JP4240715B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4240715B2
JP4240715B2 JP2000008912A JP2000008912A JP4240715B2 JP 4240715 B2 JP4240715 B2 JP 4240715B2 JP 2000008912 A JP2000008912 A JP 2000008912A JP 2000008912 A JP2000008912 A JP 2000008912A JP 4240715 B2 JP4240715 B2 JP 4240715B2
Authority
JP
Japan
Prior art keywords
compression element
valve
gas
temperature evaporator
liquid separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000008912A
Other languages
Japanese (ja)
Other versions
JP2001201236A (en
Inventor
浩業 明石
国新 ▲ゆ▼
康祐 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000008912A priority Critical patent/JP4240715B2/en
Publication of JP2001201236A publication Critical patent/JP2001201236A/en
Application granted granted Critical
Publication of JP4240715B2 publication Critical patent/JP4240715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、2つの圧縮要素と2つの蒸発器を備えた冷凍冷蔵装置に関するものである。
【0002】
【従来の技術】
近年、冷蔵室と冷凍室を備えた冷凍冷蔵庫は、省エネルギーや各庫内の温度制御の精度向上が求められている。その中で、2つの圧縮要素と2つの蒸発器並びに気液分離器等を備え、二段圧縮冷凍サイクルを形成して省エネルギー化を図る冷凍冷蔵庫用システムが提案されている。
【0003】
そのような冷凍冷蔵庫用システムとして、例えばUSP4910972に示されているものがある。
【0004】
以下、図面を参照しながら上記従来の冷凍冷蔵庫用システムを説明する。
【0005】
図5は従来の二段圧縮冷凍サイクルの冷媒回路図である。図6は従来の二段圧縮冷凍サイクルに使用される気液分離器の断面図である。
【0006】
図5、6において、1は第一膨張弁、2は冷凍室用蒸発器、3は低段圧縮機、4は高段圧縮機、5は凝縮器、6は第二膨張弁、7は冷蔵室用蒸発器であり、これらを順次配管8によって接続している。9は冷蔵室用蒸発器7と第一膨張弁1の間に設けられ、低段圧縮機3と高段圧縮機4の間の中間冷却を行う気液分離器9であり、これらの各部品から冷凍室と冷蔵室を持つ冷蔵庫用システムを形成している。気液分離器9は、本体容器10とその上部に設けられた入口11、中間部に設けられた出口12、下部に設けられた出口13、網14から構成されている。気液分離器9の下部には冷媒が液冷媒15として溜り、上部には冷媒が飽和ガスとして溜まるようになっている。
【0007】
以上のように構成された冷凍冷蔵庫用システムについて、以下その動作を説明する。
【0008】
低段圧縮機3が運転されると、低段圧縮機3は冷媒ガスを吸入して圧縮し、配管8に吐出する。低段圧縮機3から配管8に吐出された冷媒ガスは、気液分離器9の出口12からの冷媒ガスと混合して、高段圧縮機4の吸入側から吸入され、再び圧縮される。高段圧縮機4で圧縮された冷媒ガスは、配管8を介して凝縮器5に送られる。凝縮器5で冷媒ガスは放熱して凝縮されて液冷媒になった後、第二膨張弁6により減圧される。そして、冷蔵室用蒸発器7に流入し、一部はそこで蒸発する。このときに周囲から熱を奪うことによって冷蔵室用蒸発器7は冷却作用を発揮し、冷蔵室を冷却する。そして、冷蔵室用蒸発器7を出た気液二相の冷媒は入口11から気液分離器9に流入し、網14で固形の不純物が取り除かれる。そして、気液分離器9内底部には液冷媒15が貯溜され、気液分離器9内上部には飽和ガス冷媒が溜まり、気相と液相が分離される。そして、気液分離器9の出口13からは液冷媒のみが第一膨張弁1方向に流出し、そこで減圧されて冷凍室用蒸発器2に流入して蒸発する。このときに周囲から熱を奪うことによって冷凍室用蒸発器2は冷却作用を発揮し、冷凍室を冷却する。そして、冷凍室用蒸発器2を出た低温ガス冷媒は、再び低段圧縮機3に吸入される。
【0009】
一方、気液分離器9内上部の飽和ガス冷媒は出口12から流出し、低段圧縮機3から吐出された冷媒ガスと混合して高段圧縮機4が吸入する冷媒ガスの温度を下げ、効率を向上することができる。また、高段圧縮機4の吐出ガスの温度も低くなるため、圧縮機の過熱を防止でき、潤滑油の粘度低下による潤滑不良や潤滑油の劣化を防止できる。
【0010】
このように二段圧縮冷凍サイクルは、一段圧縮冷凍サイクルよりも理論上の効率が向上し、圧縮機の信頼性が向上する。
【0011】
【発明が解決しようとする課題】
しかしながら上記従来の構成では、低段圧縮機3は圧縮比が小さいために理論圧縮動力は小さいが、実際に必要となる軸動力は、低段圧縮機3で固定的に発生する摺動損失等のためにかなり大きくなる。すなわち、軸動力に対する理論圧縮動力の比である全断熱効率が悪くなるため、実際の冷凍サイクルの効率は理論的な冷凍サイクルの効率よりもかなり悪くなる可能性があるという欠点があった。
【0012】
本発明は従来の課題を解決するもので、圧縮機の全断熱効率を向上させて、実際の冷凍サイクルの効率を向上させ、消費電力が少なく、効率の高い冷凍冷蔵装置を提供することを目的とする。
【0013】
また、上記従来の構成は、サイクルを循環する冷媒は、冷蔵室を冷却してから冷凍室を冷却する順番になるため、冷凍室と冷蔵室の冷却負荷のバランスが変わったとき、特に冷凍室の冷却負荷が増えたときに冷凍室は冷凍能力不足になると共に、冷凍サイクルの効率が悪くなる可能性があるという欠点があった。
【0014】
本発明の他の目的は、冷凍冷蔵装置の冷凍室と冷蔵室などの異なる温度帯の庫内のどちらか一方が冷凍能力不足になったり、冷凍能力過剰になること無く、各庫内を適正に冷却でき、かつ高効率で消費電力の少ない冷凍冷蔵装置を提供することである。
また、上記従来の構成は、冷凍室用蒸発器2あるいは冷蔵室用蒸発器7の片方だけの冷却ができないため、蒸発器の性能低下を防止するための霜取りを行うとき、冷凍室と冷蔵室の両冷却を停止しなければならず、その霜取りを行う間に各庫内の温度が上昇してしまう可能性があるという欠点があった。
本発明の他の目的は、高温用(冷蔵室用)蒸発器あるいは低温用(冷凍室用)蒸発器の霜取りを行うときに片側のみの冷却を停止して庫内温度の上昇を防止することができる冷凍冷蔵装置を提供することである。
また、上記従来の構成は、低段側圧縮機3と高段側圧縮機4が直列接続であるため、並列接続を行う同一サイズの圧縮機と比べ圧縮機最大能力が小さくなり、ドアの開閉や庫内に入れる食品の違いによる冷凍室、あるいは冷蔵室庫内の冷却負荷が著しく増大したときに対応できず庫内各部の温度が不均一になったり、庫内温度が上昇してしまう可能性があるという欠点があった。
【0015】
本発明の他の目的は、冷凍室、冷蔵室庫内の冷却負荷の変化に対応し庫内各部の温度の均一化が図れ、更に冷凍室と冷蔵室の冷却負荷の著しい増大への対応と、急速冷却を行うことのできる効率的な冷凍冷蔵装置を提供することである。
【0016】
【課題を解決するための手段】
この目的を達成するために本発明は、第一圧縮要素と、第二圧縮要素と、前記第一圧縮要素の吐出側並びに前記第二圧縮要素の吐出側と共に配管接続した凝縮器と、前記凝縮器の出口側と配管接続した第一膨張装置と、前記第一膨張装置の出口側に配管接続した高温用蒸発器と、前記高温用蒸発器と前記第一圧縮要素の吸入側との間に配管接続した気液分離器と、前記気液分離器と配管接続した第二膨張装置と、前記第二膨張装置と前記第二圧縮要素の吸入側との間に配管接続した低温用蒸発器とからなり、前記気液分離器の液冷媒出口側と第二膨張装置とが連通し、前記気液分離器のガス冷媒出口側と前記第一圧縮要素とが連通した構成としたのである。
【0017】
これにより、圧縮機の全断熱効率を向上させて、実際の冷凍サイクルの効率を向上させ、消費電力が少なく、効率の高い冷凍冷蔵装置を提供することができる。
【0018】
また、本発明は、高温用蒸発器の入口側と出口側とを連通する第一バイパス通路と、前記第一バイパス通路に設けられた第一開閉弁とを備えた構成としたのである。
【0019】
これにより、冷凍冷蔵装置の冷凍室と冷蔵室などの異なる温度帯の庫内のどちらか一方が冷凍能力不足になったり、冷凍能力過剰になること無く、各庫内を適正に冷却でき、かつ高効率で消費電力の少ない冷凍冷蔵装置を提供することができる。
【0020】
また、本発明は、第一バイパス通路の分岐点と高温用蒸発器との間に設けられた第二開閉弁と、気液分離器と第二圧縮要素の吸入側との間に設けられた第三開閉弁とを備えた構成としたのである。
【0021】
これにより、高温用蒸発器あるいは低温用蒸発器の霜取りを行うときに片側のみの冷却を停止して庫内温度の上昇を防止することができる冷凍冷蔵装置を提供することができる。
【0022】
また、本発明は、第一圧縮要素の吸入側と第二圧縮要素の吸入側とを連通する第二バイパス通路と、前記第二バイパス通路に設けられた第四開閉弁と、前記第一圧縮要素と気液分離器との間に設けられた第五開閉弁とを備えた構成としたのである。
【0023】
これにより、冷凍室、冷蔵室庫内の冷却負荷の変化に対応し庫内各部の温度の均一化が図れ、更に冷凍室と冷蔵室の冷却負荷の著しい増大への対応と、急速冷却を行うことのできる効率的な冷凍冷蔵装置を提供することができる。
【0024】
【発明の実施の形態】
本発明の請求項1に記載の発明は、第一圧縮要素と、第二圧縮要素と、前記第一圧縮要素の吐出側並びに前記第二圧縮要素の吐出側と共に配管接続した凝縮器と、前記凝縮器の出口側と配管接続した第一膨張装置と、前記第一膨張装置の出口側に配管接続した高温用蒸発器と、前記高温用蒸発器と前記第一圧縮要素の吸入側との間に配管接続した気液分離器と、前記気液分離器と配管接続した第二膨張装置と、前記第二膨張装置と前記第二圧縮要素の吸入側との間に配管接続した低温用蒸発器とからなり、前記気液分離器の液冷媒出口側と第二膨張装置とが連通し、前記気液分離器のガス冷媒出口側と前記第一圧縮要素とが連通した構成としたものであり、高温用回路と低温用回路をそれぞれ別々の一段圧縮サイクルとして形成し、極端な低圧縮比にならない適正な圧力条件で運転することにより、全断熱効率が悪くなることを防止できる。従って、実際の冷凍サイクルの効率を向上させ、消費電力を少なくできるという作用を有する。
【0025】
さらに、高温用蒸発器の入口側と出口側とを連通する第一バイパス通路と、前記第一バイパス通路に設けられた第一開閉弁とを備えた構成としたものであり冷凍室と冷蔵室などの異なる温度帯の庫内うち低温側の冷却負荷が相対的に大きくなったとき、第一開閉弁を開けることにより、冷媒は高温用蒸発器よりも第一バイパス通路を主に流れて、その冷却能力を冷凍室側(低温側)の低温用蒸発器で主に発揮することになる。従って、冷凍室と冷蔵室などの冷却負荷のアンバランスに対応できるため、どちらか一方が冷凍能力不足になったり、冷凍能力過剰になること無く、各庫内を適正に冷却でき、かつ高効率で消費電力を少なくできるという作用を有する。
【0026】
さらに、第一バイパス通路の分岐点と高温用蒸発器との間に設けられた第二開閉弁と、気液分離器と第二圧縮要素の吸入側との間に設けられた第三開閉弁とを備えた構成としたものであり第一開閉弁、第三開閉弁を開け、第二開閉弁を閉じることにより、冷媒は高温用蒸発器側には流れず第一バイパス通路に流れて、その冷却能力を冷凍室側(低温側)の低温用蒸発器のみに発揮することになる。従って、冷凍室と冷蔵室の冷却負荷の大きなアンバランスに対応でき、さらに、低温用蒸発器で冷却作用を行いながら、冷却作用が停止している高温用蒸発器の霜取りを行うことができる。また、第二開閉弁を開け、第一開閉弁、第三開閉弁を閉じることにより、冷媒は高温用蒸発器を通り気液分離器に流入した後、低温用蒸発器側には流れず第一圧縮要素に吸入されるため、その冷却能力を冷蔵室側(高温側)の高温用蒸発器のみに発揮することになる。従って、冷凍室と冷蔵室の冷却負荷の大きなアンバランスに対応でき、さらに、高温用蒸発器で冷却作用を行いながら、冷却作用が停止している低温用蒸発器の霜取りを行うことができるという作用を有する。
【0027】
さらに、第一圧縮要素の吸入側と第二圧縮要素の吸入側とを連通する第二バイパス通路と、前記第二バイパス通路に設けられた第四開閉弁と、前記第一圧縮要素と気液分離器との間に設けられた第五開閉弁とを備えた構成としたものであり第四開閉弁、第五開閉弁を開けることにより、第一圧縮要素と第二圧縮要素の吸入側が連通して二気筒並列の一段圧縮運転となり、冷媒は高温用蒸発器で冷却作用を発揮した後、低温用蒸発器側には流れず第一圧縮要素並びに第二圧縮要素に吸入されるため、冷蔵室側(高温側)の急冷運転となる。また、第一開閉弁、第四開閉弁を開け、第五開閉弁を閉めることにより、第一圧縮要素と第二圧縮要素の吸入側が連通して二気筒並列の一段圧縮運転となり、冷媒は高温用蒸発器側には流れず第一バイパス通路に流れて、その冷却能力を冷凍室側(低温側)の低温用蒸発器のみに発揮することになるため、冷凍室側の急冷運転となる。すなわち、冷凍室、冷蔵室庫内の冷却負荷の変化に対応し庫内各部の温度の均一化が図れ、更に冷凍室と冷蔵室の冷却負荷の著しい増大への対応と、急速冷却を行うことができるという作用を有する。
【0028】
【実施例】
以下、本発明による冷凍冷蔵装置の実施例について、図面を参照しながら説明する。尚、従来と同一構成については、同一符号を付して詳細な説明を省略する。
【0029】
参考例1
図1は参考例1による冷凍冷蔵装置の冷媒回路図を示す。図2は同参考例の冷凍冷蔵装置における冷凍サイクルの圧力−エンタルピ線図である。
【0030】
図1、図2において、16は第一圧縮要素、17は第二圧縮要素であり、第一圧縮要素16並びに第二圧縮要素17は密閉容器18内に収納されている。19は第一圧縮要素16の吐出側並びに第二圧縮要素17の吐出側と共に配管接続した凝縮器である。20は凝縮器19の出口側と配管接続した第一膨張装置、21は第一膨張装置20の出口側に配管接続した高温用蒸発器である。22は高温用蒸発器21と第一圧縮要素16の吸入側との間に配管接続した気液分離器であり、23は気液分離器22と配管接続した第二膨張装置でり、24は第二膨張装置23と第二圧縮要素17の吸入側との間に配管接続した低温用蒸発器である。気液分離器22の液冷媒出口25側と第二膨張装置23とが連通し、気液分離器22のガス冷媒出口26側と第一圧縮要素16とが連通した構成となっている。
【0031】
以上のように構成された冷凍冷蔵装置について、以下その動作を説明する。
【0032】
第一圧縮要素16、第二圧縮要素17が運転されると、それらは冷媒ガスを吸入して圧縮し、配管を介して凝縮器19に送られる。凝縮器19で冷媒ガスは放熱して凝縮されて液冷媒になった後、第一膨張弁20により減圧される。そして、高温用蒸発器21に流入し、一部はそこで蒸発する。このときに周囲から熱を奪うことによって高温用蒸発器21は冷却作用を発揮し、冷蔵室等の高温側の庫内を冷却する。そして、高温用蒸発器21を出た気液二相の冷媒は気液分離器22内に流入し、気液分離器22内底部には液冷媒が貯溜され、気液分離器22内上部には飽和ガス冷媒が溜まり、気相と液相が分離される。そして、気液分離器22の液冷媒出口25からは液冷媒のみが第二膨張装置23方向に流出し、そこで減圧されて低温用蒸発器24に流入して蒸発する。このときに周囲から熱を奪うことによって低温用蒸発器24は冷却作用を発揮し、冷凍室等の低温側の庫内を冷却する。そして、低温蒸発器24を出た低温ガス冷媒は、再び第二圧縮要素17に吸入される。一方、気液分離器22内上部の飽和ガス冷媒はガス冷媒出口26から流出し、再び第二圧縮要素16に吸入される。
【0033】
このように、高温用回路と低温用回路をそれぞれ別々の一段圧縮サイクルとして形成し、二段圧縮のような極端な低圧縮比にならない適正な圧力条件で運転することにより、全断熱効率が悪くなることを防止できる。従って、実際の冷凍サイクルの効率を向上させ、消費電力を少なくできる。
【0034】
以上のように本参考例の冷凍冷蔵装置は、第一圧縮要素16と、第二圧縮要素17と、第一圧縮要素16の吐出側並びに第二圧縮要素17の吐出側と共に配管接続した凝縮器19と、凝縮器19の出口側と配管接続した第一膨張装置20と、第一膨張装置20の出口側に配管接続した高温用蒸発器21と、高温用蒸発器21と第一圧縮要素16の吸入側との間に配管接続した気液分離器22と、気液分離器22と配管接続した第二膨張装置23と、第二膨張装置23と第二圧縮要素17の吸入側との間に配管接続した低温用蒸発器24とからなり、気液分離器22の液冷媒出口25側と第二膨張装置23とが連通し、気液分離器22のガス冷媒出口26側と第一圧縮要素16とが連通した構成となっているので、高温用回路と低温用回路をそれぞれ別々の一段圧縮サイクルとして形成し、二段圧縮のような極端な低圧縮比にならない適正な圧力条件で運転することにより、全断熱効率が悪くなることを防止できる。従って、実際の冷凍サイクルの効率を向上させ、消費電力を少なくできる。
【0035】
参考例2
図3は参考例2による冷凍冷蔵装置の冷媒回路図を示す。
【0036】
以下、図面を参照しながら説明するが、参考例1と同一構成については、同一符号を付して詳細な説明を省略する。図3において、27は高温用蒸発器19の入口側と出口側とを連通する第一バイパス通路であり、28は第一バイパス通路27に設けられた第一開閉弁である。29は第一バイパス通路27の分岐点と高温用蒸発器21との間に設けられた第二開閉弁であり、30は気液分離器22と第二圧縮要素16の吸入側との間に設けられた第三開閉弁である。
【0037】
以上のように構成された冷凍冷蔵装置について、以下その動作を説明する。
【0038】
第一開閉弁28を閉じ、第二開閉弁29、第三開閉弁30を開けて第一圧縮要素16、第二圧縮要素17を運転すると参考例1と同じ冷凍サイクルが形成されて、同じ効果が得られる。
【0039】
この状態から、冷凍室と冷蔵室などの異なる温度帯の庫内うち低温側の冷却負荷が相対的に大きくなったとき、第一開閉弁28を開けることにより、冷媒は高温用蒸発器21よりも第一バイパス通路28を主に流れて、その冷却能力を冷凍室側(低温側)の低温用蒸発器24で主に発揮することになる。従って、冷凍室と冷蔵室の冷却負荷のアンバランスに対応できるため、どちらか一方が冷凍能力不足になったり、冷凍能力過剰になること無く、各庫内を適正に冷却でき、かつ高効率で消費電力を少なくできる。
【0040】
また、第一開閉弁28、第三開閉弁30を開け、第二開閉弁29を閉じることにより、冷媒は高温用蒸発器21側には流れず第一バイパス通路27に流れて、その冷却能力を冷凍室側(低温側)の低温用蒸発器24のみに発揮することになる。従って、冷凍室と冷蔵室の冷却負荷の大きなアンバランスに対応でき、さらに、低温用蒸発器24で冷却作用を行いながら、冷却作用が停止している高温用蒸発器21の霜取りを行うことができる。
【0041】
また、第二開閉弁29を開け、第一開閉弁28、第三開閉弁30を閉じることにより、冷媒は高温用蒸発器21を通り気液分離器22に流入した後、低温用蒸発器24側には流れず第一圧縮要素16に吸入されるため、その冷却能力を冷蔵室側(高温側)の高温用蒸発器21のみに発揮することになる。従って、冷凍室と冷蔵室の冷却負荷の大きなアンバランスに対応でき、さらに、高温用蒸発器21で冷却作用を行いながら、冷却作用が停止している低温用蒸発器24の霜取りを行うことができる。
【0042】
以上のように本参考例の冷凍冷蔵装置は、高温用蒸発器21の入口側と出口側とを連通する第一バイパス通路27と、第一バイパス通路27に設けられた第一開閉弁28と、第一バイパス通路27の分岐点と高温用蒸発器21との間に設けられた第二開閉弁29と、気液分離器22と第二圧縮要素17の吸入側との間に設けられた第三開閉弁30とを備えた構成となっているので、冷凍冷蔵装置の冷凍室と冷蔵室などの異なる温度帯の庫内のどちらか一方が冷凍能力不足になったり、冷凍能力過剰になること無く、各庫内を適正に冷却でき、かつ高効率で消費電力を少なくできる。また、高温用蒸発器21あるいは低温用蒸発器24の霜取りを行うときに片側のみの冷却を停止して庫内温度の上昇を防止することができる。
【0043】
実施例1
図4は本発明の実施例1による冷凍冷蔵装置の冷媒回路図を示す。
【0044】
以下、図面を参照しながら説明するが、参考例1並びに参考例2と同一構成については、同一符号を付して詳細な説明を省略する。図4において、31は第一圧縮要素16の吸入側と第二圧縮要素17の吸入側とを連通する第二バイパス通路であり、32は第二バイパス通路31に設けられた第四開閉弁であり、33は第一圧縮要素16と気液分離器22との間に設けられた第五開閉弁である。
【0045】
以上のように構成された冷凍冷蔵装置について、以下その動作を説明する。
【0046】
第四開閉弁32を閉じ、第五開閉弁33を開けて第一圧縮要素16、第二圧縮要素17を運転すると、参考例2と同じ効果が得られる。
【0047】
そして、第一開閉弁28、第三開閉弁30を閉じ、第二開閉弁29、第四開閉弁32、第五開閉弁33を開けることにより、第一圧縮要素16と第二圧縮要素17の吸入側が連通して二気筒並列の一段圧縮運転となり、冷媒は高温用蒸発器21で冷却作用を発揮した後、低温用蒸発器24側には流れず第一圧縮要素16並びに第二圧縮要素17に吸入されるため、冷蔵室側(高温側)の急冷運転となる。このとき、第三開閉弁30を開けても第二膨張装置23による抵抗のため、低温用蒸発器24側に冷媒はほとんど流れず同様の効果が得られる。
【0048】
また、第一開閉弁28、第三開閉弁30、第四開閉弁32を開け、第二開閉弁29、第五開閉弁33を閉めることにより、第一圧縮要素16と第二圧縮要素17の吸入側が連通して二気筒並列の一段圧縮運転となり、冷媒は高温用蒸発器21側には流れず第一バイパス通路27に流れて、その冷却能力を冷凍室側(低温側)の低温用蒸発器24のみに発揮することになるため、冷凍室側の急冷運転となる。このとき、第二開閉弁29を開けると冷媒は高温用蒸発器21側にも流れ冷蔵室側の冷却も行うことができる。
【0049】
以上のように本実施例の冷凍冷蔵装置は、第一圧縮要素16の吸入側と第二圧縮要素17の吸入側とを連通する第二バイパス通路31と、第二バイパス通路31に設けられた第四開閉弁32と、第一圧縮要素16と気液分離器22との間に設けられた第五開閉弁33とを備えた構成となっているので、冷凍室、冷蔵室庫内の冷却負荷の変化に対応し庫内各部の温度の均一化が図れ、更に冷凍室と冷蔵室の冷却負荷の著しい増大への対応と、急速冷却を行うことができる。
【0050】
【発明の効果】
以上説明したように請求項1に記載の発明は、第一圧縮要素と、第二圧縮要素と、前記第一圧縮要素の吐出側並びに前記第二圧縮要素の吐出側と共に配管接続した凝縮器と、前記凝縮器の出口側と配管接続した第一膨張装置と、前記第一膨張装置の出口側に配管接続した高温用蒸発器と、前記高温用蒸発器と前記第一圧縮要素の吸入側との間に配管接続した気液分離器と、前記気液分離器と配管接続した第二膨張装置と、前記第二膨張装置と前記第二圧縮要素の吸入側との間に配管接続した低温用蒸発器とからなり、前記気液分離器の液冷媒出口側と第二膨張装置とが連通し、前記気液分離器のガス冷媒出口側と前記第一圧縮要素とが連通した構成となっているので、高温用回路と低温用回路をそれぞれ別々の一段圧縮サイクルとして形成し、二段圧縮のような極端な低圧縮比にならない適正な圧力条件で運転することにより、全断熱効率が悪くなることを防止できる。従って、実際の冷凍サイクルの効率を向上させ、消費電力を少なくできる。
【0051】
さらに、高温用蒸発器の入口側と出口側とを連通する第一バイパス通路と、前記第一バイパス通路に設けられた第一開閉弁とを備えた構成となっているので、さらに、冷凍冷蔵装置の冷凍室と冷蔵室などの異なる温度帯の庫内のどちらか一方が冷凍能力不足になったり、冷凍能力過剰になること無く、各庫内を適正に冷却でき、かつ高効率で消費電力を少なくできる。
【0052】
さらに、第一バイパス通路の分岐点と高温用蒸発器との間に設けられた第二開閉弁と、気液分離器と第二圧縮要素の吸入側との間に設けられた第三開閉弁とを備えた構成となっているので、さらに、高温用蒸発器あるいは低温用蒸発器の霜取りを行うときに片側のみの冷却を停止して庫内温度の上昇を防止することができる。
【0053】
さらに、第一圧縮要素の吸入側と第二圧縮要素の吸入側とを連通する第二バイパス通路と、前記第二バイパス通路に設けられた第四開閉弁と、前記第一圧縮要素と気液分離器との間に設けられた第五開閉弁とを備えた構成となっているので、さらに、冷凍室、冷蔵室庫内の冷却負荷の変化に対応し庫内各部の温度の均一化が図れ、更に冷凍室と冷蔵室の冷却負荷の著しい増大への対応と、急速冷却を行うことができる。
【図面の簡単な説明】
【図1】 冷凍冷蔵装置の参考例1の冷媒回路図
【図2】 同参考例の冷凍冷蔵装置における冷凍サイクルの圧力−エンタルピ線図
【図3】 冷凍冷蔵装置の参考例2の冷媒回路図
【図4】 本発明による冷凍冷蔵装置の実施例1の冷媒回路図
【図5】 従来の二段圧縮冷凍サイクルの冷媒回路図
【図6】 従来の二段圧縮冷凍サイクルに使用される気液分離器の断面図
【符号の説明】
16 第一圧縮要素
17 第二圧縮要素
19 凝縮器
20 第一膨張装置
21 高温用蒸発器
22 気液分離器
23 第二膨張装置
24 低温用蒸発器
25 液冷媒出口
26 ガス冷媒出口
27 第一バイパス通路
28 第一開閉弁
29 第二開閉弁
30 第三開閉弁
31 第二バイパス通路
32 第四開閉弁
33 第五開閉弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator-freezer equipped with two compression elements and two evaporators.
[0002]
[Prior art]
In recent years, refrigerator-freezers equipped with a refrigerator compartment and a freezer compartment have been required to save energy and improve the accuracy of temperature control in each cabinet. Among them, a refrigerator-freezer system that includes two compression elements, two evaporators, a gas-liquid separator, and the like and forms a two-stage compression refrigeration cycle to save energy has been proposed.
[0003]
An example of such a refrigerator-freezer system is shown in US Pat. No. 4,910,972.
[0004]
Hereinafter, the conventional refrigerator-freezer system will be described with reference to the drawings.
[0005]
FIG. 5 is a refrigerant circuit diagram of a conventional two-stage compression refrigeration cycle. FIG. 6 is a sectional view of a gas-liquid separator used in a conventional two-stage compression refrigeration cycle.
[0006]
5 and 6, 1 is a first expansion valve, 2 is a freezer evaporator, 3 is a low stage compressor, 4 is a high stage compressor, 5 is a condenser, 6 is a second expansion valve, and 7 is refrigerated. These are room evaporators, which are connected by a pipe 8 in sequence. Reference numeral 9 denotes a gas-liquid separator 9 provided between the cold room evaporator 7 and the first expansion valve 1 and performing intermediate cooling between the low-stage compressor 3 and the high-stage compressor 4. A refrigerator system having a freezer compartment and a refrigerator compartment is formed. The gas-liquid separator 9 includes a main body container 10 and an inlet 11 provided at the upper part thereof, an outlet 12 provided at an intermediate part, an outlet 13 provided at the lower part, and a net 14. A refrigerant is stored as a liquid refrigerant 15 in the lower part of the gas-liquid separator 9, and a refrigerant is stored as a saturated gas in the upper part.
[0007]
The operation of the refrigerator-freezer system configured as described above will be described below.
[0008]
When the low stage compressor 3 is operated, the low stage compressor 3 sucks and compresses the refrigerant gas and discharges it to the pipe 8. The refrigerant gas discharged from the low stage compressor 3 to the pipe 8 is mixed with the refrigerant gas from the outlet 12 of the gas-liquid separator 9 and is sucked from the suction side of the high stage compressor 4 and compressed again. The refrigerant gas compressed by the high stage compressor 4 is sent to the condenser 5 through the pipe 8. In the condenser 5, the refrigerant gas dissipates heat and is condensed to form a liquid refrigerant, and then the pressure is reduced by the second expansion valve 6. And it flows into the evaporator 7 for refrigerator compartments, and a part is evaporated there. At this time, by taking heat away from the surroundings, the refrigerator for a refrigerator compartment 7 exhibits a cooling action and cools the refrigerator compartment. The gas-liquid two-phase refrigerant exiting the refrigerator compartment evaporator 7 flows into the gas-liquid separator 9 from the inlet 11, and solid impurities are removed by the net 14. And the liquid refrigerant 15 is stored in the bottom part in the gas-liquid separator 9, the saturated gas refrigerant is stored in the upper part in the gas-liquid separator 9, and a gaseous phase and a liquid phase are isolate | separated. Then, only the liquid refrigerant flows out from the outlet 13 of the gas-liquid separator 9 in the direction of the first expansion valve 1, where it is decompressed and flows into the freezer compartment evaporator 2 to evaporate. At this time, by taking heat away from the surroundings, the freezer compartment evaporator 2 exhibits a cooling action and cools the freezer compartment. Then, the low-temperature gas refrigerant that has left the freezer compartment evaporator 2 is again sucked into the low-stage compressor 3.
[0009]
On the other hand, the saturated gas refrigerant in the upper part of the gas-liquid separator 9 flows out from the outlet 12, mixes with the refrigerant gas discharged from the low-stage compressor 3, and lowers the temperature of the refrigerant gas sucked by the high-stage compressor 4, Efficiency can be improved. Moreover, since the temperature of the discharge gas of the high stage compressor 4 is also reduced, overheating of the compressor can be prevented, and poor lubrication and deterioration of the lubricating oil due to a decrease in the viscosity of the lubricating oil can be prevented.
[0010]
Thus, the two-stage compression refrigeration cycle has a theoretical efficiency higher than that of the one-stage compression refrigeration cycle, and the reliability of the compressor is improved.
[0011]
[Problems to be solved by the invention]
However, in the above-described conventional configuration, the low-stage compressor 3 has a small compression ratio, so the theoretical compression power is small. However, the actually required shaft power is a sliding loss that is fixedly generated by the low-stage compressor 3 and the like. Will be quite big for. That is, since the total adiabatic efficiency, which is the ratio of the theoretical compression power to the shaft power, is deteriorated, there is a drawback that the efficiency of the actual refrigeration cycle may be considerably worse than the efficiency of the theoretical refrigeration cycle.
[0012]
An object of the present invention is to solve the conventional problems, and to improve the overall heat insulation efficiency of a compressor, improve the efficiency of an actual refrigeration cycle, and provide a highly efficient refrigeration apparatus with low power consumption. And
[0013]
In the above conventional configuration, since the refrigerant circulating in the cycle is in the order of cooling the freezer compartment after cooling the refrigerator compartment, particularly when the balance of the cooling load between the freezer compartment and the refrigerator compartment is changed, When the cooling load increases, the freezer compartment has a disadvantage that the refrigerating capacity becomes insufficient and the efficiency of the refrigerating cycle may deteriorate.
[0014]
Another object of the present invention is to ensure that either one of the refrigerators in the different temperature zones such as the freezer compartment and the refrigerator compartment of the freezer / refrigerator is not refrigerating capacity is insufficient or the refrigerating capacity is not excessive. It is an object of the present invention to provide a refrigeration and refrigeration apparatus that can be cooled rapidly and that has high efficiency and low power consumption.
In addition, since the above conventional configuration cannot cool only one of the freezer compartment evaporator 2 or the refrigerator compartment evaporator 7, when performing defrosting to prevent the performance of the evaporator from deteriorating, the freezer compartment and the refrigerator compartment are provided. Both cooling of these had to be stopped, and there existed a fault that the temperature in each store | warehouse | chamber might rise during performing the defrosting.
Another object of the present invention is to prevent the rise of the internal temperature by stopping the cooling of only one side when defrosting the evaporator for high temperature (for refrigerator compartment) or the evaporator for low temperature (for freezer compartment). It is providing the freezing and refrigeration apparatus which can do.
Further, in the above conventional configuration, since the low-stage compressor 3 and the high-stage compressor 4 are connected in series, the maximum capacity of the compressor is reduced compared to the compressor of the same size that is connected in parallel, and the door is opened and closed. It is not possible to cope with a significant increase in the cooling load in the freezer or refrigerated room due to the difference in the food to be stored in the storage, and the temperature in each part of the storage may become uneven or the internal temperature may rise. There was a fault that there was a nature.
[0015]
Another object of the present invention is to respond to changes in the cooling load in the freezer and refrigerator compartments, to achieve uniform temperature in each part of the refrigerator, and to cope with a significant increase in cooling loads in the freezer and refrigerator compartments. Another object of the present invention is to provide an efficient refrigeration apparatus capable of rapid cooling.
[0016]
[Means for Solving the Problems]
To achieve this object, the present invention includes a first compression element, a second compression element, a condenser connected together with a discharge side of the first compression element and a discharge side of the second compression element, and the condensation A first expansion device piped to the outlet side of the vessel, a high temperature evaporator piped to the outlet side of the first expansion device, and between the high temperature evaporator and the suction side of the first compression element A gas-liquid separator connected by piping, a second expansion device connected by piping to the gas-liquid separator, and a low-temperature evaporator connected by piping between the second expansion device and the suction side of the second compression element; The liquid refrigerant outlet side of the gas-liquid separator and the second expansion device communicate with each other, and the gas refrigerant outlet side of the gas-liquid separator and the first compression element communicate with each other.
[0017]
Thereby, the overall heat insulation efficiency of the compressor can be improved, the efficiency of the actual refrigeration cycle can be improved, and a highly efficient refrigeration apparatus with low power consumption can be provided.
[0018]
In addition, the present invention is configured to include a first bypass passage communicating the inlet side and the outlet side of the high-temperature evaporator, and a first on-off valve provided in the first bypass passage.
[0019]
As a result, one of the refrigerators in different temperature zones such as the freezer compartment and the refrigerator compartment of the freezer / refrigerator can be properly cooled without refrigeration capacity becoming insufficient or refrigeration capacity being excessive, and A refrigeration apparatus with high efficiency and low power consumption can be provided.
[0020]
Further, the present invention is provided between the second on-off valve provided between the branch point of the first bypass passage and the high-temperature evaporator, and between the gas-liquid separator and the suction side of the second compression element. The third open / close valve is provided.
[0021]
Thereby, when performing defrosting of the high-temperature evaporator or the low-temperature evaporator, it is possible to provide a freezing and refrigeration apparatus capable of stopping the cooling of only one side and preventing the internal temperature from rising.
[0022]
The present invention also provides a second bypass passage communicating the suction side of the first compression element and the suction side of the second compression element, a fourth on-off valve provided in the second bypass passage, and the first compression The fifth open / close valve is provided between the element and the gas-liquid separator.
[0023]
As a result, the temperature of each part in the refrigerator can be made uniform in response to changes in the cooling load in the freezer and refrigerator compartments, and the cooling load in the freezer compartment and refrigerator compartment can be significantly increased and rapid cooling can be performed. It is possible to provide an efficient freezing and refrigeration apparatus that can handle the above.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention includes a first compression element, a second compression element, a condenser connected together with a discharge side of the first compression element and a discharge side of the second compression element, and the A first expansion device piped to the outlet side of the condenser, a high temperature evaporator piped to the outlet side of the first expansion device, and between the high temperature evaporator and the suction side of the first compression element A gas-liquid separator connected to the pipe, a second expansion device connected to the gas-liquid separator, and a low-temperature evaporator connected between the second expansion device and the suction side of the second compression element The liquid refrigerant outlet side of the gas-liquid separator communicates with the second expansion device, and the gas refrigerant outlet side of the gas-liquid separator communicates with the first compression element. The circuit for high temperature and the circuit for low temperature are formed as separate single-stage compression cycles, respectively. By operating at the proper pressure conditions as not to shrink ratio, it is possible to prevent the overall adiabatic efficiency. Therefore, it has the effect of improving the efficiency of the actual refrigeration cycle and reducing power consumption.
[0025]
Furthermore, is obtained by a first bypass passage communicating the inlet side and the outlet side of the high temperature evaporator, a configuration in which a first shut-off valve provided in the first bypass passage, refrigerating and freezing compartment When the cooling load on the low-temperature side in the chamber in different temperature zones becomes relatively large, the refrigerant flows mainly through the first bypass passage rather than the high-temperature evaporator by opening the first on-off valve. The cooling capacity is mainly exhibited in the freezer compartment (low temperature side) low temperature evaporator. Therefore, because it can cope with the imbalance between the cooling loads of the freezing room and the refrigerating room, one of them can be properly cooled without high cooling capacity or excessive freezing capacity, and high efficiency. This has the effect of reducing power consumption.
[0026]
Furthermore , a second on-off valve provided between the branch point of the first bypass passage and the high-temperature evaporator, and a third on-off valve provided between the gas-liquid separator and the suction side of the second compression element is obtained by the structure having the door, first on-off valve, opened third on-off valve, by closing the second shut-off valve, the refrigerant flows into the first bypass passage without flowing into the hot evaporator side The cooling capacity is exerted only on the low temperature evaporator on the freezer compartment side (low temperature side). Accordingly, it is possible to cope with a large imbalance between the cooling loads of the freezing room and the refrigerating room, and further, it is possible to defrost the high-temperature evaporator in which the cooling action is stopped while performing the cooling action with the low-temperature evaporator. Further, by opening the second on-off valve and closing the first on-off valve and the third on-off valve, the refrigerant passes through the high-temperature evaporator and flows into the gas-liquid separator, and then does not flow to the low-temperature evaporator side. Since the air is sucked into one compression element, the cooling capacity is exerted only on the high temperature evaporator on the refrigerator compartment side (high temperature side). Therefore, it is possible to cope with a large imbalance between the cooling loads of the freezing room and the refrigerating room, and further, it is possible to defrost the low-temperature evaporator in which the cooling action is stopped while performing the cooling action with the high-temperature evaporator. Has an effect.
[0027]
Furthermore, a second bypass passage communicating the suction side of the first compression element and the suction side of the second compression element, a fourth on-off valve provided in the second bypass passage, the first compression element and the gas-liquid is obtained by a structure in which a fifth on-off valve provided between the separator and the fourth on-off valve, by opening the fifth on-off valve, the suction side of the first compression element and the second compression element Since it is in communication and becomes a two-cylinder parallel one-stage compression operation, the refrigerant exhibits a cooling action in the high-temperature evaporator, and then is sucked into the first compression element and the second compression element without flowing to the low-temperature evaporator side. Rapid cooling operation on the refrigerator compartment side (high temperature side). In addition, by opening the first on-off valve and the fourth on-off valve and closing the fifth on-off valve, the suction side of the first compression element and the second compression element communicate with each other to perform a two-cylinder parallel one-stage compression operation, and the refrigerant is hot Since it flows to the first bypass passage without flowing to the evaporator side and exhibits its cooling capacity only to the low temperature evaporator on the freezer side (low temperature side), the rapid cooling operation on the freezer side is performed. That is, it is possible to equalize the temperature of each part in the freezer compartment and the refrigerator compartment, and to cope with a significant increase in the cooling load of the freezer compartment and the refrigerator compartment, and to perform rapid cooling. Has the effect of being able to
[0028]
【Example】
Embodiments of the freezing and refrigeration apparatus according to the present invention will be described below with reference to the drawings. In addition, about the same structure as the past, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
[0029]
( Reference Example 1 )
FIG. 1 is a refrigerant circuit diagram of a refrigerating and refrigerating apparatus according to Reference Example 1 . FIG. 2 is a pressure-enthalpy diagram of the refrigeration cycle in the refrigeration apparatus of the reference example .
[0030]
In FIGS. 1 and 2, 16 is a first compression element, 17 is a second compression element, and the first compression element 16 and the second compression element 17 are housed in a sealed container 18. Reference numeral 19 denotes a condenser connected together with the discharge side of the first compression element 16 and the discharge side of the second compression element 17. Reference numeral 20 denotes a first expansion device connected to the outlet side of the condenser 19 by piping, and reference numeral 21 denotes a high-temperature evaporator connected to the outlet side of the first expansion device 20 by piping. 22 is a gas-liquid separator connected by piping between the high-temperature evaporator 21 and the suction side of the first compression element 16, 23 is a second expansion device connected by piping to the gas-liquid separator 22, and 24 is This is a low-temperature evaporator connected by piping between the second expansion device 23 and the suction side of the second compression element 17. The liquid refrigerant outlet 25 side of the gas-liquid separator 22 communicates with the second expansion device 23, and the gas refrigerant outlet 26 side of the gas-liquid separator 22 communicates with the first compression element 16.
[0031]
The operation of the refrigeration apparatus configured as described above will be described below.
[0032]
When the first compression element 16 and the second compression element 17 are operated, they suck and compress the refrigerant gas, and are sent to the condenser 19 via the pipe. The refrigerant gas is radiated and condensed by the condenser 19 to become a liquid refrigerant, and then the pressure is reduced by the first expansion valve 20. Then, it flows into the high-temperature evaporator 21 and part thereof evaporates there. At this time, by removing heat from the surroundings, the high-temperature evaporator 21 exhibits a cooling action, and cools the inside of the high-temperature side storage such as the refrigerator compartment. The gas-liquid two-phase refrigerant that has exited the high-temperature evaporator 21 flows into the gas-liquid separator 22, and liquid refrigerant is stored at the bottom of the gas-liquid separator 22. Saturated gas refrigerant accumulates and the gas phase and liquid phase are separated. Then, only the liquid refrigerant flows out from the liquid refrigerant outlet 25 of the gas-liquid separator 22 in the direction of the second expansion device 23, where the pressure is reduced and flows into the low-temperature evaporator 24 to evaporate. At this time, by taking heat away from the surroundings, the low-temperature evaporator 24 exhibits a cooling action and cools the inside of the low-temperature side compartment such as the freezer compartment. Then, the low-temperature gas refrigerant that has exited the low-temperature evaporator 24 is sucked into the second compression element 17 again. On the other hand, the saturated gas refrigerant in the upper part of the gas-liquid separator 22 flows out from the gas refrigerant outlet 26 and is sucked into the second compression element 16 again.
[0033]
In this way, the high-temperature circuit and the low-temperature circuit are formed as separate single-stage compression cycles, and the operation is performed under an appropriate pressure condition that does not result in an extremely low compression ratio such as two-stage compression. Can be prevented. Therefore, the efficiency of the actual refrigeration cycle can be improved and the power consumption can be reduced.
[0034]
As described above, the refrigerating and refrigerating apparatus according to the present reference example includes the first compression element 16, the second compression element 17, the condenser connected together with the discharge side of the first compression element 16 and the discharge side of the second compression element 17. 19, a first expansion device 20 piped to the outlet side of the condenser 19, a high temperature evaporator 21 piped to the outlet side of the first expansion device 20, a high temperature evaporator 21, and the first compression element 16. A gas-liquid separator 22 connected to the suction side of the gas, a second expansion device 23 connected to the gas-liquid separator 22, and a space between the second expansion device 23 and the suction side of the second compression element 17. A low-temperature evaporator 24 connected to a pipe, the liquid refrigerant outlet 25 side of the gas-liquid separator 22 and the second expansion device 23 communicate with each other, and the gas refrigerant outlet 26 side of the gas-liquid separator 22 and the first compression Since the element 16 is in communication with each other, the high temperature circuit and the low temperature circuit are connected to each other. Each formed as separate stage compression cycle, by operating at an appropriate pressure conditions as not to extremely low compression ratio such as a two-stage compression, it is possible to prevent the overall adiabatic efficiency. Therefore, the efficiency of the actual refrigeration cycle can be improved and the power consumption can be reduced.
[0035]
( Reference Example 2 )
FIG. 3 is a refrigerant circuit diagram of the refrigerating / refrigeration apparatus according to Reference Example 2 .
[0036]
The following description will be made with reference to the drawings. The same components as those in Reference Example 1 will be assigned the same reference numerals and detailed description thereof will be omitted. In FIG. 3, reference numeral 27 denotes a first bypass passage that communicates the inlet side and the outlet side of the high-temperature evaporator 19, and 28 denotes a first on-off valve provided in the first bypass passage 27. 29 is a second on-off valve provided between the branch point of the first bypass passage 27 and the high-temperature evaporator 21, and 30 is between the gas-liquid separator 22 and the suction side of the second compression element 16. It is the 3rd on-off valve provided.
[0037]
The operation of the refrigeration apparatus configured as described above will be described below.
[0038]
When the first on-off valve 28 is closed, the second on-off valve 29 and the third on-off valve 30 are opened and the first compression element 16 and the second compression element 17 are operated, the same refrigeration cycle as in Reference Example 1 is formed and the same effect is obtained. Is obtained.
[0039]
From this state, when the cooling load on the low temperature side in the refrigerators in different temperature zones such as the freezer compartment and the refrigerator compartment becomes relatively large, the first on-off valve 28 is opened so that the refrigerant is from the high temperature evaporator 21. However, the cooling capacity mainly flows through the first bypass passage 28, and the cooling capacity thereof is mainly exhibited by the low temperature evaporator 24 on the freezer compartment side (low temperature side). Therefore, it is possible to cope with the imbalance between the cooling loads of the freezer compartment and the refrigerator compartment, so that either of them can be properly cooled without causing the freezing capacity to be insufficient or the freezing capacity to be excessive. Power consumption can be reduced.
[0040]
Further, by opening the first on-off valve 28 and the third on-off valve 30 and closing the second on-off valve 29, the refrigerant does not flow to the high temperature evaporator 21 side but flows to the first bypass passage 27, and its cooling capacity Is exerted only on the low-temperature evaporator 24 on the freezer compartment side (low-temperature side). Therefore, it is possible to cope with a large imbalance between the cooling loads of the freezing room and the refrigerating room, and furthermore, while the cooling operation is performed by the low temperature evaporator 24, the high temperature evaporator 21 in which the cooling operation is stopped can be defrosted. it can.
[0041]
Further, by opening the second on-off valve 29 and closing the first on-off valve 28 and the third on-off valve 30, the refrigerant flows into the gas-liquid separator 22 through the high temperature evaporator 21, and then the low temperature evaporator 24. Since it does not flow to the side and is sucked into the first compression element 16, the cooling capacity is exerted only on the high-temperature evaporator 21 on the refrigerator compartment side (high temperature side). Therefore, it is possible to cope with a large imbalance between the cooling loads of the freezing room and the refrigerating room, and it is possible to defrost the low-temperature evaporator 24 whose cooling action is stopped while performing the cooling action with the high-temperature evaporator 21. it can.
[0042]
As described above, the refrigerating and refrigerating apparatus of the present reference example includes the first bypass passage 27 that communicates the inlet side and the outlet side of the high-temperature evaporator 21, and the first on-off valve 28 provided in the first bypass passage 27. The second on-off valve 29 provided between the branch point of the first bypass passage 27 and the high-temperature evaporator 21, and provided between the gas-liquid separator 22 and the suction side of the second compression element 17. Since the third open / close valve 30 is provided, either one of the freezer compartment and the refrigerator compartment in different temperature zones such as the freezer is insufficient in refrigerating capacity or excessive in refrigerating capacity. Therefore, the interior of each cabinet can be properly cooled, and power consumption can be reduced with high efficiency. Further, when defrosting the high-temperature evaporator 21 or the low-temperature evaporator 24, the cooling of only one side can be stopped to prevent the internal temperature from rising.
[0043]
( Example 1 )
FIG. 4 is a refrigerant circuit diagram of the refrigeration apparatus according to Embodiment 1 of the present invention.
[0044]
The following description will be made with reference to the drawings. The same components as those in Reference Example 1 and Reference Example 2 are denoted by the same reference numerals, and detailed description thereof will be omitted. In FIG. 4, 31 is a second bypass passage that communicates the suction side of the first compression element 16 and the suction side of the second compression element 17, and 32 is a fourth on-off valve provided in the second bypass passage 31. And 33 is a fifth on-off valve provided between the first compression element 16 and the gas-liquid separator 22.
[0045]
The operation of the refrigeration apparatus configured as described above will be described below.
[0046]
When the fourth on-off valve 32 is closed and the fifth on-off valve 33 is opened and the first compression element 16 and the second compression element 17 are operated, the same effect as in Reference Example 2 is obtained.
[0047]
Then, by closing the first on-off valve 28 and the third on-off valve 30 and opening the second on-off valve 29, the fourth on-off valve 32, and the fifth on-off valve 33, the first compression element 16 and the second compression element 17 After the suction side communicates and the two-cylinder parallel one-stage compression operation is performed and the refrigerant exhibits a cooling action in the high-temperature evaporator 21, the refrigerant does not flow to the low-temperature evaporator 24 side, and the first compression element 16 and the second compression element 17 Therefore, the refrigerating room side (high temperature side) is rapidly cooled. At this time, even if the third on-off valve 30 is opened, the refrigerant is hardly flown to the low-temperature evaporator 24 side due to the resistance by the second expansion device 23, and the same effect can be obtained.
[0048]
Further, by opening the first on-off valve 28, the third on-off valve 30, and the fourth on-off valve 32 and closing the second on-off valve 29 and the fifth on-off valve 33, the first compression element 16 and the second compression element 17 are closed. The suction side communicates and a two-cylinder parallel one-stage compression operation is performed, and the refrigerant does not flow to the high temperature evaporator 21 side but flows to the first bypass passage 27, and its cooling capacity is reduced to low temperature evaporation on the freezer compartment side (low temperature side). Since it will be exhibited only in the container 24, it will be a rapid cooling operation on the freezer compartment side. At this time, when the second on-off valve 29 is opened, the refrigerant also flows to the high-temperature evaporator 21 side and can also cool the refrigerator compartment side.
[0049]
As described above, the refrigeration apparatus of the present embodiment is provided in the second bypass passage 31 and the second bypass passage 31 that connect the suction side of the first compression element 16 and the suction side of the second compression element 17. Since the fourth on-off valve 32 and the fifth on-off valve 33 provided between the first compression element 16 and the gas-liquid separator 22 are provided, cooling in the freezer compartment and the refrigerator compartment is performed. The temperature of each part in the storage can be made uniform in response to the load change, and further, it is possible to cope with a significant increase in the cooling load of the freezing room and the refrigerating room and to perform rapid cooling.
[0050]
【The invention's effect】
As described above, the invention according to claim 1 includes the first compression element, the second compression element, the condenser connected by piping together with the discharge side of the first compression element and the discharge side of the second compression element. A first expansion device piped to the outlet side of the condenser, a high temperature evaporator piped to the outlet side of the first expansion device, the high temperature evaporator and the suction side of the first compression element, A gas-liquid separator piped between, a second expansion device piped to the gas-liquid separator, and a low-temperature pipe piped between the second expansion device and the suction side of the second compression element An evaporator, the liquid refrigerant outlet side of the gas-liquid separator communicates with the second expansion device, and the gas refrigerant outlet side of the gas-liquid separator communicates with the first compression element. Therefore, the high-temperature circuit and the low-temperature circuit are formed as separate single-stage compression cycles. By operating at the proper pressure conditions as not to extremely low compression ratio such as a two-stage compression, it is possible to prevent the overall adiabatic efficiency. Therefore, the efficiency of the actual refrigeration cycle can be improved and the power consumption can be reduced.
[0051]
Furthermore, since it has a configuration comprising a first bypass passage communicating the inlet side and the outlet side of the high-temperature evaporator, and a first on-off valve provided in the first bypass passage, the refrigerator is further refrigerated. Either one of the chambers in different temperature zones, such as the freezer compartment or the refrigerator compartment of the device, can be properly cooled without refrigeration capacity becoming insufficient or excessive refrigeration capacity, and highly efficient power consumption Can be reduced.
[0052]
Furthermore, a second on-off valve provided between the branch point of the first bypass passage and the high-temperature evaporator, and a third on-off valve provided between the gas-liquid separator and the suction side of the second compression element Therefore, when defrosting the high-temperature evaporator or the low-temperature evaporator, cooling on only one side can be stopped to prevent an increase in the internal temperature.
[0053]
Furthermore, a second bypass passage communicating the suction side of the first compression element and the suction side of the second compression element, a fourth on-off valve provided in the second bypass passage, the first compression element and the gas-liquid Since it has a configuration with a fifth on-off valve provided between the separator, the temperature of each part in the refrigerator can be made uniform in response to changes in the cooling load in the freezer compartment and refrigerator compartment. Furthermore, it is possible to cope with a significant increase in the cooling load of the freezer compartment and the refrigerator compartment and to perform rapid cooling.
[Brief description of the drawings]
[Fig. 1] Refrigerant circuit diagram of Reference Example 1 of a refrigeration unit [Fig. 2] Pressure-enthalpy diagram of a refrigeration cycle in the refrigeration unit of the same reference example [Fig. 3] Refrigerant circuit diagram of Reference Example 2 of a refrigeration unit FIG. 4 is a refrigerant circuit diagram of the first embodiment of the refrigeration apparatus according to the present invention. FIG. 5 is a refrigerant circuit diagram of a conventional two-stage compression refrigeration cycle. FIG. Cross section of separator 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 16 1st compression element 17 2nd compression element 19 Condenser 20 1st expansion apparatus 21 High temperature evaporator 22 Gas-liquid separator 23 2nd expansion apparatus 24 Low temperature evaporator 25 Liquid refrigerant outlet 26 Gas refrigerant outlet 27 First bypass Passage 28 first on-off valve 29 second on-off valve 30 third on-off valve 31 second bypass passage 32 fourth on-off valve 33 fifth on-off valve

Claims (1)

第一圧縮要素と、第二圧縮要素と、前記第一圧縮要素の吐出側並びに前記第二圧縮要素の吐出側と共に配管接続した凝縮器と、前記凝縮器の出口側と配管接続した第一膨張装置と、前記第一膨張装置の出口側に配管接続した高温用蒸発器と、前記高温用蒸発器と前記第一圧縮要素の吸入側との間に配管接続した気液分離器と、前記気液分離器と配管接続した第二膨張装置と、前記第二膨張装置と前記第二圧縮要素の吸入側との間に配管接続した低温用蒸発器とからなり、前記気液分離器の液冷媒出口側と第二膨張装置とが連通し、前記気液分離器のガス冷媒出口側と前記第一圧縮要素とが連通し、さらに、前記高温用蒸発器の入口側と出口側とを連通する第一バイパス通路と、前記第一バイパス通路に設けられた第一開閉弁と、前記第一バイパス通路の分岐点と前記高温用蒸発器との間に設けられた第二開閉弁と、前記気液分離器と前記第二圧縮要素の吸入側との間に設けられた第三開閉弁と、前記第一圧縮要素の吸入側と前記第二圧縮要素の吸入側とを連通する第二バイパス通路と、前記第二バイパス通路に設けられた第四開閉弁と、前記第一圧縮要素と前記気液分離器との間に設けられた第五開閉弁とを備え、少なくとも前記第一開閉弁を閉じて、前記第二開閉弁と前記四開閉弁及び前記第五開閉弁を開くことで、前記高温用蒸発器において急冷運転し、少なくとも前記第五開閉弁を閉じて、前記第一開閉弁と前記三開閉弁及び前記第四開閉弁を開くことで、前記低温用蒸発器において急冷運転することを特徴とした冷凍冷蔵装置。A first compression element, a second compression element, a condenser piped together with the discharge side of the first compression element and the discharge side of the second compression element, and a first expansion piped to the outlet side of the condenser A high temperature evaporator piped to the outlet side of the first expansion device, a gas-liquid separator piped between the high temperature evaporator and the suction side of the first compression element, and the gas A liquid refrigerant of the gas-liquid separator, comprising: a second expansion device piped to the liquid separator; and a low-temperature evaporator piped between the second expansion device and the suction side of the second compression element. The outlet side communicates with the second expansion device, the gas refrigerant outlet side of the gas-liquid separator communicates with the first compression element, and the inlet side and outlet side of the high-temperature evaporator communicate with each other. A first bypass passage, a first on-off valve provided in the first bypass passage, and the first bypass passage. A second on-off valve provided between the branch point of the gas passage and the high-temperature evaporator; a third on-off valve provided between the gas-liquid separator and the suction side of the second compression element; A second bypass passage communicating the suction side of the first compression element and the suction side of the second compression element, a fourth on-off valve provided in the second bypass passage, the first compression element, and the A fifth on-off valve provided between the gas-liquid separator, closing at least the first on-off valve, and opening the second on-off valve, the fourth on-off valve, and the fifth on-off valve, Rapid cooling operation is performed in the high-temperature evaporator, and at least the fifth on-off valve is closed, and the first on-off valve, the third on-off valve, and the fourth on-off valve are opened to perform the rapid cooling operation in the low-temperature evaporator. A freezing and refrigeration apparatus characterized by that .
JP2000008912A 2000-01-18 2000-01-18 Refrigeration equipment Expired - Fee Related JP4240715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000008912A JP4240715B2 (en) 2000-01-18 2000-01-18 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000008912A JP4240715B2 (en) 2000-01-18 2000-01-18 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2001201236A JP2001201236A (en) 2001-07-27
JP4240715B2 true JP4240715B2 (en) 2009-03-18

Family

ID=18537127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000008912A Expired - Fee Related JP4240715B2 (en) 2000-01-18 2000-01-18 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4240715B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100043463A1 (en) * 2005-06-27 2010-02-25 Fleming Mark A Refrigerator or freezer with enhanced efficiency
CN106288473A (en) * 2016-07-28 2017-01-04 广东美芝制冷设备有限公司 Refrigerating plant
US11098929B2 (en) * 2019-01-10 2021-08-24 Haier Us Appliance Solutions, Inc. Fast switching multiple evaporator system for an appliance

Also Published As

Publication number Publication date
JP2001201236A (en) 2001-07-27

Similar Documents

Publication Publication Date Title
US6327871B1 (en) Refrigerator with thermal storage
JP3630632B2 (en) refrigerator
TWI257472B (en) Refrigerator
US20090126399A1 (en) Refigeration system
US20040112082A1 (en) Regfrigerating device
JP3975664B2 (en) Refrigerating refrigerator, operation method of freezing refrigerator
JP3847499B2 (en) Two-stage compression refrigeration system
JP4211847B2 (en) Refrigeration equipment
JP4123257B2 (en) Refrigeration equipment
JP3576040B2 (en) Cooling systems and refrigerators
JP4608790B2 (en) refrigerator
JP3527592B2 (en) Freezer refrigerator
JP4240715B2 (en) Refrigeration equipment
JPH04288454A (en) Refrigerating device using heat transfer of capillary tube and suction line
JP4169080B2 (en) Freezer refrigerator
JP2002277082A (en) Freezer
JP5062079B2 (en) Refrigeration equipment
JP2004317069A (en) Refrigerator
JP2001201194A (en) Cold storage system with deep freezer
JP4618313B2 (en) Refrigeration equipment
KR102494567B1 (en) A refrigerator and a control method the same
JP2005098605A (en) Refrigerator
KR100394008B1 (en) Refrigerating cycle for refrigerator and method for controlling the same
CN218065446U (en) Refrigerator with a door
JP3858918B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees