JP2002277082A - Freezer - Google Patents

Freezer

Info

Publication number
JP2002277082A
JP2002277082A JP2001073752A JP2001073752A JP2002277082A JP 2002277082 A JP2002277082 A JP 2002277082A JP 2001073752 A JP2001073752 A JP 2001073752A JP 2001073752 A JP2001073752 A JP 2001073752A JP 2002277082 A JP2002277082 A JP 2002277082A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerating
refrigeration
refrigerant
stage compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001073752A
Other languages
Japanese (ja)
Inventor
Toshikazu Sakai
寿和 境
Masaaki Tanaka
正昭 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2001073752A priority Critical patent/JP2002277082A/en
Publication of JP2002277082A publication Critical patent/JP2002277082A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To control refrigeration facility in accordance with an increase in the load of a refrigerating chamber without remarkably reducing the temperature thereof in the case where the load of the freezing chamber alone increases when the ambient temperature is low and the load is small in a two-stage refrigerant compressor type freezer having a plurality of evaporators different in evaporating temperature as typified by a freezer-refrigerator and the like. SOLUTION: It is possible to meet a change in load balance between freezing and refrigerating chambers by reducing heat quantity exchanged between the refrigerating chamber and a refrigerating evaporator 3 to lower the evaporating temperature thereof, increasing the intensity of supercooling a liquid refrigerant supplied to a freezing evaporator 1 and thereafter increasing the operating rate or revolution speed of a compressor 5 to adjust the circulation of the refrigerant in accordance with the load of the freezing chamber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍冷蔵庫等に代
表される蒸発温度の異なる複数の蒸発器を有する冷媒二
段圧縮式冷凍装置の能力制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the capacity of a refrigerant two-stage compression refrigeration system having a plurality of evaporators having different evaporation temperatures, such as a refrigerator-freezer.

【0002】[0002]

【従来の技術】現在、地球温暖化防止の観点より冷凍冷
蔵庫等の冷凍装置の省エネルギー化が進められている。
従来、冷凍室と冷蔵室のように異なる温度で冷却する冷
凍冷蔵庫においては、単独の蒸発器を冷凍室温度以下ま
で下げて庫内空気と熱交換を行い、庫内の温度調整は熱
交換量で制御していた。これに対して、冷凍室と冷蔵室
の蒸発器を独立させて、2つの蒸発器を冷凍室温度と冷
蔵室温度で運転することにより、比較的圧縮比が低く理
論効率の高い冷蔵室冷却サイクルを利用して省エネルギ
ー化を図る試みがなされている。
2. Description of the Related Art At present, energy saving of refrigerating apparatuses such as refrigerators and refrigerators has been promoted from the viewpoint of prevention of global warming.
Conventionally, in refrigerators that cool at different temperatures, such as a freezer compartment and a refrigerator compartment, a single evaporator is cooled to a temperature lower than the freezer compartment temperature to exchange heat with the air in the refrigerator, and the temperature in the refrigerator is adjusted by the amount of heat exchange. Was controlled by. On the other hand, by operating the two evaporators at the freezing room temperature and the cold room temperature independently of the freezing room and the cold room evaporator, the cooling room cooling cycle with a relatively low compression ratio and high theoretical efficiency is achieved. Attempts have been made to achieve energy savings by utilizing the technology.

【0003】具体的には、冷凍室冷却サイクルと冷蔵室
冷却サイクルを完全に独立させる2サイクル、圧縮機と
凝縮器を共有して蒸発器を切り替えて冷凍室と冷蔵室を
交互に冷却する切り替えサイクル、冷蔵室蒸発器を中間
冷却器として利用し冷凍室蒸発器からの戻りガス冷媒を
2段圧縮する2段圧縮サイクル等が挙げられる。この中
でも2段圧縮サイクルは理論効率の高い冷蔵室冷却サイ
クルを最大限利用する方法として注目されている。
[0003] Specifically, two cycles in which the freezer compartment cooling cycle and the refrigerator compartment cooling cycle are completely independent, and switching in which the compressor and the condenser are shared and the evaporator is switched to alternately cool the freezer compartment and the refrigerator compartment. And a two-stage compression cycle in which the refrigerating room evaporator is used as an intercooler and the return gas refrigerant from the freezing room evaporator is compressed in two stages. Among them, the two-stage compression cycle has attracted attention as a method for maximizing the use of a refrigerator room cooling cycle having high theoretical efficiency.

【0004】例えば特開平5−223368号公報、特
開平5−223370号公報において、2段圧縮サイク
ルを用いた冷凍冷蔵庫が提案されている。以下、図面を
参照しながら2段圧縮サイクルを用いた従来の冷凍装置
の特徴について説明する。
[0004] For example, Japanese Patent Application Laid-Open Nos. 5-223368 and 5-223370 disclose a refrigerator-freezer using a two-stage compression cycle. Hereinafter, features of a conventional refrigeration system using a two-stage compression cycle will be described with reference to the drawings.

【0005】従来の冷凍装置のサイクル構成を図4に示
す。図4において、1は冷凍用蒸発器、2は冷凍室(図
示せず)内の空気と冷凍用蒸発器1の熱交換を促進させ
る冷凍用ファン、3は冷蔵用蒸発器、4は冷蔵室(図示
せず)内の空気と冷蔵用蒸発器3の熱交換を促進させる
冷蔵用ファン、5は圧縮機、6は圧縮機5の低段側圧縮
要素、7は圧縮機5の高段側圧縮要素、8は凝縮器、9
は冷凍用膨張機構、10は冷蔵用膨張機構、11は冷凍
用膨張機構9に供給される液冷媒と冷蔵用蒸発器3を熱
交換する熱伝達機構である。
FIG. 4 shows a cycle configuration of a conventional refrigeration system. In FIG. 4, 1 is a freezing evaporator, 2 is a freezing fan for promoting heat exchange between the air in the freezing room (not shown) and the freezing evaporator 1, 3 is a refrigerating evaporator, and 4 is a refrigerating room. A refrigeration fan for promoting heat exchange between the air inside (not shown) and the refrigeration evaporator 3, 5 is a compressor, 6 is a low-stage compression element of the compressor 5, and 7 is a high-stage side of the compressor 5. Compression element, 8 is a condenser, 9
Is a refrigeration expansion mechanism, 10 is a refrigeration expansion mechanism, and 11 is a heat transfer mechanism for exchanging heat between the liquid refrigerant supplied to the refrigeration expansion mechanism 9 and the refrigeration evaporator 3.

【0006】一般に冷凍冷蔵庫の冷凍室は−18℃前
後、冷蔵室は0〜5℃に設定されることから、冷凍用蒸
発器1の温度は−30℃程度、冷蔵用蒸発器3の温度は
−10℃程度に制御される。したがって、冷凍用蒸発器
1で蒸発した戻りガス冷媒の圧力は、冷蔵用蒸発器3で
蒸発した戻りガス冷媒よりも低く、圧縮機5の低段側圧
縮要素6で同じ圧力になるまで圧縮される。
Generally, the temperature of the freezer evaporator 1 is about -30 ° C. and the temperature of the refrigerating evaporator 3 is about -30 ° C. It is controlled to about -10 ° C. Therefore, the pressure of the return gas refrigerant evaporated in the refrigerating evaporator 1 is lower than the pressure of the return gas refrigerant evaporated in the refrigerating evaporator 3, and is compressed by the low-stage compression element 6 of the compressor 5 until the same pressure is reached. You.

【0007】そして、圧縮機5の低段側圧縮要素6の吐
出ガス冷媒と冷蔵用蒸発器3で蒸発した戻りガス冷媒が
混合されて、圧縮機5の高段側圧縮要素7で凝縮器8の
圧力まで圧縮される。一般に凝縮器8は大気で空冷され
ることから、冷媒は外気温度+10〜20℃程度で凝縮
する。
[0007] The discharge gas refrigerant of the low-stage compression element 6 of the compressor 5 and the return gas refrigerant evaporated in the refrigeration evaporator 3 are mixed, and the high-stage compression element 7 of the compressor 5 mixes the condenser 8. Compressed to a pressure of Generally, since the condenser 8 is air-cooled in the air, the refrigerant condenses at an outside air temperature of about +10 to 20 ° C.

【0008】凝縮器8で凝縮された液冷媒は、冷凍用膨
張機構9と冷蔵用膨張機構10に分配されて、それぞれ
冷凍用蒸発器1と冷蔵用蒸発器3に供給される。このと
き、冷凍用膨張機構9に送られる液冷媒は、熱伝達機構
11を介して冷蔵用蒸発器3と熱交換することで、凝縮
器8に近い温度から冷蔵用蒸発器3に近い温度まで過冷
却される。この結果、冷凍用蒸発器1に供給された液冷
媒の冷凍効果が大きくなることから、冷凍用蒸発器1の
冷媒循環量を抑制することができる。
The liquid refrigerant condensed in the condenser 8 is distributed to the freezing expansion mechanism 9 and the refrigerating expansion mechanism 10, and supplied to the freezing evaporator 1 and the refrigerating evaporator 3, respectively. At this time, the liquid refrigerant sent to the refrigeration expansion mechanism 9 exchanges heat with the refrigeration evaporator 3 via the heat transfer mechanism 11 to change the temperature from a temperature close to the condenser 8 to a temperature close to the refrigeration evaporator 3. Supercooled. As a result, the refrigeration effect of the liquid refrigerant supplied to the refrigeration evaporator 1 increases, so that the refrigerant circulation amount of the refrigeration evaporator 1 can be suppressed.

【0009】このように、冷凍用蒸発器3を中間冷却器
として利用し冷凍用蒸発器1からの戻りガス冷媒を2段
圧縮する2段圧縮サイクルは、低段側圧縮要素6の冷媒
循環量に対して理論効率の高い高段側圧縮要素7の冷媒
循環量を、冷凍室に対する冷蔵室の能力比以上に増大さ
せ、省エネルギー化を図ることができる。
As described above, in the two-stage compression cycle in which the refrigerating evaporator 3 is used as an intercooler and the return gas refrigerant from the refrigerating evaporator 1 is compressed in two stages, the refrigerant circulation amount of the low-stage compression element 6 is increased. On the other hand, the amount of refrigerant circulating through the high-stage compression element 7 having a high theoretical efficiency can be increased to a value equal to or higher than the capacity ratio of the refrigerating compartment to the freezing compartment, thereby saving energy.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記従
来の構成では、外気温が低く負荷が小さい時に冷凍室の
負荷だけが増大した場合、冷凍室の温度上昇を抑えるた
めに圧縮機の回転数を上げて冷凍用蒸発器の冷媒循環量
を増大すると、冷蔵用蒸発器の冷媒循環量も同時に増大
する結果となり、冷蔵室温度を著しく低下させる可能性
がある。
However, in the above-mentioned conventional configuration, when only the load on the freezing compartment increases when the outside air temperature is low and the load is small, the rotational speed of the compressor is reduced in order to suppress the rise in the temperature of the freezing compartment. When the refrigerant circulation amount of the refrigerating evaporator is increased, the refrigerant circulation amount of the refrigerating evaporator is also increased at the same time, and the refrigerating room temperature may be significantly reduced.

【0011】そこで、冷蔵室蒸発器を中間冷却器として
利用し冷凍室蒸発器からの戻りガス冷媒を2段圧縮する
2段圧縮サイクルにおいて、冷蔵室に対する冷凍室の負
荷バランスの変化に対応できる能力制御仕様が望まれて
いる。
Therefore, in a two-stage compression cycle in which the refrigerating room evaporator is used as an intercooler to compress the return gas refrigerant from the freezing room evaporator in two stages, the ability to cope with a change in the load balance of the freezing room with respect to the refrigerating room. Control specifications are desired.

【0012】本発明は、冷凍室の冷却制御機構と冷蔵用
ファンの能力制御を行うことにより、冷蔵室に対する冷
凍室の負荷バランスの変化に対応できる冷凍能力制御を
図るものである。
According to the present invention, by controlling the cooling control mechanism of the freezer compartment and the capacity of the refrigerating fan, a refrigerating capacity control capable of coping with a change in the load balance of the freezer compartment with respect to the refrigerator compartment is achieved.

【0013】[0013]

【課題を解決するための手段】そこで本発明の冷凍装置
は、冷凍室の負荷が急増した場合に、冷蔵室と冷蔵用蒸
発器の熱交換量を低下させて冷蔵用蒸発器の蒸発温度を
下げるとともに、冷凍用蒸発器に供給される液冷媒の過
冷却量を増大させる能力制御方法を用いるものである。
SUMMARY OF THE INVENTION Accordingly, the refrigerating apparatus of the present invention reduces the amount of heat exchange between the refrigerating compartment and the refrigerating evaporator when the load on the refrigerating compartment suddenly increases, thereby reducing the evaporation temperature of the refrigerating evaporator. The method uses a capacity control method for lowering and increasing the amount of subcooling of the liquid refrigerant supplied to the refrigeration evaporator.

【0014】この発明によれば、外気温が低く負荷が小
さい時に冷凍室の負荷だけが増大した場合、冷蔵室の温
度を下げることなく冷凍用蒸発器に対する冷蔵用蒸発器
の冷媒循環量を下げることができ、その後圧縮機の運転
率あるいは回転数を増加させて冷凍室の負荷に応じた冷
媒循環量に調整することで結果として冷蔵室に対する冷
凍室の負荷バランスの変化に対応することができる。
According to the present invention, when only the load on the freezing compartment increases when the outside air temperature is low and the load is small, the amount of refrigerant circulating from the refrigerating evaporator to the refrigerating evaporator is reduced without lowering the temperature of the refrigerating compartment. Then, by increasing the operation rate or the number of revolutions of the compressor to adjust the circulation amount of the refrigerant according to the load of the freezing room, it is possible to cope with a change in the load balance of the freezing room with respect to the refrigerator room as a result. .

【0015】[0015]

【発明の実施の形態】本発明の請求項1に記載の発明
は、冷凍室を冷却する冷凍用蒸発器と、冷凍室を冷却す
る冷蔵用蒸発器と、冷凍用蒸発器からの戻りガス冷媒を
圧縮する低段圧縮機構と、冷蔵用蒸発器からの戻りガス
冷媒と低段圧縮機構の吐出ガス冷媒との混合物を圧縮す
る高段圧縮機構と、高段圧縮機構の吐出ガス冷媒を凝縮
させる凝縮器と、凝縮器で凝縮した液冷媒を減圧して冷
凍用蒸発器に供給する冷凍用膨張機構と、冷凍用蒸発器
に供給される液冷媒を冷蔵用蒸発器で冷却して過冷却温
度を制御する過冷却制御手段と、凝縮器で凝縮した液冷
媒を減圧して冷蔵用蒸発器に供給する冷蔵用膨張機構と
を有する冷凍装置において、冷凍室の負荷が急増した場
合に冷蔵室と冷蔵用蒸発器の熱交換量を低下させて冷蔵
用蒸発器の蒸発温度を下げるとともに、冷凍用蒸発器に
供給される液冷媒の過冷却量を増大させる制御方法を用
いたものであり、外気温が低く負荷が小さい時に冷凍室
の負荷だけが増大した場合、冷蔵室の温度を下げること
なく冷凍用蒸発器に対する冷蔵用蒸発器の冷媒循環量を
下げることができ、その後圧縮機の運転率あるいは回転
数を増加させて冷凍室の負荷に応じた冷媒循環量に調整
することで、結果として冷蔵室に対する冷凍室の負荷バ
ランスの変化に対応する作用を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention according to claim 1 of the present invention provides a refrigerating evaporator for cooling a freezing room, a refrigerating evaporator for cooling a freezing room, and a return gas refrigerant from the refrigerating evaporator. , A high-stage compression mechanism that compresses a mixture of the return gas refrigerant from the refrigeration evaporator and the discharge gas refrigerant of the low-stage compression mechanism, and condenses the discharge gas refrigerant of the high-stage compression mechanism. A condenser, a refrigeration expansion mechanism for reducing the pressure of the liquid refrigerant condensed by the condenser and supplying the refrigerant to the refrigeration evaporator, and a supercooling temperature for cooling the liquid refrigerant supplied to the refrigeration evaporator with the refrigeration evaporator. And a refrigeration apparatus having a refrigeration expansion mechanism for reducing the pressure of the liquid refrigerant condensed by the condenser and supplying the refrigeration to the evaporator for refrigeration. Evaporation temperature of refrigeration evaporator by reducing heat exchange amount of refrigeration evaporator And a control method for increasing the subcooling amount of the liquid refrigerant supplied to the refrigeration evaporator. The refrigerant circulation amount of the refrigeration evaporator with respect to the refrigeration evaporator can be reduced without lowering the temperature, and then the operating rate or the number of revolutions of the compressor is increased to adjust the refrigerant circulation amount according to the load of the freezing compartment. This has the effect of responding to a change in the load balance of the freezer compartment with respect to the refrigerator compartment as a result.

【0016】ここで、冷凍室と冷蔵室の冷凍能力がほぼ
等しいシステムにおいて冷媒としてHFC134aを用
いた場合、冷蔵用蒸発器の温度を−10℃から−15℃
に下げると高段圧縮機構に吸入されるガス冷媒の密度が
約8.4kg/m3から約6.8kg/m3に減少する。
低段圧縮機構の吐出ガス冷媒の量はほとんど変化しない
ので、冷蔵用蒸発器の冷媒循環量を約38%低下させる
ことができる。また、冷蔵用蒸発器を用いて冷凍用蒸発
器に流入する冷媒の温度を凝縮器の温度、例えば30℃
から、冷蔵用蒸発器の温度−15℃まで過冷却すること
で、冷凍用蒸発器の冷凍能力を約33%増加させるとと
もに、冷蔵用蒸発器の冷凍能力を約33%低下させる。
結果として、冷蔵室に対する冷凍室の冷凍能力比は10
0/100から133/29まで増加させることができ
る。その後、圧縮機の運転率あるいは回転数を増加させ
て冷媒循環量を増加させることにより、冷蔵室の冷凍能
力が過多にならない範囲で、前記冷凍能力比が133/
29〜459/100まで冷凍室の冷凍能力を高めるこ
とができる。
Here, when HFC134a is used as the refrigerant in a system in which the freezing capacity of the freezing compartment is substantially equal to that of the freezing compartment, the temperature of the refrigeration evaporator is changed from -10 ° C to -15 ° C.
, The density of the gas refrigerant sucked into the high-stage compression mechanism is reduced from about 8.4 kg / m 3 to about 6.8 kg / m 3 .
Since the amount of gas refrigerant discharged from the low-stage compression mechanism hardly changes, the amount of refrigerant circulating in the refrigeration evaporator can be reduced by about 38%. Also, the temperature of the refrigerant flowing into the freezing evaporator using the refrigeration evaporator is set to the temperature of the condenser, for example, 30 ° C.
By supercooling the temperature of the refrigeration evaporator to −15 ° C., the refrigeration capacity of the refrigeration evaporator is increased by about 33% and the refrigeration capacity of the refrigeration evaporator is reduced by about 33%.
As a result, the freezing capacity ratio of the freezer compartment to the refrigerator compartment is 10
It can be increased from 0/100 to 133/29. Thereafter, by increasing the operation rate or the number of revolutions of the compressor to increase the amount of circulating refrigerant, the refrigerating capacity ratio is set to 133 / maximum within a range where the refrigerating capacity of the refrigerating compartment does not become excessive.
The freezing capacity of the freezing room can be increased to 29 to 459/100.

【0017】このとき、冷蔵用蒸発器の温度をさらに下
げると冷蔵用蒸発器の能力をさらに低下させることがで
きるが、低段圧縮機構の圧縮比が低下すると実効率が低
下するので−15℃程度までが望ましい。また、この試
算では通常運転時には冷凍用蒸発器に流入する冷媒の過
冷却は行わないとしたが、負荷バランスの変化に対応す
る能力制御幅に余裕があれば、室温〜冷蔵用蒸発器(−
10℃)の過冷却を行う方が通常運転時の効率を高める
ことができる。ただし、通常運転時の過冷却温度を−1
0℃で行うと、−15℃まで過冷却するときの能力変化
が約4%程度となり、結果として冷蔵室の冷凍能力が過
多にならない範囲での冷蔵室に対する冷凍室の冷凍能力
の制御幅は104/58〜179/100と小さくな
る。
At this time, if the temperature of the refrigerating evaporator is further lowered, the capacity of the refrigerating evaporator can be further lowered. However, if the compression ratio of the low-stage compression mechanism is lowered, the actual efficiency is lowered. Up to a degree is desirable. Further, in this calculation, the refrigerant flowing into the refrigeration evaporator is not supercooled during the normal operation. However, if there is enough capacity control width corresponding to the change in the load balance, the room temperature to the refrigeration evaporator (-
Performing supercooling at 10 ° C.) can increase the efficiency during normal operation. However, the supercooling temperature during normal operation is -1
When performed at 0 ° C., the capacity change when supercooling to −15 ° C. becomes about 4%, and as a result, the control range of the freezing capacity of the freezer to the freezer within a range where the freezing capacity of the freezer does not become excessive is 104/58 to 179/100.

【0018】本発明の請求項2の記載の発明は、冷凍室
を冷却する冷凍用蒸発器と、冷蔵室を冷却する冷蔵用蒸
発器と、冷凍用蒸発器からの戻りガス冷媒を圧縮する低
段圧縮機構と、冷凍用蒸発器からの戻りガス冷媒と低段
圧縮機構の吐出ガス冷媒との混合物を圧縮する高段圧縮
機構と、高段圧縮機構の吐出ガス冷媒を凝縮させる凝縮
器と、凝縮器で凝縮した液冷媒を減圧して冷蔵用蒸発器
に供給する冷蔵用膨張機構と、冷蔵用蒸発器の出口冷却
を気液に分離してガス冷媒を高段圧縮機構に供給する気
液分離器と、気液分離器で分離した液冷媒を減圧して冷
凍用蒸発器に供給する冷凍用膨張機構と、凝縮器で凝縮
した液冷媒を減圧して冷凍用蒸発器に供給する第二冷凍
用膨張機構とを有する冷凍装置において、冷凍室の負荷
が急増した場合に冷蔵室と冷蔵用蒸発器の熱交換量を低
下させて冷蔵用蒸発器の蒸発温度を下げるとともに、第
二冷凍用膨張機構を通過する液冷媒量を減少させる制御
方法を用いたものであり、外気温が低く負荷が小さい時
に冷凍室の負荷だけが増大した場合、冷蔵室の温度を下
げることなく冷凍用蒸発器に対する冷蔵用蒸発器の冷媒
循環量を下げることができ、その後圧縮機の運転率ある
いは回転数を増加させて冷凍室の負荷に応じた冷媒循環
量に調節することで結果として冷蔵室に対する冷凍室の
負荷バランスの変化に対応する作用を有するとともに、
冷凍用膨張機構と、第二冷凍用膨張機構の冷媒流量比を
調整することで冷凍用蒸発器に供給される液冷媒の過冷
却量を任意に制御することで通常運転時の効率を向上す
る作用を有する。
According to a second aspect of the present invention, there is provided a refrigerating evaporator for cooling a freezing room, a refrigerating evaporator for cooling a refrigerating room, and a low-pressure evaporator for compressing a return gas refrigerant from the refrigerating evaporator. A stage compression mechanism, a high stage compression mechanism that compresses a mixture of the return gas refrigerant from the refrigerating evaporator and the discharge gas refrigerant of the low stage compression mechanism, and a condenser that condenses the discharge gas refrigerant of the high stage compression mechanism, A refrigeration expansion mechanism that decompresses the liquid refrigerant condensed by the condenser and supplies it to the refrigeration evaporator; A separator, a refrigeration expansion mechanism for decompressing the liquid refrigerant separated by the gas-liquid separator and supplying the refrigerant to the refrigeration evaporator, and a second refrigerant for decompressing the liquid refrigerant condensed by the condenser and supplying the refrigerant to the refrigeration evaporator. In a refrigeration system having a refrigeration expansion mechanism, when the load of the A control method that reduces the amount of heat exchange between the storage chamber and the refrigeration evaporator to lower the evaporation temperature of the refrigeration evaporator, and reduces the amount of liquid refrigerant passing through the second refrigeration expansion mechanism, If only the load of the freezing compartment increases when the outside temperature is low and the load is small, the amount of refrigerant circulating from the refrigerating evaporator to the refrigerating evaporator can be reduced without lowering the temperature of the refrigerating compartment, and then the compressor is operated. By increasing the rate or the number of revolutions and adjusting the refrigerant circulation amount according to the load of the freezing room, as a result, it has an action corresponding to a change in the load balance of the freezing room with respect to the refrigerator room,
By adjusting the refrigerant flow ratio between the refrigeration expansion mechanism and the second refrigeration expansion mechanism, the supercooling amount of the liquid refrigerant supplied to the refrigeration evaporator is arbitrarily controlled to improve the efficiency during normal operation. Has an action.

【0019】ここで、気液分離器から冷凍用膨張機構を
通過して冷凍用蒸発器に供給される液冷媒は、冷蔵用蒸
発器の中で冷蔵用蒸発器の温度まで過冷却されたもので
あり、冷凍用膨張機構と第二冷凍用膨張機構を切り替え
て使用する場合の作用効果は本発明の請求項1に記載の
発明と同じである。さらに、冷凍用膨張機構と第二冷凍
用膨張機構の冷媒流量比を調整することで冷凍用蒸発器
に供給される液冷媒の過冷却量を任意に制御することが
でき、通常運転時に過冷却を行った分だけ圧縮比が低く
理論効率が高い高段圧縮機構の冷媒流量を増加させるこ
とで冷凍サイクルの効率化が図れるものである。
Here, the liquid refrigerant supplied from the gas-liquid separator to the refrigerating evaporator after passing through the refrigerating expansion mechanism is supercooled to the temperature of the refrigerating evaporator in the refrigerating evaporator. The operation and effect when switching between the refrigerating expansion mechanism and the second refrigerating expansion mechanism are the same as those of the first aspect of the present invention. Further, by adjusting the refrigerant flow ratio between the refrigeration expansion mechanism and the second refrigeration expansion mechanism, the amount of subcooling of the liquid refrigerant supplied to the refrigeration evaporator can be arbitrarily controlled. The efficiency of the refrigeration cycle can be improved by increasing the refrigerant flow rate of the high-stage compression mechanism having a low compression ratio and a high theoretical efficiency by the amount of the compression.

【0020】また、気液分離器を用いて冷凍用蒸発器に
供給される液冷媒の過冷却を行う場合、プルダウン時の
ように冷蔵室負荷が過多になると気液分離器内の液冷媒
が一時的に枯渇する。このとき、第二冷凍用膨張機構を
主に用いることで、冷蔵室と冷凍室をバランスよく冷却
することができる。
When the liquid refrigerant supplied to the refrigerating evaporator is supercooled by using the gas-liquid separator, the liquid refrigerant in the gas-liquid separator is removed when the load in the refrigerator compartment becomes excessive as in the case of pull-down. Temporarily depleted. At this time, by mainly using the second freezing expansion mechanism, the refrigerating compartment and the freezing compartment can be cooled in a well-balanced manner.

【0021】本発明の請求項3に記載の発明は、請求項
1または請求項2に記載の発明において、低段圧縮機構
と低段用可変速モータからなる低段圧縮機と、高段圧縮
機構と高段用可変速モータからなる高段圧縮機とを有す
るものであり、外気温が低く負荷が小さい時に冷凍室の
負荷だけが増大した場合、冷蔵室の温度を下げることな
く冷凍用蒸発器に対する冷蔵用蒸発器の冷媒循環量を下
げることができ、その後圧縮機の運転率あるいは回転数
を増加させて冷凍室の負荷に応じた冷媒循環量に調整す
ることで結果として冷蔵室に対する冷凍室の負荷バラン
スの変化に対応する作用を有するとともに、高段圧縮機
構に対する低段圧縮機構の回転数を増加させて冷蔵室に
対する冷凍室の冷凍能力を増加させる作用を有する。
According to a third aspect of the present invention, in the first or second aspect, a low-stage compressor comprising a low-stage compression mechanism and a low-stage variable speed motor; Mechanism and a high-stage compressor consisting of a high-speed variable speed motor.If only the load in the freezer compartment increases when the outside air temperature is low and the load is small, the evaporation for refrigeration can be performed without lowering the temperature in the refrigerator compartment. The amount of circulating refrigerant in the refrigeration evaporator with respect to the refrigerator can be reduced, and then the operating rate or the number of revolutions of the compressor is increased to adjust the amount of circulating refrigerant in accordance with the load in the freezing room. In addition to having an action corresponding to a change in the load balance of the chamber, it has an action of increasing the rotation speed of the low-stage compression mechanism with respect to the high-stage compression mechanism and increasing the refrigerating capacity of the freezing chamber with respect to the refrigerator compartment.

【0022】ここで、冷蔵室に対する冷凍室の冷凍制御
幅が小さい場合は、低段圧縮機構の回転数を増加させる
とともに、低段圧縮機構の吐出ガス冷媒量の増分だけ高
段圧縮機構の回転数を増加させて冷蔵室に対する冷凍室
の冷凍能力を増加させれば、冷蔵用蒸発器の温度低下な
しに能力制御ができる。
Here, when the freezing control width of the freezing compartment with respect to the refrigerating compartment is small, the rotation speed of the low-stage compression mechanism is increased, and the rotation of the high-stage compression mechanism is increased by the increment of the discharge gas refrigerant amount of the low-stage compression mechanism. By increasing the number and increasing the refrigerating capacity of the freezing compartment relative to the refrigerating compartment, the capacity can be controlled without lowering the temperature of the refrigerating evaporator.

【0023】また、外気温が低く負荷が小さい時に冷蔵
室の負荷だけが増大した場合、通常、冷凍用蒸発器の温
度を下げれば低段圧縮機構が吸入するガス冷媒の密度が
低下して吐出ガス冷媒量が小さくなり、その分高段圧縮
機構が吸入する冷蔵用蒸発器の戻りガス冷媒量が増加し
て冷蔵用蒸発器の冷凍能力が増加するので、能力調整は
容易であるが、冷凍用蒸発器の温度が低下すると低段圧
縮機構の圧縮比が増加し理論効率が低下する。この場合
も同様に、低段圧縮機構に対する高段圧縮機構の回転数
を増加させて冷凍室に対する冷蔵室の冷凍能力を増加さ
せれば、理論効率を低下させずに能力調整が可能にな
る。
When only the load in the refrigerator compartment increases when the outside air temperature is low and the load is small, usually, when the temperature of the refrigerating evaporator is lowered, the density of the gas refrigerant sucked by the low-stage compression mechanism decreases and the gas refrigerant is discharged. The amount of gas refrigerant decreases, and the amount of return gas refrigerant from the refrigeration evaporator that the high-stage compression mechanism draws in increases, thereby increasing the refrigeration capacity of the refrigeration evaporator. When the temperature of the evaporator decreases, the compression ratio of the low-stage compression mechanism increases and the theoretical efficiency decreases. Similarly, in this case, if the refrigerating capacity of the refrigerating compartment with respect to the freezing compartment is increased by increasing the rotation speed of the high-stage compression mechanism relative to the low-stage compression mechanism, the capacity adjustment can be performed without lowering the theoretical efficiency.

【0024】[0024]

【実施例】以下、図1〜図3を用いて実施例を説明す
る。なお、従来と同一構成については、同一符号を付し
て詳細な説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment will be described below with reference to FIGS. The same components as those in the related art are denoted by the same reference numerals, and detailed description is omitted.

【0025】(実施例1)実施例1の冷凍装置のサイク
ル構成とその作用について図1をもとに説明する。図1
において、1は冷凍用蒸発器、2は冷凍室(図示せず)
内の空気と冷凍用蒸発器1の熱交換を促進させる冷凍用
ファン、3は冷蔵用蒸発器、4は冷蔵室(図示せず)内
の空気と冷蔵用蒸発器3の熱交換を促進させる冷蔵用フ
ァン、5は圧縮機、6は圧縮機5の低段側圧縮要素、7
は圧縮機5の高段側圧縮要素、8は凝縮器、9は冷凍用
膨張機構、10は冷蔵用膨張機構、11は冷凍用膨張機
構9に供給される液冷媒と冷蔵用蒸発器3を熱交換する
熱伝達機構、12は冷凍用膨張機構9を介して冷凍用蒸
発器1に供給される液冷媒の流路を切り替える切り替え
バルブである。
(Embodiment 1) The cycle configuration and operation of the refrigeration system of Embodiment 1 will be described with reference to FIG. Figure 1
, 1 is a freezing evaporator, 2 is a freezing room (not shown)
A refrigeration fan for promoting heat exchange between the air inside and the refrigeration evaporator 1, a refrigeration evaporator 3, and a refrigeration evaporator 3 for heat exchange between the air in the refrigeration room (not shown) and the refrigeration evaporator 3. Refrigeration fan, 5 is a compressor, 6 is a low-stage compression element of the compressor 5, 7
Is a high-stage compression element of the compressor 5, 8 is a condenser, 9 is a refrigerating expansion mechanism, 10 is a refrigerating expansion mechanism, and 11 is a liquid refrigerant supplied to the refrigerating expansion mechanism 9 and a refrigerating evaporator 3. A heat transfer mechanism 12 for exchanging heat is a switching valve for switching a flow path of the liquid refrigerant supplied to the refrigeration evaporator 1 via the refrigeration expansion mechanism 9.

【0026】一般に冷凍冷蔵庫の冷凍室は−18℃前
後、冷蔵室は0〜5℃に設定されることから、冷凍用蒸
発器1の温度は−30℃程度、冷蔵用蒸発器3の温度は
−10℃程度に制御される。また、凝縮器8は大気で空
冷されることから、冷媒は外気温度+10〜20℃程度
で凝縮する。
In general, the temperature of the freezing evaporator 1 is about -30 ° C. and the temperature of the refrigerating evaporator 3 is about -30 ° C. It is controlled to about -10 ° C. In addition, since the condenser 8 is air-cooled in the atmosphere, the refrigerant condenses at an outside air temperature of about +10 to 20 ° C.

【0027】通常運転時、凝縮器8で凝縮された液冷媒
は、冷凍用膨張機構9と冷蔵用膨張機構10に分配され
て、それぞれ冷凍用蒸発器1と冷蔵用蒸発器3に供給さ
れる。このとき、冷凍用膨張機構9に送られる液冷媒
は、熱伝達機構11を介さず切り替えバルブ12から直
接冷凍用膨張機構9に供給される。
During normal operation, the liquid refrigerant condensed in the condenser 8 is distributed to the refrigeration expansion mechanism 9 and the refrigeration expansion mechanism 10 and supplied to the refrigeration evaporator 1 and the refrigeration evaporator 3, respectively. . At this time, the liquid refrigerant sent to the refrigeration expansion mechanism 9 is directly supplied from the switching valve 12 to the refrigeration expansion mechanism 9 without passing through the heat transfer mechanism 11.

【0028】そして、冷凍室の負荷が急増した場合に
は、冷蔵用ファン4の回転数を下げて冷蔵室と冷蔵用蒸
発器3の熱交換量を低下させて冷蔵用蒸発器3の蒸発温
度を−10℃から−15℃程度まで下げるとともに、切
り替えバルブ12を操作して凝縮器8で凝縮した液冷媒
が熱伝達機構11を介して冷凍用膨張機構9に送られる
ようにする。このとき冷凍用膨張機構9に送られる液冷
媒は、凝縮器8に近い温度から冷蔵用蒸発器3に近い温
度まで過冷却される。この結果、冷蔵用蒸発器3に供給
される冷媒量を削減するとともに、熱伝達機構11の熱
負荷分だけ冷蔵用蒸発器3の冷凍能力を低下させ、同時
に冷凍用蒸発器1の冷凍能力を増大させ、冷蔵室に対す
る冷凍室の冷凍能力が向上する。その後、圧縮機5の運
転率あるいは回転数を増加させて冷凍室の負荷に応じた
冷媒循環量に調整することで、冷蔵室に対する冷凍室の
負荷バラスンの変化に対応することができる。
When the load on the freezer compartment suddenly increases, the number of heat exchanges between the refrigerating compartment and the refrigerating evaporator 3 is reduced by lowering the rotation speed of the refrigerating fan 4 and the evaporating temperature of the refrigerating evaporator 3 is reduced. Is lowered from -10 ° C. to about −15 ° C., and the switching valve 12 is operated so that the liquid refrigerant condensed in the condenser 8 is sent to the refrigeration expansion mechanism 9 via the heat transfer mechanism 11. At this time, the liquid refrigerant sent to the refrigeration expansion mechanism 9 is supercooled from a temperature close to the condenser 8 to a temperature close to the refrigeration evaporator 3. As a result, the amount of refrigerant supplied to the refrigeration evaporator 3 is reduced, the refrigeration capacity of the refrigeration evaporator 3 is reduced by the heat load of the heat transfer mechanism 11, and at the same time, the refrigeration capacity of the refrigeration evaporator 1 is reduced. The refrigerating capacity of the freezing room with respect to the refrigerating room is improved. Thereafter, the operating rate or the number of revolutions of the compressor 5 is increased to adjust the refrigerant circulation amount in accordance with the load of the freezing room, thereby making it possible to cope with a change in the load variation of the freezing room with respect to the refrigerator room.

【0029】なお、本実施例では、熱伝達機構11を用
いて冷凍用膨張機構9に送られる液冷媒を凝縮器8に近
い温度から冷蔵用蒸発器3に近い温度まで過冷却した
が、冷凍室の熱負荷に合わせて過冷却量を調整しても同
様の特性が期待できる。
In this embodiment, the liquid refrigerant sent to the refrigeration expansion mechanism 9 is supercooled from the temperature near the condenser 8 to the temperature near the refrigeration evaporator 3 by using the heat transfer mechanism 11. Similar characteristics can be expected even if the subcooling amount is adjusted according to the heat load of the room.

【0030】(実施例2)実施例2の冷凍装置のサイク
ル構成とその作用について図2をもとに説明する。図2
において、1は冷凍用蒸発器、2は冷凍室(図示せず)
内の空気と冷凍用蒸発器1の熱交換を促進させる冷凍用
ファン、3は冷蔵用蒸発器、4は冷蔵室(図示せず)内
の空気と冷蔵用蒸発器3の熱交換を促進させる冷蔵用フ
ァン、5は圧縮機、6は圧縮機5の低段側圧縮要素、7
は圧縮機5の高段側圧縮要素、8凝縮器、9は冷凍用膨
張機構、10は冷蔵用膨張機構、11は冷凍用膨張機構
9に供給される液冷媒と冷蔵用蒸発器3を熱交換する熱
伝達機構、13は冷蔵用蒸発器3の出口冷媒を気液分離
し、気相を高段側圧縮要素5に液相を冷凍用蒸発器1に
供給する気液分離器、14は気液分離器13で分離され
た液冷媒を減圧して冷凍用蒸発器1に供給する第二冷凍
用膨張弁である。
(Embodiment 2) The cycle configuration and operation of a refrigeration apparatus according to Embodiment 2 will be described with reference to FIG. FIG.
, 1 is a freezing evaporator, 2 is a freezing room (not shown)
A refrigeration fan for promoting heat exchange between the air inside and the refrigeration evaporator 1, a refrigeration evaporator 3, and a refrigeration evaporator 3 for heat exchange between the air in the refrigeration room (not shown) and the refrigeration evaporator 3. Refrigeration fan, 5 is a compressor, 6 is a low-stage compression element of the compressor 5, 7
Is a high-stage compression element of the compressor 5, 8 condensers, 9 is a refrigeration expansion mechanism, 10 is a refrigeration expansion mechanism, and 11 is a liquid refrigerant supplied to the refrigeration expansion mechanism 9 and heats the refrigeration evaporator 3. A heat transfer mechanism for exchange, 13 is a gas-liquid separator for separating the refrigerant at the outlet of the refrigeration evaporator 3 into gas and liquid, and supplying the gas phase to the high-stage compression element 5 and the liquid phase to the refrigeration evaporator 1; This is a second refrigeration expansion valve for reducing the pressure of the liquid refrigerant separated by the gas-liquid separator 13 and supplying it to the refrigeration evaporator 1.

【0031】一般に冷凍冷蔵庫の冷凍室は−18℃前
後、冷蔵室は0〜5℃に設定されることから、冷凍用蒸
発器1の温度は−30℃程度、冷蔵用蒸発器3の温度は
−10℃程度に制御される。また、凝縮器8は大気で空
冷されることから、冷媒は外気温度+10〜20℃程度
で凝縮する。
Generally, the temperature of the freezer evaporator 1 is about -30 ° C., and the temperature of the refrigerating evaporator 3 is about -30 ° C. It is controlled to about -10 ° C. In addition, since the condenser 8 is air-cooled in the atmosphere, the refrigerant condenses at an outside air temperature of about +10 to 20 ° C.

【0032】通常運転時、凝縮器8で凝縮された液冷媒
は、冷凍用膨張機構9と冷蔵用膨張機構10に分配され
て、それぞれ冷凍用蒸発器1と冷蔵用蒸発器3に供給さ
れる。このとき、冷凍用膨張機構9および第二冷凍用膨
張機構14は半開状態であり、それぞれを通過する冷媒
量は等分になるように調整されている。また、気液分離
器13に滞留する液冷媒があふれ出さないように、圧縮
機5の回転数や冷蔵用膨張機構10を用いて冷蔵用蒸発
器3の冷凍能力が調整されている。この結果、冷蔵用蒸
発器3の蒸発温度−10℃まで過冷却された液冷媒が第
二冷凍用膨張機構14を介して冷凍用蒸発器1に供給す
ることで、冷凍用膨張機構9を介して冷凍用蒸発器1に
供給される液冷媒の温度を低下させて、通常運転時にお
いてサイクル効率を向上させることができる。
During normal operation, the liquid refrigerant condensed in the condenser 8 is distributed to the refrigeration expansion mechanism 9 and the refrigeration expansion mechanism 10 and supplied to the refrigeration evaporator 1 and the refrigeration evaporator 3, respectively. . At this time, the refrigeration expansion mechanism 9 and the second refrigeration expansion mechanism 14 are in a half-open state, and the amounts of the refrigerant passing therethrough are adjusted to be equal. Further, the refrigerating capacity of the refrigerating evaporator 3 is adjusted by using the rotation speed of the compressor 5 and the refrigerating expansion mechanism 10 so that the liquid refrigerant staying in the gas-liquid separator 13 does not overflow. As a result, the liquid refrigerant supercooled to the evaporation temperature of the refrigeration evaporator 3 −10 ° C. is supplied to the refrigeration evaporator 1 via the second refrigeration expansion mechanism 14, and thus is supplied via the refrigeration expansion mechanism 9. As a result, the temperature of the liquid refrigerant supplied to the refrigeration evaporator 1 is reduced, and the cycle efficiency can be improved during normal operation.

【0033】そして、冷凍室の負荷が急増した場合に
は、冷蔵用ファン4の回転数を下げて冷蔵室と冷蔵用蒸
発器3の熱交換量を低下させて冷蔵用蒸発器3の蒸発温
度を−10℃から−15℃程度まで下げるとともに、冷
凍用膨張機構9を全閉し第二冷凍用膨張機構14を全開
して気液分離器13で分離した液冷媒のみが第二冷凍用
膨張機構14を介して冷凍用蒸発器1に送られるように
する。このとき第二冷凍用膨張機構14に送られる液冷
媒は、冷蔵用蒸発器3の中で凝縮器8に近い温度から冷
蔵用蒸発器3に近い温度まで過冷却される。この結果、
冷蔵用蒸発器3に供給される冷媒量を削減するととも
に、気液分離器13から第二冷凍用膨張機構14を介し
て冷凍用蒸発器1に送られる液冷媒の熱負荷の増加分だ
け冷蔵用蒸発器3の冷凍能力を低下させ、同時に冷凍用
蒸発器1の冷凍能力を増大させ、冷蔵室に対する冷凍室
の冷凍能力が向上する。その後、圧縮機5の運転率ある
いは回転数を増加させて冷凍室の負荷に応じた冷媒循環
量に調整することで、冷蔵室に対する冷凍室の負荷バラ
ンスの変化に対応することができる。
When the load on the freezer compartment suddenly increases, the number of heat exchanges between the refrigerating compartment and the refrigerating evaporator 3 is reduced by lowering the rotation speed of the refrigerating fan 4 and the evaporating temperature of the refrigerating evaporator 3 is reduced. Is lowered from -10 ° C. to about −15 ° C., and only the liquid refrigerant separated by the gas-liquid separator 13 by fully closing the refrigeration expansion mechanism 9 and fully opening the second refrigeration expansion mechanism 14 is subjected to the second refrigeration expansion. It is sent to the refrigerating evaporator 1 via the mechanism 14. At this time, the liquid refrigerant sent to the second expansion mechanism for freezing 14 is supercooled in the evaporator 3 from a temperature close to the condenser 8 to a temperature close to the evaporator 3. As a result,
The amount of the refrigerant supplied to the refrigeration evaporator 3 is reduced, and the refrigeration is performed by an increase in the heat load of the liquid refrigerant sent from the gas-liquid separator 13 to the refrigeration evaporator 1 via the second refrigeration expansion mechanism 14. The refrigerating capacity of the refrigerating evaporator 3 is reduced, and at the same time, the refrigerating capacity of the refrigerating evaporator 1 is increased, and the refrigerating capacity of the refrigerating compartment with respect to the refrigerating compartment is improved. Thereafter, the operating rate or the number of revolutions of the compressor 5 is increased to adjust the circulation amount of the refrigerant in accordance with the load of the freezing compartment, thereby making it possible to cope with a change in the load balance of the freezing compartment with respect to the refrigerator compartment.

【0034】なお、本実施例では、通常運転時に冷凍用
膨張機構9と第二冷凍用膨張機構14を通過する冷媒量
は等分になるように調整されているが、冷凍室の熱負荷
に合わせて冷媒分配量を調整しても同様の特性が期待で
きる。また、プルダウン時のように冷蔵用蒸発器3の冷
凍能力が不足して気液分離器13の液冷媒が枯渇する場
合には、冷凍用膨張機構9を全開し第二冷凍用膨張機構
14を全閉して冷凍用蒸発器1に供給する液冷媒を確保
すれば、冷蔵室と冷凍室をバランスよく冷却することが
できる。
In this embodiment, the amount of the refrigerant passing through the refrigeration expansion mechanism 9 and the second refrigeration expansion mechanism 14 during normal operation is adjusted so as to be equal, but the heat load of the freezing compartment is reduced. Similar characteristics can be expected even if the refrigerant distribution amount is adjusted accordingly. When the refrigeration capacity of the refrigeration evaporator 3 is insufficient and the liquid refrigerant in the gas-liquid separator 13 is depleted, as in the case of pull-down, the refrigeration expansion mechanism 9 is fully opened and the second refrigeration expansion mechanism 14 is turned off. If the liquid refrigerant to be supplied to the refrigerating evaporator 1 is fully closed to secure the liquid refrigerant, the refrigerating compartment and the refrigerating compartment can be cooled in a well-balanced manner.

【0035】(実施例3)実施例3の冷凍装置のサイク
ル構成とその作用について図3をもとに説明する。図3
において、1は冷凍用蒸発器、2は冷凍室(図示せず)
内の空気と冷凍用蒸発器1の熱交換を促進させる冷凍用
ファン、3は冷蔵用蒸発器、4は冷蔵室(図示せず)内
の空気と冷蔵用蒸発器3の熱交換を促進させる冷蔵用フ
ァン、15は低段圧縮機、16は低段圧縮機15の低段
圧縮機構、17は低段圧縮機15の低段圧縮機構16を
駆動する低段モータ、18は高段圧縮機、19は高段圧
縮機18の高段圧縮機構、20は高段圧縮機18の高段
圧縮機構19を駆動する高段モータ、8は凝縮器、9は
冷凍用膨張機構、10は冷蔵用膨張機構、11は冷凍用
膨張機構9に供給される液冷媒と冷蔵用蒸発器3を熱交
換する熱伝達機構、12は冷凍用膨張機構9を介して冷
凍用蒸発器1に供給される液冷媒の流路を切り替える切
り替えバルブである。低段圧縮機構16は冷凍用蒸発器
1の戻りガス冷媒を圧縮し、その吐出ガス冷媒と冷蔵用
蒸発器3の戻りガス冷媒の混合ガス冷媒を高段圧縮機構
19で圧縮して、凝縮器8へ供給する。このとき、低段
モータ17と高段モータ20は独立に制御されている。
(Embodiment 3) The cycle configuration and operation of a refrigeration apparatus according to Embodiment 3 will be described with reference to FIG. FIG.
, 1 is a freezing evaporator, 2 is a freezing room (not shown)
A refrigeration fan for promoting heat exchange between the air inside and the refrigeration evaporator 1, a refrigeration evaporator 3, and a refrigeration evaporator 3 for heat exchange between the air in the refrigeration room (not shown) and the refrigeration evaporator 3. Refrigeration fan, 15 is a low stage compressor, 16 is a low stage compression mechanism of the low stage compressor 15, 17 is a low stage motor for driving the low stage compression mechanism 16 of the low stage compressor 15, 18 is a high stage compressor , 19 is a high-stage compression mechanism of the high-stage compressor 18, 20 is a high-stage motor for driving the high-stage compression mechanism 19 of the high-stage compressor 18, 8 is a condenser, 9 is a freezing expansion mechanism, and 10 is a refrigerator. An expansion mechanism, 11 is a heat transfer mechanism for exchanging heat between the liquid refrigerant supplied to the refrigeration expansion mechanism 9 and the refrigeration evaporator 3, and 12 is a liquid supplied to the refrigeration evaporator 1 via the refrigeration expansion mechanism 9. This is a switching valve that switches the flow path of the refrigerant. The low-stage compression mechanism 16 compresses the return gas refrigerant of the refrigeration evaporator 1, compresses the mixed gas refrigerant of the discharge gas refrigerant and the return gas refrigerant of the refrigeration evaporator 3 by the high-stage compression mechanism 19, 8 At this time, the low-stage motor 17 and the high-stage motor 20 are controlled independently.

【0036】一般に冷凍冷蔵庫の冷凍室は−18℃前
後、冷蔵室は0〜5℃に設定されることから、冷凍用蒸
発器1の温度は−30℃程度、冷蔵用蒸発器3の温度は
−10℃程度に制御される。また、凝縮器8は大気で空
冷されることから、冷媒は外気温度+10〜20℃程度
で凝縮する。
Generally, the temperature of the freezing evaporator 1 is about -30 ° C. and the temperature of the refrigerating evaporator 3 is about -30 ° C. It is controlled to about -10 ° C. In addition, since the condenser 8 is air-cooled in the atmosphere, the refrigerant condenses at an outside air temperature of about +10 to 20 ° C.

【0037】通常運転時、凝縮器8で凝縮された液冷媒
は、冷凍用膨張機構9と冷蔵用膨張機構10に分配され
て、それぞれ冷凍用蒸発器1と冷蔵用蒸発器3に供給さ
れる。このとき、冷凍用膨張機構9に送られる液冷媒
は、熱伝達機構11を介さず切り替えバルブ12から直
接冷凍用膨張機構9に供給される。このとき、低段モー
タ17と高段モータ20は独立に制御されており、冷凍
用蒸発器1と冷蔵用蒸発器3の冷媒供給量に見合った回
転数で、それぞれ低段圧縮機構16と高段圧縮機構19
を駆動する。
During normal operation, the liquid refrigerant condensed in the condenser 8 is distributed to the refrigeration expansion mechanism 9 and the refrigeration expansion mechanism 10, and supplied to the refrigeration evaporator 1 and the refrigeration evaporator 3, respectively. . At this time, the liquid refrigerant sent to the refrigeration expansion mechanism 9 is directly supplied from the switching valve 12 to the refrigeration expansion mechanism 9 without passing through the heat transfer mechanism 11. At this time, the low-stage motor 17 and the high-stage motor 20 are independently controlled, and the low-stage compression mechanism 16 and the high-stage compression mechanism 16 are rotated at a rotational speed commensurate with the refrigerant supply amounts of the refrigerating evaporator 1 and the refrigerating evaporator 3. Step compression mechanism 19
Drive.

【0038】そして、冷凍室の負荷が急増した場合に
は、冷蔵用ファン4の回転数を下げて冷蔵室と冷蔵用蒸
発器3の熱交換量を低下させて冷蔵用蒸発器3の蒸発温
度を−10℃から−15℃程度まで下げるとともに、切
り替えバルブ12を操作して凝縮器8で凝縮した液冷媒
が熱伝達機構11を介して冷凍用膨張機構9に送られる
ようにする。このとき冷凍用膨張機構9に送られる液冷
媒は、凝縮器8に近い温度から冷蔵用蒸発器3に近い温
度まで過冷却される。この結果、冷蔵用蒸発器3に供給
される冷媒量を削減するとともに、熱伝達機構11の熱
負荷分だけ冷蔵用蒸発器3の冷凍能力を低下させ、同時
に冷凍用蒸発器1の冷凍能力を増大させ、冷蔵室に対す
る冷凍室の冷凍能力が向上する。さらに、低段圧縮機1
5の回転数を高段圧縮機18より増加させて、冷蔵室と
冷凍室の負荷に応じた冷媒循環量に調整することで、よ
り大きな負荷バラスンの変化に対応することができる。
When the load on the freezing compartment suddenly increases, the number of heat exchange between the refrigerating compartment and the refrigerating evaporator 3 is reduced by lowering the rotation speed of the refrigerating fan 4 and the evaporating temperature of the refrigerating evaporator 3 is reduced. Is lowered from -10 ° C. to about −15 ° C., and the switching valve 12 is operated so that the liquid refrigerant condensed in the condenser 8 is sent to the refrigeration expansion mechanism 9 via the heat transfer mechanism 11. At this time, the liquid refrigerant sent to the refrigeration expansion mechanism 9 is supercooled from a temperature close to the condenser 8 to a temperature close to the refrigeration evaporator 3. As a result, the amount of refrigerant supplied to the refrigeration evaporator 3 is reduced, the refrigeration capacity of the refrigeration evaporator 3 is reduced by the heat load of the heat transfer mechanism 11, and at the same time, the refrigeration capacity of the refrigeration evaporator 1 is reduced. The refrigerating capacity of the freezing room with respect to the refrigerating room is improved. Furthermore, the low-stage compressor 1
By increasing the number of rotations of the compressor 5 from the high-stage compressor 18 and adjusting the circulation amount of the refrigerant in accordance with the load of the refrigerator compartment and the freezer compartment, it is possible to cope with a larger change in load ballast.

【0039】なお、本実施例では、低段圧縮機15と高
段圧縮機18を別体としたが、同一シェル内に圧縮機構
部とモータ部を設置して同様の特性が期待できる。ま
た、低段圧縮機15と高段圧縮機18の潤滑油に偏りが
生じないように、シェル内圧力を一致させるとともに、
両者の潤滑油相をつなぐ均油管を設ける方が望ましい。
In this embodiment, the low-stage compressor 15 and the high-stage compressor 18 are provided separately, but similar characteristics can be expected by installing a compression mechanism and a motor in the same shell. In addition, the pressures in the shells are matched so that the lubricating oils of the low-stage compressor 15 and the high-stage compressor 18 do not become unbalanced.
It is desirable to provide an oil equalizing pipe connecting both lubricating oil phases.

【0040】[0040]

【発明の効果】以上のように本発明によれば、冷凍冷蔵
庫等に代表される蒸発温度の異なる複数の蒸発器を有す
る冷媒二段圧縮式冷凍装置において、冷凍室の負荷が急
増した場合に、冷蔵室と冷蔵用蒸発器の熱交換量を低下
させて冷蔵用蒸発器の蒸発温度を下げるとともに、冷凍
用蒸発器に供給される液冷媒の過冷却量を増大させる能
力制御方法を用いることにより、冷蔵室の温度を下げる
ことなく冷凍用蒸発器に対する冷蔵用蒸発器の冷媒循環
量を下げることができ、その後圧縮機の運転率あるいは
回転数を増加させて冷凍室の負荷に応じた冷媒循環量に
調整することで結果として冷蔵室に対する冷凍室の負荷
バランスの変化に対応することができる。
As described above, according to the present invention, in a refrigerant two-stage compression type refrigeration system having a plurality of evaporators having different evaporation temperatures, such as a refrigerator-freezer, when the load of the freezing room is suddenly increased. Using a capacity control method that reduces the amount of heat exchange between the refrigerating compartment and the refrigerating evaporator to lower the evaporating temperature of the refrigerating evaporator and increases the subcooling amount of the liquid refrigerant supplied to the refrigerating evaporator. This makes it possible to reduce the refrigerant circulation amount of the refrigerating evaporator with respect to the refrigerating evaporator without lowering the temperature of the refrigerating room, and then increase the operation rate or the number of revolutions of the compressor to increase the refrigerant in accordance with the load of the freezing room. By adjusting the circulation amount, it is possible to cope with a change in the load balance of the freezer compartment with respect to the refrigerator compartment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の冷凍サイクルの冷媒回路図FIG. 1 is a refrigerant circuit diagram of a refrigeration cycle according to a first embodiment of the present invention.

【図2】本発明の実施例2の冷凍サイクルの冷媒回路図FIG. 2 is a refrigerant circuit diagram of a refrigeration cycle according to Embodiment 2 of the present invention.

【図3】本発明の実施例3の冷凍サイクルの冷媒回路図FIG. 3 is a refrigerant circuit diagram of a refrigeration cycle according to a third embodiment of the present invention.

【図4】従来の冷凍サイクルの冷媒回路図FIG. 4 is a refrigerant circuit diagram of a conventional refrigeration cycle.

【符号の説明】[Explanation of symbols]

1 冷凍用蒸発器 3 冷蔵用蒸発器 6 低段圧縮機構 7 高段圧縮機構 11 熱伝達機構 12 切り替えバルブ 13 気液分離器 15 低段圧縮機 18 高段圧縮機 DESCRIPTION OF SYMBOLS 1 Evaporator for freezing 3 Evaporator for refrigeration 6 Low stage compression mechanism 7 High stage compression mechanism 11 Heat transfer mechanism 12 Switching valve 13 Gas-liquid separator 15 Low stage compressor 18 High stage compressor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷凍室を冷却する冷凍用蒸発器と、冷蔵
室を冷却する冷蔵用蒸発器と、前記冷凍用蒸発器からの
戻りガス冷媒を圧縮する低段圧縮機構と、前記冷蔵用蒸
発器からの戻りガス冷媒と前記低段圧縮機構の吐出ガス
冷媒との混合物を圧縮する高段圧縮機構と、前記高段圧
縮機構の吐出ガス冷媒を凝縮させる凝縮器と、前記凝縮
器で凝縮した液冷媒を減圧して前記冷凍用蒸発器に供給
する冷凍用膨張機構と、前記冷凍用蒸発器に供給される
液冷媒を前記冷蔵用蒸発器で冷却して過冷却温度を制御
する過冷却制御手段と、前記凝縮器で凝縮した液冷媒を
減圧して前記冷蔵用蒸発器に供給する冷蔵用膨張機構と
を有する冷凍装置において、冷凍室の負荷が急増した場
合に冷蔵室と前記冷蔵用蒸発器の熱交換量を低下させて
前記冷蔵用蒸発器の蒸発温度を下げるとともに、前記冷
凍用蒸発器に供給される液冷媒の過冷却量を増大させる
制御方法を用いた冷凍装置。
1. A refrigerating evaporator for cooling a refrigerating compartment, a refrigerating evaporator for cooling a refrigerating compartment, a low-stage compression mechanism for compressing a return gas refrigerant from the refrigerating evaporator, and the refrigerating evaporator. A high-stage compression mechanism that compresses a mixture of the return gas refrigerant from the device and the discharge gas refrigerant of the low-stage compression mechanism; a condenser that condenses the discharge gas refrigerant of the high-stage compression mechanism; and a condenser that condenses in the condenser. A refrigeration expansion mechanism for reducing the pressure of the liquid refrigerant and supplying the same to the refrigeration evaporator; and a supercooling control for controlling the subcooling temperature by cooling the liquid refrigerant supplied to the refrigeration evaporator with the refrigeration evaporator. Means and a refrigeration expansion mechanism for decompressing the liquid refrigerant condensed in the condenser and supplying the refrigerated evaporator to the refrigeration evaporator. The amount of heat exchange in the evaporator A refrigerating apparatus using a control method for lowering an evaporating temperature and increasing a subcooling amount of a liquid refrigerant supplied to the refrigerating evaporator.
【請求項2】 冷凍室を冷却する冷凍用蒸発器と、冷蔵
室を冷却する冷蔵用蒸発器と、前記冷凍用蒸発器からの
戻りガス冷媒を圧縮する低段圧縮機構と、前記冷蔵用蒸
発器からの戻りガス冷媒と前記低段圧縮機構の吐出ガス
冷媒との混合物を圧縮する高段圧縮機構と、前記高段圧
縮機構の吐出ガス冷媒を凝縮させる凝縮器と、前記凝縮
器で凝縮した液冷媒を減圧して前記冷蔵用蒸発器に供給
する冷蔵用膨張機構と、前記冷蔵用蒸発器の出口冷媒を
気液に分離してガス冷媒を前記高段圧縮機構に供給する
気液分離器と、前記気液分離器で分離した液冷媒を減圧
して前記冷凍用蒸発器に供給する冷凍用膨張機構と、前
記凝縮器で凝縮した液冷媒を減圧して前記冷凍用蒸発器
に供給する第二冷凍用膨張機構とを有する冷凍装置にお
いて、冷凍室の負荷が急増した場合に冷蔵室と前記冷蔵
用蒸発器の熱交換量を低下させて前記冷蔵用蒸発器の蒸
発温度を下げるとともに、前記第二冷凍用膨張機構を通
過する液冷媒量を減少させる制御方法を用いた冷凍装
置。
2. A refrigerating evaporator for cooling a refrigerating room, a refrigerating evaporator for cooling a refrigerating room, a low-stage compression mechanism for compressing a return gas refrigerant from the refrigerating evaporator, and the refrigerating evaporator. A high-stage compression mechanism that compresses a mixture of the return gas refrigerant from the device and the discharge gas refrigerant of the low-stage compression mechanism; a condenser that condenses the discharge gas refrigerant of the high-stage compression mechanism; and a condenser that condenses in the condenser. A refrigeration expansion mechanism for decompressing a liquid refrigerant and supplying the refrigeration evaporator to the refrigeration evaporator; and a gas-liquid separator for separating an outlet refrigerant of the refrigeration evaporator into gas and liquid and supplying a gas refrigerant to the high-stage compression mechanism. A refrigeration expansion mechanism that decompresses the liquid refrigerant separated by the gas-liquid separator and supplies the refrigeration evaporator to the refrigeration evaporator; and decompresses the liquid refrigerant condensed by the condenser and supplies it to the refrigeration evaporator. In the refrigerating device having the second refrigerating expansion mechanism, When the temperature increases rapidly, the amount of heat exchange between the refrigerating chamber and the refrigerating evaporator is reduced to lower the evaporating temperature of the refrigerating evaporator, and the amount of liquid refrigerant passing through the second refrigerating expansion mechanism is reduced. Refrigeration equipment using the method.
【請求項3】 低段圧縮機構と低段用可変速モータから
なる低段圧縮機と、高段圧縮機構と高段用可変速モータ
からなる高段圧縮機とを有する請求項1または請求項2
に記載の冷凍装置。
3. A low-stage compressor comprising a low-stage compression mechanism and a low-stage variable-speed motor, and a high-stage compressor comprising a high-stage compression mechanism and a high-stage variable-speed motor. 2
A refrigeration apparatus according to claim 1.
JP2001073752A 2001-03-15 2001-03-15 Freezer Pending JP2002277082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001073752A JP2002277082A (en) 2001-03-15 2001-03-15 Freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001073752A JP2002277082A (en) 2001-03-15 2001-03-15 Freezer

Publications (1)

Publication Number Publication Date
JP2002277082A true JP2002277082A (en) 2002-09-25

Family

ID=18931131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001073752A Pending JP2002277082A (en) 2001-03-15 2001-03-15 Freezer

Country Status (1)

Country Link
JP (1) JP2002277082A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061970A1 (en) * 2003-12-24 2005-07-07 Kabushiki Kaisha Toshiba Refrigerator
CN102445049A (en) * 2010-10-07 2012-05-09 株式会社东芝 Refrigerator
KR101298323B1 (en) 2008-08-26 2013-08-20 엘지전자 주식회사 Method for controlling hot water circulation system associated with heat pump
US8657207B2 (en) 2008-08-26 2014-02-25 Lg Electronics Inc. Hot water circulation system associated with heat pump and method for controlling the same
JP2018021732A (en) * 2016-08-05 2018-02-08 三菱重工サーマルシステムズ株式会社 Heat pump device and control method thereof
CN113915873A (en) * 2021-03-29 2022-01-11 海信(山东)冰箱有限公司 A kind of refrigerator
CN114484908A (en) * 2022-01-28 2022-05-13 澳柯玛股份有限公司 Two-stage compressor refrigeration system and control method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061970A1 (en) * 2003-12-24 2005-07-07 Kabushiki Kaisha Toshiba Refrigerator
CN100417876C (en) * 2003-12-24 2008-09-10 株式会社东芝 Refrigerator
KR101298323B1 (en) 2008-08-26 2013-08-20 엘지전자 주식회사 Method for controlling hot water circulation system associated with heat pump
US8657207B2 (en) 2008-08-26 2014-02-25 Lg Electronics Inc. Hot water circulation system associated with heat pump and method for controlling the same
CN102445049A (en) * 2010-10-07 2012-05-09 株式会社东芝 Refrigerator
JP2018021732A (en) * 2016-08-05 2018-02-08 三菱重工サーマルシステムズ株式会社 Heat pump device and control method thereof
WO2018025935A1 (en) * 2016-08-05 2018-02-08 三菱重工サーマルシステムズ株式会社 Heat pump device and control method therefor
CN113915873A (en) * 2021-03-29 2022-01-11 海信(山东)冰箱有限公司 A kind of refrigerator
CN114484908A (en) * 2022-01-28 2022-05-13 澳柯玛股份有限公司 Two-stage compressor refrigeration system and control method thereof

Similar Documents

Publication Publication Date Title
TWI257472B (en) Refrigerator
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
JP4658347B2 (en) Supercritical vapor compression refrigeration cycle
JPH10132395A (en) Turbo refrigerator
EP3190356B1 (en) Refrigerator and method of controlling the same
WO2009142101A1 (en) Refrigeration cycle
JP3975664B2 (en) Refrigerating refrigerator, operation method of freezing refrigerator
JP3847499B2 (en) Two-stage compression refrigeration system
JP2002277082A (en) Freezer
JP4608790B2 (en) refrigerator
JP2006023028A (en) Refrigerant cooling circuit
JPH11148761A (en) Refrigerator
JP2008025905A (en) Refrigerator
JP2003269805A (en) Marine refrigerating unit
JP2002266782A (en) Screw refrigerating machine
JP4169080B2 (en) Freezer refrigerator
JP3966262B2 (en) Freezer refrigerator
KR20120003224A (en) Refrigerant circulation system for refrigerating apparatus
JP4240715B2 (en) Refrigeration equipment
JP4104519B2 (en) Refrigeration system
JP2005134080A (en) Refrigerator
JP2007147228A (en) Refrigerating device
JP2001201194A (en) Cold storage system with deep freezer
JPH11223397A (en) Freezer refrigerator
JP2005106373A (en) Refrigerator-freezer