacity control is limited, but as in the present invention, the operation of the compressor in a state where the high and low pressure difference is eliminated To start the compressor 1
After the lubrication of the sliding parts and the temperature equilibrium of each part of the machine have shifted to the steady operation state, the refrigerant adjustment tank 12 is used together with the valve control so as to control the amount of refrigerant. The compressor 1 can be started without imposing an excessive load on the air conditioner, and after the refrigeration / air-conditioning cycle 2 reaches the temperature control operation, the refrigeration / air-conditioning operation with the efficient carbon dioxide refrigerant adapted to the temperature control load is performed. Can be transferred to

【0015】次に、冷凍空調サイクル2が運転を停止す
るときは、圧縮機1の停止に先立って、弁開度制御器1
5は、冷媒調整タンク12の制御開閉弁13、14の開
度を調整して、炭酸ガス冷媒を冷媒調整タンク12中に
回収し、冷凍空調サイクル2中の冷媒量を減じ、圧縮機
1や側路管10の開閉弁11にかかる圧力的な負荷を軽
減させるようにした後に、制御開閉弁13、14を閉
じ、次に、開閉弁11を開き圧縮機1を停止させる。こ
のとき、開閉弁11を開いてから圧縮機1を停止すれ
ば、圧縮機1の停止後に高圧がかからない反面、側路管
10の開閉弁11の開放時に騒音などの弊害を生じるお
それがあり、逆に圧縮機1を停止してから開閉弁11を
開くときは開閉弁11の開放による弊害がない代りに、
圧縮機1中に不測の弊害を伴うおそれもある。いずれを
先に機能させるかは、冷凍空調サイクル2の使用環境に
よって適宜選択されるものであるが、運転停止は最終的
には、側路管の開閉弁11の開放状態、冷媒調整タンク
12の制御開閉弁13、14の閉止状態となる。
Next, when the refrigeration / air-conditioning cycle 2 is stopped, prior to the stop of the compressor 1, the valve opening controller 1
5 adjusts the degree of opening of the control on / off valves 13 and 14 of the refrigerant adjustment tank 12, collects the carbon dioxide refrigerant in the refrigerant adjustment tank 12, reduces the amount of refrigerant in the refrigeration / air-conditioning cycle 2, reduces After the pressure load on the on-off valve 11 of the bypass pipe 10 is reduced, the control on-off valves 13 and 14 are closed, and then the on-off valve 11 is opened to stop the compressor 1. At this time, if the compressor 1 is stopped after the open / close valve 11 is opened, high pressure is not applied after the stop of the compressor 1, but adverse effects such as noise may occur when the open / close valve 11 of the bypass pipe 10 is opened. Conversely, when the on-off valve 11 is opened after the compressor 1 is stopped, there is no harm caused by the opening of the on-off valve 11,
There is a possibility that unexpected adverse effects may occur in the compressor 1. Which one to function first is appropriately selected depending on the use environment of the refrigeration / air-conditioning cycle 2, but the operation stop is ultimately performed by the open state of the on-off valve 11 of the bypass pipe and the refrigerant adjustment tank 12. The control on-off valves 13 and 14 are closed.

【0016】なお、上記の内容は、本発明の最も好まし
い実施の形態について説明したものであるが、本発明の
基本的な思想としては、弁開度制御器15をいわゆる弁
開閉制御器とし、炭酸ガス冷媒を用いた冷凍空調サイク
ル2の圧縮機1の吐出口3から膨張弁8に至る高圧側の
冷媒管路と、膨張弁8から圧縮機1の吸込口4に至る低
圧側の冷媒管路とを連通する側路管10に設けられた開
閉弁11の開閉を、圧縮機1の停止時には開放し、か
つ、圧縮機1の運転開始時には圧縮機1の運転が定常運
転に移行した後に閉止するように作動させればよいもの
である。
Although the above description has been given of the most preferred embodiment of the present invention, the basic idea of the present invention is that the valve opening controller 15 is a so-called valve opening / closing controller. A refrigerant pipe on the high pressure side from the discharge port 3 of the compressor 1 to the expansion valve 8 of the refrigeration / air-conditioning cycle 2 using carbon dioxide refrigerant, and a refrigerant pipe on the low pressure side from the expansion valve 8 to the suction port 4 of the compressor 1 The opening and closing of the on-off valve 11 provided in the bypass pipe 10 communicating with the road is opened when the compressor 1 is stopped, and when the operation of the compressor 1 shifts to the steady operation when the operation of the compressor 1 is started. What is necessary is just to operate so that it may close.

【0017】また、開閉弁11や冷媒調整タンクの制御
開閉弁13、14は、圧縮機1の運転の開始、運転中、
運転停止時においてそれぞれ上述のような形で機能する
ので、その配管接続は、図1に示した構成に限らない。
例えば、側路管の開閉弁11及び冷媒調整タンク12
は、いずれも、圧縮機1の吐出口3から膨張弁8に至る
高圧側の冷媒管路と膨張弁8から圧縮機1の吸込口4に
至る低圧側の冷媒管路とを連通する側路管10に設けら
れれば、上述の機能を発揮できるものであり、開閉弁1
1に関していえば、この開閉弁11と同様な機構が圧縮
機1の内部に組込まれていても構わないものである。
The on-off valve 11 and the control on-off valves 13 and 14 of the refrigerant regulating tank are used to start and stop the operation of the compressor 1.
Each of the pipes is not limited to the configuration shown in FIG.
For example, the on-off valve 11 of the bypass pipe and the refrigerant adjustment tank 12
In any case, a bypass connecting the high pressure side refrigerant pipe from the discharge port 3 of the compressor 1 to the expansion valve 8 and the low pressure side refrigerant pipe from the expansion valve 8 to the suction port 4 of the compressor 1 If provided on the pipe 10, the above-mentioned function can be exhibited, and the on-off valve 1
With regard to 1, the same mechanism as the on-off valve 11 may be incorporated in the compressor 1.

【0018】更に、冷媒調整タンク12の設置も、この
冷媒調整タンク12と冷凍空調サイクル2との間の冷媒
の授受に最も適した位置として、膨張弁8と並列に取り
付けられたものであり、側路管10の開閉弁11と組み
合わされて上述の機能を有するものであれば、多少の取
付位置の変更は、本発明の趣旨を逸脱するものではな
い。
Further, the refrigerant adjustment tank 12 is installed in parallel with the expansion valve 8 as a position most suitable for the exchange of refrigerant between the refrigerant adjustment tank 12 and the refrigeration / air-conditioning cycle 2. As long as it has the above-mentioned function in combination with the on-off valve 11 of the bypass pipe 10, a slight change in the mounting position does not deviate from the gist of the present invention.

【0019】更にまた、冷媒調整タンク12の制御開閉
弁13、14についても、必ず二つ必要というわけでは
なく、二つの弁が持つ上述の機能を一つの弁で機能さ
せ、これを冷媒調整タンク12の中に組込まれても本発
明の実施構造であることはいうまでもない。
Further, two control opening / closing valves 13 and 14 of the refrigerant adjustment tank 12 are not necessarily required, and the above-described functions of the two valves are operated by one valve. Needless to say, even if it is incorporated in the embodiment 12, it is an embodiment of the present invention.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
炭酸ガス冷媒を使用した冷凍空調サイクルにおいて、開
閉弁と冷媒調整タンクおよび制御弁とを配設し、弁の開
閉制御器によってこれらの弁を制御することによって、
圧縮機の始動時は圧縮機に過大な負荷がかからず、定常
運転になるに従って負荷に見合った冷媒量を冷凍空調サ
イクルに供給、調整するようにしたので、炭酸ガス冷媒
の機構を単純化し、圧縮機の損傷を少なくしてその起動
性の改良を図ることができる。またこれと併せて、冷暖
房等の調温や冷凍の熱負荷に応じて、これに適した調温
制御を効率良く行なう、機能の向上された炭酸ガス冷媒
の冷凍空調装置を提供することができるものである。ま
た、このような冷凍サイクルを用いることにより、フロ
ン等を冷媒とする圧縮機と同様な圧縮機でも炭酸ガス冷
媒を使った冷凍サイクルに使用できる可能性が見出せる
ものである。
As described above, according to the present invention,
In a refrigeration / air-conditioning cycle using carbon dioxide refrigerant, an on-off valve, a refrigerant adjustment tank, and a control valve are provided, and these valves are controlled by an on-off controller for the valve.
When starting the compressor, no excessive load is applied to the compressor, and the amount of refrigerant corresponding to the load is supplied and adjusted to the refrigeration / air-conditioning cycle as the operation becomes steady, simplifying the mechanism of carbon dioxide gas refrigerant. In addition, the startability of the compressor can be improved with less damage to the compressor. In addition, it is possible to provide a carbon dioxide refrigerant refrigeration / air-conditioning apparatus with improved functions, which efficiently performs temperature control suitable for temperature control such as cooling and heating or the heat load of refrigeration. Things. Further, by using such a refrigeration cycle, it is possible to find a possibility that a compressor similar to a compressor using chlorofluorocarbon or the like as a refrigerant can be used for a refrigeration cycle using a carbon dioxide gas refrigerant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る冷凍空調サイクルの
概略構成図である。
FIG. 1 is a schematic configuration diagram of a refrigeration / air-conditioning cycle according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 冷凍空調サイクル 3 吐出口 4 吸込口 6 熱源側熱交換器 7 利用側熱交換器 8 膨張弁 9 冷媒管 10 側路管 11 開閉弁 12 冷媒調整タンク 13、14 制御開閉弁 15 弁開度制御器 DESCRIPTION OF SYMBOLS 1 Compressor 2 Refrigeration / air-conditioning cycle 3 Discharge port 4 Suction port 6 Heat source side heat exchanger 7 User side heat exchanger 8 Expansion valve 9 Refrigerant pipe 10 Side pipe 11 Opening / closing valve 12 Refrigerant regulating tank 13, 14 Control opening / closing valve 15 Valve Opening controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、利用側熱交換器、膨張弁、熱源
側熱交換器等を順次冷媒管で気密に接続して冷凍空調サ
イクルを構成し、この冷凍空調サイクルの作動冷媒とし
て二酸化炭素を用いたものにおいて、 圧縮機の吐出口から膨張弁に至る高圧側の冷媒管路と膨
張弁から圧縮機の吸込口に至る低圧側の冷媒管路とを開
閉弁を介して連通する側路管をおよび、この開閉弁の開
閉を制御する制御器を設け、この弁開閉制御器は圧縮機
の停止時には側路管の開閉弁を開放し、かつ、圧縮機の
運転開始時には圧縮機の運転が定常運転に移行した後に
前記開閉弁を閉止するように作動させることを特徴とす
る冷凍空調装置。
1. A refrigeration / air-conditioning cycle is constituted by sequentially connecting a compressor, a use side heat exchanger, an expansion valve, a heat source-side heat exchanger and the like in a gas-tight manner with a refrigerant pipe. A bypass line that connects a high-pressure refrigerant line from the compressor discharge port to the expansion valve and a low-pressure side refrigerant line from the expansion valve to the compressor suction port via an on-off valve. A pipe and a controller for controlling the opening and closing of the on-off valve are provided. The valve on-off controller opens the on-off valve of the bypass pipe when the compressor is stopped, and operates the compressor when the compressor starts operating. Is operated so as to close the on-off valve after shifting to a steady operation.
【請求項2】 圧縮機、利用側熱交換器、膨張弁、熱源
側熱交換器等を順次冷媒管で気密に接続して冷凍空調サ
イクルを構成し、この冷凍空調サイクルの作動冷媒とし
て二酸化炭素を用いたものにおいて、 圧縮機の吐出口から膨張弁に至る高圧側の冷媒管路と膨
張弁から圧縮機の吸込口に至る低圧側の冷媒管路とを開
閉弁を介して連通する側路管および、膨張弁と並列に制
御開閉弁付きの冷媒調整タンク及びこれらの弁の開度を
調整する制御器を設け、この弁開度制御器は圧縮機の停
止時には側路管の開閉弁を開放し、かつ、冷媒調整タン
クの制御開閉弁を閉止すると共に、圧縮機の運転開始後
には側路管の開閉弁を閉止し、かつ、空調負荷に応じた
冷媒量が冷凍空調サイクルに供給されるように冷媒調整
タンクの制御開閉弁の開度を調整させることを特徴とす
る冷凍空調装置。
2. A refrigeration / air-conditioning cycle is constituted by sequentially connecting a compressor, a use-side heat exchanger, an expansion valve, a heat source-side heat exchanger and the like in a gas-tight manner with a refrigerant pipe. A bypass line that connects a high-pressure refrigerant line from the compressor discharge port to the expansion valve and a low-pressure side refrigerant line from the expansion valve to the compressor suction port via an on-off valve. A refrigerant adjustment tank with a control opening / closing valve and a controller for adjusting the opening of these valves are provided in parallel with the pipe and the expansion valve, and the valve opening controller controls the opening / closing valve of the bypass pipe when the compressor is stopped. Open and close the control on-off valve of the refrigerant adjustment tank, close the on-off valve of the bypass pipe after the operation of the compressor starts, and supply the refrigerant amount according to the air-conditioning load to the refrigeration air-conditioning cycle. Adjust the opening of the control on / off valve of the refrigerant adjustment tank Refrigeration and air conditioning apparatus according to claim Rukoto.
JP32517498A 1998-11-16 1998-11-16 Refrigeration air conditioner Expired - Fee Related JP4115017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32517498A JP4115017B2 (en) 1998-11-16 1998-11-16 Refrigeration air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32517498A JP4115017B2 (en) 1998-11-16 1998-11-16 Refrigeration air conditioner

Publications (2)

Publication Number Publication Date
JP2000146328A true JP2000146328A (en) 2000-05-26
JP4115017B2 JP4115017B2 (en) 2008-07-09

Family

ID=18173844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32517498A Expired - Fee Related JP4115017B2 (en) 1998-11-16 1998-11-16 Refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP4115017B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195705A (en) * 2000-12-28 2002-07-10 Tgk Co Ltd Supercritical refrigerating cycle
EP1445551A1 (en) * 2001-11-13 2004-08-11 Daikin Industries, Ltd. Freezer
EP1486742A1 (en) * 2003-06-10 2004-12-15 Sanyo Electric Co., Ltd. Refrigerant cycle apparatus
WO2007009611A1 (en) * 2005-07-19 2007-01-25 Linde Aktiengesellschaft Method and device for cooling and/or liquefying a fluid
JP2009174739A (en) * 2008-01-22 2009-08-06 Shin Meiwa Ind Co Ltd Mixed refrigerant cooling device
JP2009236447A (en) * 2008-03-28 2009-10-15 Daikin Ind Ltd Refrigeration apparatus
JP2012047395A (en) * 2010-08-26 2012-03-08 Sanyo Electric Co Ltd Central control device of showcase
CN103822419A (en) * 2012-11-16 2014-05-28 松下电器产业株式会社 Refrigerating apparatus
JP2014119154A (en) * 2012-12-14 2014-06-30 Sharp Corp Air conditioner
JP2014119150A (en) * 2012-12-14 2014-06-30 Sharp Corp Air conditioner
JP2014119147A (en) * 2012-12-14 2014-06-30 Sharp Corp Air conditioner
JP2014119153A (en) * 2012-12-14 2014-06-30 Sharp Corp Air conditioner
CN105276849A (en) * 2014-07-01 2016-01-27 松下知识产权经营株式会社 Refrigerating system
WO2016139783A1 (en) * 2015-03-04 2016-09-09 三菱電機株式会社 Refrigeration cycle device
WO2017068642A1 (en) * 2015-10-20 2017-04-27 三菱電機株式会社 Refrigeration cycle device
CN107300272A (en) * 2017-06-13 2017-10-27 珠海格力电器股份有限公司 Condensing unit and air conditioner with same
CN107923680A (en) * 2015-08-28 2018-04-17 三菱电机株式会社 Refrigerating circulatory device
WO2020174530A1 (en) * 2019-02-25 2020-09-03 Atsジャパン株式会社 Refrigerant control system and cooling system
CN113932335A (en) * 2021-11-01 2022-01-14 宁波奥克斯电气股份有限公司 Compressor starting control method and device, air conditioner and computer storage medium

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195705A (en) * 2000-12-28 2002-07-10 Tgk Co Ltd Supercritical refrigerating cycle
EP1445551A1 (en) * 2001-11-13 2004-08-11 Daikin Industries, Ltd. Freezer
EP1445551A4 (en) * 2001-11-13 2005-04-13 Daikin Ind Ltd Freezer
US7481067B2 (en) 2001-11-13 2009-01-27 Daikin Industries, Ltd. Freezer
EP1486742A1 (en) * 2003-06-10 2004-12-15 Sanyo Electric Co., Ltd. Refrigerant cycle apparatus
WO2007009611A1 (en) * 2005-07-19 2007-01-25 Linde Aktiengesellschaft Method and device for cooling and/or liquefying a fluid
JP2009174739A (en) * 2008-01-22 2009-08-06 Shin Meiwa Ind Co Ltd Mixed refrigerant cooling device
JP2009236447A (en) * 2008-03-28 2009-10-15 Daikin Ind Ltd Refrigeration apparatus
JP2012047395A (en) * 2010-08-26 2012-03-08 Sanyo Electric Co Ltd Central control device of showcase
CN103822419B (en) * 2012-11-16 2017-12-05 松下电器产业株式会社 Refrigerating plant
CN103822419A (en) * 2012-11-16 2014-05-28 松下电器产业株式会社 Refrigerating apparatus
JP2014102008A (en) * 2012-11-16 2014-06-05 Panasonic Corp Refrigeration apparatus
JP2014119154A (en) * 2012-12-14 2014-06-30 Sharp Corp Air conditioner
JP2014119150A (en) * 2012-12-14 2014-06-30 Sharp Corp Air conditioner
JP2014119147A (en) * 2012-12-14 2014-06-30 Sharp Corp Air conditioner
JP2014119153A (en) * 2012-12-14 2014-06-30 Sharp Corp Air conditioner
CN105276849A (en) * 2014-07-01 2016-01-27 松下知识产权经营株式会社 Refrigerating system
JP2016014490A (en) * 2014-07-01 2016-01-28 パナソニックIpマネジメント株式会社 Refrigeration system
WO2016139783A1 (en) * 2015-03-04 2016-09-09 三菱電機株式会社 Refrigeration cycle device
JPWO2016139783A1 (en) * 2015-03-04 2017-09-14 三菱電機株式会社 Refrigeration cycle equipment
CN107923680A (en) * 2015-08-28 2018-04-17 三菱电机株式会社 Refrigerating circulatory device
CN107923680B (en) * 2015-08-28 2020-06-30 三菱电机株式会社 Refrigeration cycle device
WO2017068642A1 (en) * 2015-10-20 2017-04-27 三菱電機株式会社 Refrigeration cycle device
CN107300272A (en) * 2017-06-13 2017-10-27 珠海格力电器股份有限公司 Condensing unit and air conditioner with same
WO2020174530A1 (en) * 2019-02-25 2020-09-03 Atsジャパン株式会社 Refrigerant control system and cooling system
US11841177B2 (en) 2019-02-25 2023-12-12 Ats Japan Co., Ltd. Refrigerant control system and cooling system
CN113932335A (en) * 2021-11-01 2022-01-14 宁波奥克斯电气股份有限公司 Compressor starting control method and device, air conditioner and computer storage medium
CN113932335B (en) * 2021-11-01 2023-01-24 宁波奥克斯电气股份有限公司 Compressor starting control method and device, air conditioner and computer storage medium

Also Published As

Publication number Publication date
JP4115017B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
JP2000146328A (en) Refrigerating and air-conditioning device
KR20040091615A (en) Refrigerating cycle device
JP2004340470A (en) Refrigeration unit
JP3975664B2 (en) Refrigerating refrigerator, operation method of freezing refrigerator
US20100307177A1 (en) Rapid compressor cycling
JP2002174463A (en) Refrigerating apparatus
JP3668750B2 (en) Air conditioner
JP3714348B2 (en) Refrigeration equipment
US20020112492A1 (en) Air conditioners suitable for vehicles and methods for operating such air conditioners
JP2003269805A (en) Marine refrigerating unit
JPH11201563A (en) Cooling device
JP2002277082A (en) Freezer
KR100219028B1 (en) Air conditioner
JP3617742B2 (en) Scroll compressor and air conditioner
KR101376811B1 (en) A control method for air-conditioner
KR100680617B1 (en) A air conditioner and method to control crankcase heater thereof
JP2004225928A (en) Refrigeration unit
KR100438272B1 (en) Control system of Air conditioner
KR100251567B1 (en) Cooling cycle and its control method
EP3872419A1 (en) Refrigeration apparatus
KR20190005475A (en) A high performance heat pump having variable capacity refrigerant storage means
KR100196320B1 (en) Instrument and method for controlling in bus air-conditioner
JPH10197125A (en) Freezer and refrigerator
CN118670011A (en) Heat exchange assembly, control method and device, readable storage medium and refrigeration equipment
KR20190005471A (en) A heat pump having variable capacity refrigerant storage means

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050506

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees